Seven Good Reasons for Integrating Terrestrial and Marine Spatial Datasets in Changing Environments
Abstract
:1. Introduction
2. Why Integrating Terrestrial and Marine Datasets?
- Development in the field of geomorphological mapping and coastal morphodynamics thanks to innovative mapping techniques and products for coastal and nearshore environments;
- Deeper understanding of Late-Quaternary changes of coastal landscapes and environments, with positive implications for prediction of future risk scenarios;
- New approaches for geoarchaeological research development in coastal and nearshore environments;
- More comprehensive recognition and assessment of geoheritage and geodiversity;
- Wider assessment of coastal geohazards and vulnerability in the frame of disaster risk reduction, thanks to the development of models of different processes (e.g., coastal hydrodynamic modelling);
- Critical support to other disciplines involved in generating key-data for the sustainable management of marine resources, such as marine and landscape ecology;
- Establishment of more sustainable development objectives in planning and management of coastal areas, also in the framework of Integrated Coastal Zone Management.
2.1. Geomorphological Mapping
- Representation scale: terrestrial geomorphological maps are more easily drawn at fine scale (e.g., 1:5000) than submarine geomorphological maps, because of the higher ease of data collection on land than underwater;
- Standardized terminology and classification schemes: terrestrial landforms are codified at an international level, and their definition and representation are generally shared, either worldwide or country-wide, while for submarine landforms—apart from the main physiographic classification [155]—different terms and classification schemes are used (e.g., see how bedforms are differently categorized in: Rubin and McCulloch [156]; Ashley [157]; Wynn and Stow [158]; Stow et al. [159]);
- Standardized symbology: standard symbols are codified for terrestrial geomorphological mapping, though they may vary from country to country, while they are lacking for submarine geomorphological mapping and for integrated terrestrial and submarine geomorphological mapping;
- Coverage of lithological and chronological information: in the terrestrial environment, the coverage of lithological and chronological data is generally much higher than for the seafloor, thanks to the wider availability of maps, DTMs, scientific literature, and datasets;
- Acquiring elevation data in marine regions poses significant challenges and some limitations which make the process more complex, from a technological point of view, than in the emerged system. Customized surveys and dedicated technological solutions are indeed required to apply specific corrections that can address all measurements errors created in particular by hydrodynamics (especially tides and wave motion that must be always severely taken into account in hydrographic survey carried out by mean of echo-sounders) and the physical variability of the water column (which has a strong impact on the sound velocity/refraction of beams, creating at places challenging conditions, such as in the case of fresh water influx at the mouth of a river). Cloud coverage, turbidity, water surface glint and breaking waves can also create challenging environmental and operational condition that may prevail during optical remote sensing surveys in shallow water.
2.2. Late-Quaternary Changes of Coastal Landscapes
2.3. Geoarchaeology
2.4. Geoheritage and Geodiversity
2.5. Geohazards
2.6. Marine and Landscape Ecology
2.7. Coastal Planning and Management
3. Advances in Data Collection Technology and Data Processing Methodology
- The production of new advanced acoustic systems designed for obtaining depth measurements in shallow water;
- The application of cutting-edge visualization technology to images and data collected with optical sensors to obtain elevation data from shallow areas (i.e., underwater photogrammetry, image derived bathymetry, LiDAR, laser scanning).
