Next Article in Journal
Fabrication and Characterization of Medical Mesh-Nebulizer for Aerosol Drug Delivery
Previous Article in Journal
Inducing Strong Non-Linearities in a Phonon Trapping Quartz Bulk Acoustic Wave Resonator Coupled to a Superconducting Quantum Interference Device
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle
Appl. Sci. 2018, 8(4), 603; https://doi.org/10.3390/app8040603

An Active Seat Controller with Vehicle Suspension Feedforward and Feedback States: An Experimental Study

Centre for Power Transmission and Motion Control, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
*
Author to whom correspondence should be addressed.
Received: 21 February 2018 / Revised: 28 March 2018 / Accepted: 5 April 2018 / Published: 11 April 2018
  |  
PDF [64111 KB, uploaded 3 May 2018]
  |  

Abstract

Active seat suspensions can be used to reduce the harmful vertical vibration of a vehicle’s seat by applying an external force using a closed loop controller. Many of the controllers found in the literature are difficult to implement practically, because they are based on using unavailable or difficult and costly measurements. This paper presents both simulation and experimental studies of five novel, simple, and cost-effective control strategies to be used for an active seat suspension in order to improve ride comfort at low frequencies below 20 Hz. These strategies use available and measurable feedforward (preview) information states from the vehicle secondary suspension, as well as feedback states from the seat suspension, together with gains optimised to minimise the occupant vibration. The gains were optimised using a genetic algorithm (GA), with a fitness function based on the seat effective amplitude transmissibility (SEAT) factor. Constraints on the control force and the seat suspension stroke were also included in the optimisation algorithm. Simulation and laboratory experimental tests were carried out to assess the performance of the proposed controllers according to the ISO 2631-1 standard, in both the frequency and time domains with a range of different road profiles. The experimental tests were performed using a multi-axis simulation table (MAST) and a physical active seat suspension configured as a hardware-in-loop (HIL) simulation with a virtual linear quarter vehicle model (QvM). The results demonstrate that the proposed controllers substantially attenuate the vertical vibration at the driver’s seat compared with both a passive and a proportional-integral-derivative (PID) active seat suspension and thus improve ride comfort together with reducing vibration-linked health risks. Moreover, experimental results show that employing both feedforward information and feedback vehicle body and seat acceleration signals in the controller provides isolation performance gains of up to 19.5 dB over the human body sensitivity frequency range and improves the ride comfort in terms of the SEAT factor and the weighted root mean square (RMS) seat acceleration by at least 25% when compared with a passive system, irrespective of vehicle forward speed. View Full-Text
Keywords: active seat suspension; preview controller; HIL; genetic algorithm active seat suspension; preview controller; HIL; genetic algorithm
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Alfadhli, A.; Darling, J.; Hillis, A.J. An Active Seat Controller with Vehicle Suspension Feedforward and Feedback States: An Experimental Study. Appl. Sci. 2018, 8, 603.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Appl. Sci. EISSN 2076-3417 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top