Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = seamless DTM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 14994 KiB  
Article
Seamless 3D Image Mapping and Mosaicing of Valles Marineris on Mars Using Orbital HRSC Stereo and Panchromatic Images
by Yu Tao, Greg Michael, Jan-Peter Muller, Susan J. Conway and Alfiah R. D. Putri
Remote Sens. 2021, 13(7), 1385; https://doi.org/10.3390/rs13071385 - 3 Apr 2021
Cited by 11 | Viewed by 4704
Abstract
A seamless mosaic has been constructed including a 3D terrain model at 50 m grid-spacing and a corresponding terrain-corrected orthoimage at 12.5 m using a novel approach applied to ESA Mars Express High Resolution Stereo Camera orbital (HRSC) images of Mars. This method [...] Read more.
A seamless mosaic has been constructed including a 3D terrain model at 50 m grid-spacing and a corresponding terrain-corrected orthoimage at 12.5 m using a novel approach applied to ESA Mars Express High Resolution Stereo Camera orbital (HRSC) images of Mars. This method consists of blending and harmonising 3D models and normalising reflectance to a global albedo map. Eleven HRSC image sets were processed to Digital Terrain Models (DTM) based on an opensource stereo photogrammetric package called CASP-GO and merged with 71 published DTMs from the HRSC team. In order to achieve high quality and complete DTM coverage, a new method was developed to combine data derived from different stereo matching approaches to achieve a uniform outcome. This new approach was developed for high-accuracy data fusion of different DTMs at dissimilar grid-spacing and provenance which employs joint 3D and image co-registration, and B-spline fitting against the global Mars Orbiter Laser Altimeter (MOLA) standard reference. Each HRSC strip is normalised against a global albedo map to ensure that the very different lighting conditions could be corrected and resulting in a tiled set of seamless mosaics. The final 3D terrain model is compared against the MOLA height reference and the results shown of this intercomparison both in altitude and planum. Visualisation and access mechanisms to the final open access products are described. Full article
(This article belongs to the Special Issue Cartography of the Solar System: Remote Sensing beyond Earth)
Show Figures

Figure 1

35 pages, 5497 KiB  
Review
Seven Good Reasons for Integrating Terrestrial and Marine Spatial Datasets in Changing Environments
by Mariacristina Prampolini, Alessandra Savini, Federica Foglini and Mauro Soldati
Water 2020, 12(8), 2221; https://doi.org/10.3390/w12082221 - 6 Aug 2020
Cited by 26 | Viewed by 7894
Abstract
A comprehensive understanding of environmental changes taking place in coastal regions relies on accurate integration of both terrestrial and submerged geo-environmental datasets. However, this practice is hardly implemented because of the high (or even prohibitive) survey costs required for submerged areas and the [...] Read more.
A comprehensive understanding of environmental changes taking place in coastal regions relies on accurate integration of both terrestrial and submerged geo-environmental datasets. However, this practice is hardly implemented because of the high (or even prohibitive) survey costs required for submerged areas and the frequent low accessibility of shallow areas. In addition, geoscientists are used to working on land or at sea independently, making the integration even more challenging. Undoubtedly new methods and techniques of offshore investigation adopted over the last 50 years and the latest advances in computer vision have played a crucial role in allowing a seamless combination of terrestrial and marine data. Although efforts towards an innovative integration of geo-environmental data from above to underwater are still in their infancy, we have identified seven topics for which this integration could be of tremendous benefit for environmental research: (1) geomorphological mapping; (2) Late-Quaternary changes of coastal landscapes; (3) geoarchaeology; (4) geoheritage and geodiversity; (5) geohazards; (6) marine and landscape ecology; and (7) coastal planning and management. Our review indicates that the realization of seamless DTMs appears to be the basic condition to operate a comprehensive integration of marine and terrestrial data sets, so far exhaustively achieved in very few case studies. Technology and interdisciplinarity will be therefore critical for the development of a holistic approach to understand our changing environments and design appropriate management measures accordingly. Full article
(This article belongs to the Special Issue Landscapes and Landforms of Terrestrial and Marine Areas)
Show Figures