3.1. Shallow-Water Acoustic Systems
3.2. Optical Sensor for Underwater Imaging and Mapping
4. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oreskes, N. The Scientific Consensus on Climate Change. Science 2004, 306, 1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2014–Synthesis Report. Contribution of Working Group I, II, III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I. Coastal Impacts Due to Sea-Level Rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef] [Green Version]
- Kunreuther, H.; Gupta, S.; Bosetti, V.; Cooke, R.; Dutt, V.; Ha-Duong, M.; Held, H.; Llanes-Regueiro, J.; Patt, A.; Shittu, E.; et al. Integrated Risk and Uncertainty Assessment of Climate Change Response Policies. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Prampolini, M.; Foglini, F.; Biolchi, S.; Devoto, S.; Angelini, S.; Soldati, M. Geomorphological mapping of terrestrial and marine areas, northern Malta and Comino (central Mediterranean Sea). J. Maps 2017, 13, 457–469. [Google Scholar] [CrossRef]
- Dramis, F.; Guida, D.; Cestari, A. Nature and aims of geomorphological mapping. In Geomorphological Mapping—Methods and Appplications; Smith, M.J., Paron, P., Griffiths, J.S., Eds.; Elsevier: Oxford, UK, 2011; Volume 15, pp. 39–73. [Google Scholar]
- Paron, P.; Claessens, L. Makers and users of geomorphological maps. In Developments in Earth Surface Processes; Smith, M.J., Paron, P., Griffiths, J.S., Eds.; Elsevier: Oxford, UK, 2011; Volume 15, pp. 75–106. [Google Scholar]
- Micallef, A.; Krastel, S.; Savini, A. Submarine Geomorphology; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Sandwell, D.T.; Gille, S.T.; Orcutt, J.; Smith, W.H. Bathymetry from space is now possible. Eos 2003, 84, 37–44. [Google Scholar] [CrossRef]
- Wright, D.J. Introduction. In Undersea with GIS; Wright, D.J., Ed.; ESRI Press: Redlands, CA, USA, 2003; pp. xiii–xvi. [Google Scholar]
- Wright, D.J.; Heyman, W.D. Introduction to the Special Issue: Marine and Coastal GIS for Geomorphology, Habitat Mapping, and Marine Reserves. Mar. Geod. 2008, 31, 223–230. [Google Scholar] [CrossRef]
- Wölfl, A.-C.; Snaith, H.; Amirebrahimi, S.; Devey, C.W.; Dorschel, B.; Ferrini, V.; Huvenne, V.A.I.; Jakobsson, M.; Jencks, J.; Johnston, G.; et al. Seafloor Mapping–The Challenge of a Truly Global Ocean Bathymetry. Front. Mar. Sci. 2019, 6, 283. [Google Scholar] [CrossRef]
- Mayer, L.; Jakobsson, M.; Allen, G.; Dorschel, B.; Falconer, R.; Ferrini, V.; Lamarche, G.; Snaith, H.; Weatherall, P. The Nippon Foundation—GEBCO seabed 2030 project: The quest to see the world’s oceans completely mapped by 2030. Geosciences 2018, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Menandro, P.S.; Bastos, A.C. Seabed Mapping: A Brief History from Meaningful Words. Geosciences 2020, 10, 273. [Google Scholar] [CrossRef]
- Foglini, F.; Grande, V.; Marchese, F.; Bracchi, V.A.; Prampolini, M.; Angeletti, L.; Castellan, G.; Chimienti, G.; Hansen, I.G.; Gudmundsen, M.; et al. Application of Hyperspectral Imaging to Underwater Habitat Mapping, Southern Adriatic Sea. Sensors 2019, 19, 2261. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, J.T. Bathymetric structure-from-motion: Extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surf. Proc. Land. 2017, 42, 355–364. [Google Scholar] [CrossRef]
