Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = seat effective amplitude transmissibility (SEAT%)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2523 KB  
Article
On-Road Evaluation of an Unobtrusive In-Vehicle Pressure-Based Driver Respiration Monitoring System
by Sparsh Jain and Miguel A. Perez
Sensors 2025, 25(9), 2739; https://doi.org/10.3390/s25092739 - 26 Apr 2025
Viewed by 657
Abstract
In-vehicle physiological sensing is emerging as a vital approach to enhancing driver monitoring and overall automotive safety. This pilot study explores the feasibility of a pressure-based system, repurposing commonplace occupant classification electronics to capture respiration signals during real-world driving. Data were collected from [...] Read more.
In-vehicle physiological sensing is emerging as a vital approach to enhancing driver monitoring and overall automotive safety. This pilot study explores the feasibility of a pressure-based system, repurposing commonplace occupant classification electronics to capture respiration signals during real-world driving. Data were collected from a driver-seat-embedded, fluid-filled pressure bladder sensor during normal on-road driving. The sensor output was processed using simple filtering techniques to isolate low-amplitude respiratory signals from substantial background noise and motion artifacts. The experimental results indicate that the system reliably detects the respiration rate despite the dynamic environment, achieving a mean absolute error of 1.5 breaths per minute with a standard deviation of 1.87 breaths per minute (9.2% of the mean true respiration rate), thereby bridging the gap between controlled laboratory tests and real-world automotive deployment. These findings support the potential integration of unobtrusive physiological monitoring into driver state monitoring systems, which can aid in the early detection of fatigue and impairment, enhance post-crash triage through timely vital sign transmission, and extend to monitoring other vehicle occupants. This study contributes to the development of robust and cost-effective in-cabin sensor systems that have the potential to improve road safety and health monitoring in automotive settings. Full article
Show Figures

Figure 1

16 pages, 7151 KB  
Article
Sensitivity Analysis of a Driver’s Lumped Parameter Model in the Evaluation of Ride Comfort
by Dimitrios Koulocheris and Clio Vossou
Vehicles 2023, 5(3), 1030-1045; https://doi.org/10.3390/vehicles5030056 - 25 Aug 2023
Cited by 4 | Viewed by 1951
Abstract
The ride comfort provided by a vehicle to the driver and the passengers is an important feature, directly correlated to the technical characteristics of the suspension system of the vehicle. In the literature, several lumped-parameter models simulating the vehicle and the driver are [...] Read more.
The ride comfort provided by a vehicle to the driver and the passengers is an important feature, directly correlated to the technical characteristics of the suspension system of the vehicle. In the literature, several lumped-parameter models simulating the vehicle and the driver are proposed for the computational evaluation of ride comfort. In order to quantify ride comfort, other than the values of acceleration, metrics such as seat effective amplitude transmissibility (SEAT) and seat-to-head transmissibility (STHT) are utilized. In this paper, a quarter car model is coupled with a six-degree-of-freedom lumped-parameter model, consisting of the driver’s seat and the driver. A sensitivity analysis is performed on the values of the lumped parameters of the seated human body with regard to ride comfort in order to evaluate the effect of their accuracy relative to the ride comfort evaluation. The results of the sensitivity analysis revealed that the values of the mass, the stiffness and the damping parameters of the seated human model influence the ride-comfort metrics to a different extent. Furthermore, it was depicted that ride-comfort metrics were affected in different manners depending on the characteristics of the excitation of the vehicle, yet less than 10% Finally, the importance of the consideration of single-disturbance excitations in such sensitivity studies emerged. Full article
Show Figures