Figure 1

21 pages, 6847 KiB  
Article
UAV-Based Optical Granulometry as Tool for Detecting Changes in Structure of Flood Depositions
by Jakub Langhammer, Theodora Lendzioch, Jakub Miřijovský and Filip Hartvich
Remote Sens. 2017, 9(3), 240; https://doi.org/10.3390/rs9030240 - 7 Mar 2017
Cited by 47 | Viewed by 9803
Abstract
This paper presents a new non-invasive technique of granulometric analysis based on the fusion of two imaging techniques, Unmanned Aerial Vehicles (UAV)-based photogrammetry and optical digital granulometry. This newly proposed technique produces seamless coverage of a study site in order to analyze the [...] Read more.
This paper presents a new non-invasive technique of granulometric analysis based on the fusion of two imaging techniques, Unmanned Aerial Vehicles (UAV)-based photogrammetry and optical digital granulometry. This newly proposed technique produces seamless coverage of a study site in order to analyze the granulometric properties of alluvium and observe its spatiotemporal changes. This proposed technique is tested by observing changes along the point bar of a mid-latitude mountain stream. UAV photogrammetry acquired at a low-level flight altitude (at a height of 8 m) is used to acquire ultra-high resolution orthoimages to build high-precision digital terrain models (DTMs). These orthoimages are covered by a regular virtual grid, and the granulometric properties of the grid fields are analyzed using the digital optical granulometric tool BaseGrain. This tested framework demonstrates the applicability of the proposed method for granulometric analysis, which yields accuracy comparable to that of traditional field optical granulometry. The seamless nature of this method further enables researchers to study the spatial distribution of granulometric properties across multiple study sites, as well as to analyze multitemporal changes using repeated imaging. Full article
Show Figures

Graphical abstract

16 pages, 3025 KiB  
Technical Note
The Performance Analysis of the Tactical Inertial Navigator Aided by Non-GPS Derived References
by Kai-Wei Chiang, Cheng-An Lin and Thanh-Trung Duong
Remote Sens. 2014, 6(12), 12511-12526; https://doi.org/10.3390/rs61212511 - 11 Dec 2014
Cited by 5 | Viewed by 5860
Abstract
The Inertial Navigation System (INS) is now widely applied in many navigation and mobile mapping applications due to its high sampling rates, high accuracy in short-term cases, and no limitations caused by interference or signal obstructions. In addition, the INS can continuously provide [...] Read more.
The Inertial Navigation System (INS) is now widely applied in many navigation and mobile mapping applications due to its high sampling rates, high accuracy in short-term cases, and no limitations caused by interference or signal obstructions. In addition, the INS can continuously provide the position, velocity and attitude of a vehicle. Conversely, the disadvantage of the stand-alone INS is that its accuracy degrades rapidly with time because of the accumulations of systematic errors and noises from accelerometers and gyroscopes. Therefore, this research aims to implement an integrated system with specific 3D position updates using non-GPS derived references to aid a tactical inertial navigator to provide seamless navigation solutions in the specific area without Global Positioning System (GPS) signals. An Extended Kalman Filter (EKF) is applied as the core estimator to provide superior performance and output the navigation solutions in real-time. The INS is updated by position from references such as the digital map, land mark, Digital Terrain Model (DTM) as well as waypoint to improve navigation accuracy in the long-term. In order to evaluate the performance of the proposed algorithm, field tests including land scenario in freeway and airborne scenario with an unmanned aerial test platform have been conducted. The preliminary results demonstrate that the proposed algorithm with non-GPS derived references aiding from digital map and waypoint for onboard aerial camera trigger to provide uninterrupted navigation solutions and better performance which can achieve the meter-level accuracy without GPS aiding for land and aerial scenarios, respectively. Full article
Show Figures

Graphical abstract

26 pages, 4230 KiB  
Article
Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography
by Claude Flener, Matti Vaaja, Anttoni Jaakkola, Anssi Krooks, Harri Kaartinen, Antero Kukko, Elina Kasvi, Hannu Hyyppä, Juha Hyyppä and Petteri Alho
Remote Sens. 2013, 5(12), 6382-6407; https://doi.org/10.3390/rs5126382 - 27 Nov 2013
Cited by 197 | Viewed by 24353
Abstract
Accurate terrain models are a crucial component of studies of river channel evolution. In this paper we describe a new methodology for creating high-resolution seamless digital terrain models (DTM) of river channels and their floodplains. We combine mobile laser scanning and low-altitude unmanned [...] Read more.
Accurate terrain models are a crucial component of studies of river channel evolution. In this paper we describe a new methodology for creating high-resolution seamless digital terrain models (DTM) of river channels and their floodplains. We combine mobile laser scanning and low-altitude unmanned aerial vehicle (UAV) photography-based methods for creating both a digital bathymetric model of the inundated river channel and a DTM of a point bar of a meandering sub-arctic river. We evaluate mobile laser scanning and UAV-based photogrammetry point clouds against terrestrial laser scanning and combine these data with an optical bathymetric model to create a seamless DTM of two different measurement periods. Using this multi-temporal seamless data, we calculate a DTM of difference that allows a change detection of the meander bend over a one-year period. Full article
Show Figures

Graphical abstract

Back to TopTop