- Miccadei, E.; Mascioli, F.; Orrù, P.; Piacentini, T.; Puliga, G. Late Quaternary paleolandscape of submerged inner continental shelf areas of Tremiti islands archipelago (northern Puglia). Geogr. Fis. Dinam. Quat. 2011, 34, 223–234. [Google Scholar]
- Miccadei, E.; Mascioli, F.; Piacentini, T. Quaternary geomorphological evolution of the Tremiti Islands (Puglia, Italy). Quatern. Int. 2011, 233, 3–15. [Google Scholar] [CrossRef]
- Miccadei, E.; Orrù, P.; Piacentini, T.; Mascioli, F.; Puliga, G. Geomorphological map of the Tremiti Islands (Puglia, Southern Adriatic Sea, Italy), scale 1: 15,000. J. Maps 2012, 8, 74–87. [Google Scholar] [CrossRef] [Green Version]
- Leon, J.X.; Phinn, S.R.; Hamylton, S.; Saunders, M.I. Filling the ‘white ribbon’—A multisource seamless digital elevation model for Lizard Island, northern Great Barrier Reef. Int. J. Remote Sens. 2013, 34, 6337–6354. [Google Scholar] [CrossRef]
- Gasparo Morticelli, M.; Sulli, A.; Agate, M. Sea–land geology of Marettimo (Egadi Islands, central Mediterranean sea). J. Maps 2016, 12, 1093–1103. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Aringoli, D.; Aucelli, P.P.C.; Baldassarre, M.A.; Bellotti, P.; Bini, M.; Biolchi, S.; Bontempi, S.; Brandolini, P.; Chelli, A.; et al. Geomorphological map of the Italian coast: From a descriptive to a morphodynamic approach. Geogr. Fis. Dinam. Quat. 2017, 40, 161–195. [Google Scholar]
- Prampolini, M.; Gauci, C.; Micallef, A.S.; Selmi, L.; Vandelli, V.; Soldati, M. Geomorphology of the north-eastern coast of Gozo (Malta, Mediterranean Sea). J. Maps 2018, 14, 402–410. [Google Scholar] [CrossRef]
- Brandolini, P.; Faccini, F.; Paliaga, G.; Piana, P. Man-made landforms survey and mapping of an urban historical center in a coastal Mediterranean environment. Geogr. Fis. Dinam. Quat. 2018, 41, 23–34. [Google Scholar]
- Furlani, S.; Piacentini, D.; Troiani, F.; Biolchi, S.; Roccheggiani, M.; Tamburini, A.; Tiricanti, E.; Vaccher, V.; Antonioli, F.; Devoto, S. Tidal Notches (TN) along the western Adriatic coast as markers of coastal stability during Late Holocene. Geogr. Fis. Dinam. Quat. 2018, 41, 33–46. [Google Scholar]
- Campobasso, C.; Carton, A.; Chelli, A.; D’Orefice, M.; Dramis, F.; Graciotti, R.; Guida, D.; Pambianchi, G.; Peduto, F.; Pellegrini, L. Revisione e aggiornamento delle “Linee Guida al Rilevamento della Carta Geomorfologica d’Italia alla scala 1:50.000” e proposta di un modello di cartografia Geomorfologica “a oggetti”. GT&A 2018, 2, 15–27. [Google Scholar]
- Genchi, S.A.; Vitale, A.J.; Perillo, G.M.; Seitz, C.; Delrieux, C.A. Mapping topobathymetry in a shallow tidal environment using low-cost technology. Remote Sens. 2020, 12, 1394. [Google Scholar] [CrossRef]
- Bridgland, D.; Maddy, D.; Bates, M. River terrace sequences: Templates for Quaternary geochronology and marine–terrestrial correlation. J. Quat. Sci. 2004, 19, 203–218. [Google Scholar] [CrossRef]
- Pujol, G.L.; Sintes, C.; Lurton, X. High-resolution interferometry for multibeam echosounders. IEEE Oceans 2005, 1, 345–349. [Google Scholar]
- Rovere, A.; Vacchi, M.; Firpo, M.; Carobene, L. Underwater geomorphology of the rocky coastal tracts between Finale Ligure and Vado Ligure (western Liguria, NW Mediterranean Sea). Quatern. Int. 2011, 232, 187–200. [Google Scholar] [CrossRef]