Figure 1

16 pages, 6770 KB  
Article
Research on Parameter Design Method and Motion Characteristics of a Ball Cage Flexible Joint
by Xiuxing Zhu, Yingpeng Xu, Weixia Zhou, Guigen Ye and Bo Zhou
Energies 2022, 15(20), 7591; https://doi.org/10.3390/en15207591 - 14 Oct 2022
Cited by 5 | Viewed by 2166
Abstract
The flexible joint is an important part in ultra-short-radius drilling tools, and its structural parameters and motion characteristics are key factors affecting the success of drilling. In this work, a new type of ball cage flexible joint, which is applied in 5″ and [...] Read more.
The flexible joint is an important part in ultra-short-radius drilling tools, and its structural parameters and motion characteristics are key factors affecting the success of drilling. In this work, a new type of ball cage flexible joint, which is applied in 5″ and 5.5″ cased wells, was proposed based on the working principle of the ball cage universal joint. A structural parameter design method for the ball cage flexible joint was established according to the geometric coordination relation and material strength theory. Using this new method, the length, diameter, and window size of the ball cage flexible joint were analyzed. The multi-body motion process was further analyzed using a multi-body dynamics method, and then the motion characteristics, such as impact contact force, isokinetic characteristics, transfer efficiency, deflection torque and so on, were studied. Based on the above analyses, the structural parameters of the designed joint were optimized by means of the orthogonal test method. Results demonstrate that the experimental ball cage flexible joint has excellent isokinetic transmission characteristic, which can effectively suppress vibration and shock caused by changes in rotational speed. The transmission efficiency of the structure was 89.8%, while the power loss rate was 0.102%. According to the orthogonal test analysis, the optimal structure of the flexible joint has a ball seat diameter of 80 mm, a ball head diameter of 62 mm, and a ball key diameter of 16 mm. It is important to note that the ball key diameter was the most influential factor on the flexible joint internal contact force. The ball key contact force varied periodically, and there was a significant phase difference between the contact forces of different balls. On the other hand, with an increase in the flexible joint working angle, the deflection torque increased gradually, and the vibration amplitude of the torque increased. This work can provide reference for the parameter optimization design of the new flexible joint. Full article
(This article belongs to the Special Issue Deep Oil and Gas Drilling and Production Technology)
Show Figures

Figure 1

11 pages, 2187 KB  
Article
Evaluation and Analysis of Whole-Body Vibration Exposure during Soil Tillage Operation
by Amandeep Singh, Siby Samuel, Harwinder Singh, Yash Kumar and Chander Prakash
Safety 2021, 7(3), 61; https://doi.org/10.3390/safety7030061 - 30 Aug 2021
Cited by 14 | Viewed by 5040
Abstract
This study investigated whole-body vibration (WBV) response in real field harrowing operations at different tractor ride conditions i.e., average speed, front harrow pin angle (FHPA), and rear harrow pin distance (RHPD). Taguchi’s L27 orthogonal array was used to formulate a systematic design [...] Read more.
This study investigated whole-body vibration (WBV) response in real field harrowing operations at different tractor ride conditions i.e., average speed, front harrow pin angle (FHPA), and rear harrow pin distance (RHPD). Taguchi’s L27 orthogonal array was used to formulate a systematic design of experiments. WBV exposure was measured along the three translational axes to compute overall daily vibration magnitude i.e., A(8). Tractor’s seat isolation capacity was assessed in terms of Seat Effective Amplitude Transmissibility i.e., SEAT%. Raw acceleration data was analysed to obtain dominant frequencies using Fast Fourier Transform (FFT). A(8) was found to range between 0.43 to 0.87 m/s2 in the experimental trials. Seat isolation capacity was found to be poor in 89% of the experiments i.e., SEAT% > 100%. Average speed and FHPA was found to have a significant impact (p ≤ 0.05) on A(8) and SEAT%. FFT response showed a range of primary and secondary dominant peaks within a frequency range of 0.2 to 11 Hz. In conclusion, the majority of experimental trials (67%) exceeded the Directive2002/44EU recommended exposure action value (EAV) limit i.e., 0.5 m/s2. The harrowing operation was found to exhibit vibration exposure at low frequencies in the vicinity of natural frequencies of the human body and may consequently affect ride comfort. Full article
Show Figures