- Westley, K.; Quinn, R.; Forsythe, W.; Plets, R.; Bell, T.; Benetti, S.; McGrath, F.; Robinson, R. Mapping submerged landscapes using multibeam bathymetric data: A case study from the north coast of Ireland. Int. J. Naut. Archaeol. 2011, 40, 99–112. [Google Scholar] [CrossRef]
- Micallef, A.; Foglini, F.; Le Bas, T.; Angeletti, L.; Maselli, V.; Pasuto, A.; Taviani, M. The submerged paleolandscape of the Maltese Islands: Morphology, evolution and relation to Quaternary environmental change. Mar. Geol. 2013, 335, 129–147. [Google Scholar] [CrossRef]
- Kennedy, D.M.; Ierodiconou, D.; Schimel, A. Granitic coastal geomorphology: Applying integrated terrestrial and bathymetric LiDAR with multibeam sonar to examine coastal landscape evolution. Earth Surf. Process. Landf. 2014, 39, 1663–1674. [Google Scholar] [CrossRef]
- Greenwood, S.L.; Clason, C.C.; Mikko, H.; Nyberg, J.; Peterson, G.; Smith, C.A. Integrated use of LiDAR and multibeam bathymetry reveals onset of ice streaming in the northern Bothnian Sea. GFF 2015, 137, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Aucelli, P.; Cinque, A.; Mattei, G.; Pappone, G. Historical sea level changes and effects on the coasts of Sorrento Peninsula (Gulf of Naples): New constraints from recent geoarchaeological investigations. Palaeogeogr. Palaeocl. 2016, 463, 112–125. [Google Scholar] [CrossRef]
- Foglini, F.; Prampolini, M.; Micallef, A.; Angeletti, L.; Vandelli, V.; Deidun, A.; Taviani, M. Late Quaternary Coastal Landscape Morphology and Evolution of the Maltese Islands (Mediterranean Sea) Reconstructed from High-Resolution Seafloor Data. In Geology and Archaeology: Submerged Landscapes of the Continental Shelf; Harff, J., Bailey, G., Lüth, L., Eds.; Special Publication; Geological Society: London, UK, 2016; Volume 411, Issue 1, pp. 77–95. [Google Scholar]
- Benjamin, J.; Rovere, A.; Fontana, A.; Furlani, S.; Vacchi, M.; Inglis, R.H.; Galili, R.H.; Antonioli, F.; Sivan, D.; Miko, S.; et al. Late Quaternary sea-level changes and early human societies in the central and eastern Mediterranean Basin: An interdisciplinary review. Quatern. Int. 2017, 449, 29–57. [Google Scholar] [CrossRef] [Green Version]
- Furlani, S.; Antonioli, F.; Gambin, T.; Gauci, R.; Ninfo, A.; Zavagno, E.; Micallef, A.; Cucchi, F. Marine notches in the Maltese islands (central Mediterranean Sea). Quatern. Int. 2017, 439, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Furlani, S.; Foresta Martin, F. Headland or stack? Paleogeographic reconstruction of the coast at the Faraglioni Middle Bronze Age Village (Ustica Island, Italy). Ann. Geophys. Ital. 2018, 61. [Google Scholar] [CrossRef]
- De Giosa, F.; Scardino, G.; Vacchi, M.; Piscitelli, A.; Milella, M.; Ciccolella, A.; Mastronuzzi, G. Geomorphological Signature of Late Pleistocene Sea Level Oscillations in Torre Guaceto Marine Protected Area (Adriatic Sea, SE Italy). Water 2019, 11, 2409. [Google Scholar] [CrossRef] [Green Version]
- Lo Presti, V.; Antonioli, F.; Palombo, M.R.; Agnesi, V.; Biolchi, S.; Calcagnile, L.; Di Patti, C.; Donati, S.; Furlani, S.; Merizzi, J.; et al. Palaeogeographical evolution of the Egadi Islands (western Sicily, Italy). Implications for late Pleistocene and early Holocene sea crossings by humans and other mammals in the western Mediterranean. Earth Sci. Rev. 2019, 194, 160–181. [Google Scholar] [CrossRef]