Figure 1

22 pages, 64111 KB  
Article
An Active Seat Controller with Vehicle Suspension Feedforward and Feedback States: An Experimental Study
by Abdulaziz Alfadhli, Jocelyn Darling and Andrew J. Hillis
Appl. Sci. 2018, 8(4), 603; https://doi.org/10.3390/app8040603 - 11 Apr 2018
Cited by 16 | Viewed by 6956
Abstract
Active seat suspensions can be used to reduce the harmful vertical vibration of a vehicle’s seat by applying an external force using a closed loop controller. Many of the controllers found in the literature are difficult to implement practically, because they are based [...] Read more.
Active seat suspensions can be used to reduce the harmful vertical vibration of a vehicle’s seat by applying an external force using a closed loop controller. Many of the controllers found in the literature are difficult to implement practically, because they are based on using unavailable or difficult and costly measurements. This paper presents both simulation and experimental studies of five novel, simple, and cost-effective control strategies to be used for an active seat suspension in order to improve ride comfort at low frequencies below 20 Hz. These strategies use available and measurable feedforward (preview) information states from the vehicle secondary suspension, as well as feedback states from the seat suspension, together with gains optimised to minimise the occupant vibration. The gains were optimised using a genetic algorithm (GA), with a fitness function based on the seat effective amplitude transmissibility (SEAT) factor. Constraints on the control force and the seat suspension stroke were also included in the optimisation algorithm. Simulation and laboratory experimental tests were carried out to assess the performance of the proposed controllers according to the ISO 2631-1 standard, in both the frequency and time domains with a range of different road profiles. The experimental tests were performed using a multi-axis simulation table (MAST) and a physical active seat suspension configured as a hardware-in-loop (HIL) simulation with a virtual linear quarter vehicle model (QvM). The results demonstrate that the proposed controllers substantially attenuate the vertical vibration at the driver’s seat compared with both a passive and a proportional-integral-derivative (PID) active seat suspension and thus improve ride comfort together with reducing vibration-linked health risks. Moreover, experimental results show that employing both feedforward information and feedback vehicle body and seat acceleration signals in the controller provides isolation performance gains of up to 19.5 dB over the human body sensitivity frequency range and improves the ride comfort in terms of the SEAT factor and the weighted root mean square (RMS) seat acceleration by at least 25% when compared with a passive system, irrespective of vehicle forward speed. Full article
Show Figures

Graphical abstract

21 pages, 10573 KB  
Article
The Control of an Active Seat Suspension Using an Optimised Fuzzy Logic Controller, Based on Preview Information from a Full Vehicle Model
by Abdulaziz Alfadhli, Jocelyn Darling and Andrew J. Hillis
Vibration 2018, 1(1), 20-40; https://doi.org/10.3390/vibration1010003 - 9 Feb 2018
Cited by 14 | Viewed by 6045
Abstract
The use of suspension preview information obtained from a quarter vehicle model (QvM) to control an active seat has been shown by the authors to be very promising, in terms of improved ride comfort. However, in reality, a road vehicle will be subjected [...] Read more.
The use of suspension preview information obtained from a quarter vehicle model (QvM) to control an active seat has been shown by the authors to be very promising, in terms of improved ride comfort. However, in reality, a road vehicle will be subjected to disturbances from all four wheels, and therefore the concept of preview enhanced control should be applied to a full vehicle model. In this paper, different preview scenarios are examined, in which suspension data is taken from all or limited axles. Accordingly, three control strategies are hypothesized—namely, front-left suspension (FLS), front axle (FA), and four wheel (4W). The former utilises suspension displacement and velocity preview information from the vehicle suspension nearest to the driver’s seat. The FA uses similar preview information, but from both the front-left and front-right suspensions. The 4W controller employs similar preview information from all of the vehicle suspensions. To cope with friction non-linearities, as well as constraints on the active actuator displacement and force capabilities, three optimal fuzzy logic controllers (FLCs) are developed. The structure of each FLC, including membership functions, scaling factors, and rule base, was sequentially optimised based on improving the seat effective amplitude transmissibility (SEAT) factor in the vertical direction, using the particle swarming optimisation (PSO) algorithm. These strategies were evaluated in simulation according to ISO 2631-1, using different road disturbances at a range of vehicle forward speeds. The results show that the proposed controllers are very effective in attenuating the vertical acceleration at the driver’s seat, when compared with a passive system. The controller that utilised suspension preview information from all four corners of the car provided the best seat isolation performance, independent of vehicle speed. Finally, to reduce the implementation cost of the “four suspension” controller, a practical alternative is developed that requires less measured preview information. Full article
Show Figures

Figure 1

Back to TopTop