- Antonioli, F.; Anzidei, M.; Lambeck, K.; Auriemma, R.; Gaddi, D.; Furlani, S.; Orrù, P.; Solinas, E.; Gaspari, A.; Karinja, S.; et al. Sea level change during Holocene from Sardinia and northeastern Adriatic (Central Mediterranean Sea) from archaeological and geomorphological data. Quat. Sci. Rev. 2007, 26, 2463–2496. [Google Scholar] [CrossRef]
- Bailey, G.N.; Flemming, N. Archaeology of the continental shelf: Marine resources, submerged landscapes and underwater archaeology. Quat. Sci. Rev. 2008, 27, 2153–2165. [Google Scholar] [CrossRef] [Green Version]
- Harff, J.; Lüth, F. SINCOS I–Sinking Coasts: Geosphere, Ecosphere and Anthroposphere of the Holocene Southern Baltic Sea; Rep Roman Germanic Commission: Frankfurt, Germany, 2007; Volume 88, pp. 7–266. [Google Scholar]
- Harff, J.; Lüth, F. SINCOS II–Sinking Coasts: Geosphere, Ecosphere and Anthroposphere of the Holocene Southern Baltic Sea; R Roman Germanic Commission: Frankfurt, Germany, 2011; Volume 92, pp. 7–380. [Google Scholar]
- Fisher, E.C.; Bar-Matthews, M.; Jerardino, A.; Marean, C.W. Middle and Late Pleistocene paleoscape modeling along the southern coast of South Africa. Quat. Sci. Rev. 2010, 29, 1382–1398. [Google Scholar] [CrossRef]
- Benjamin, J.; Bonsall, C.; Pickard, K.; Fischer, A. Submerged Prehistory; Oxbow: Oxford, UK, 2011. [Google Scholar]
- Bailey, G.; Sakellariou, D.; Members of the SPLASHCOS Network. Submerged prehistoric archaeology and landscapes of the continental shelf. Antiq. Proj. Gallery 2012, 86. Available online: http://antiquity.ac.uk/projgall/sakellariou334 (accessed on 5 August 2020).
- Furlani, S.; Antonioli, F.; Biolchi, S.; Gambin, T.; Gauci, R.; Presti, V.L.; Anzidei, M.; Devoto, S.; Palombo, M.; Sulli, A. Holocene sea level change in Malta. Quatern. Int. 2013, 288, 146–157. [Google Scholar] [CrossRef]
- Anzidei, M.; Lambeck, K.; Antonioli, F.; Furlani, S.; Mastronuzzi, G.; Serpelloni, E.; Vannucci, G. Coastal structure, sea-level changes and vertical motion of the land in the Mediterranean. In Sedimentary Coastal Zones from High to Low Latitudes: Similarities and Differences; Martini, I.P., Wanless, H.R., Eds.; Special Publications; Geological Society: London, UK, 2014; Volume 388, pp. 453–479. [Google Scholar] [CrossRef]
- Evans, A.; Flemming, N.; Flatman, J. Prehistoric Archaeology of the Continental Shelf: A Global Review; Springer: New York, NY, USA, 2014. [Google Scholar]
- Westley, K.; Plets, R.; Quinn, R. Holocene paleo-geographic reconstructions of the ramore head area, Northern Ireland, using geophysical and geotechnical data: Paleo-landscape mapping and archaeological implications. Geoarchaeology 2014, 29, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Bailey, G.N.; Devès, M.H.; Inglis, R.H.; Meredith-Williams, M.G.; Momber, G.; Sakellariou, D.; Sinclair, A.G.M.; Rousakis, G.; Al Gamdi, A.; Alsharekh, A.M. Blue Arabia: Palaeolithic and underwater survey in SW Saudi Arabia and the role of coasts in Pleistocene dispersals. Quatern. Int. 2015, 382, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Aucelli, P.; Cinque, A.; Giordano, F.; Mattei, G. A geoarchaeological survey of the marine extension of the Roman archaeological site Villa del Pezzolo, Vico Equense, on the Sorrento Peninsula, Italy. Geoarchaeology 2016, 31, 244–252. [Google Scholar] [CrossRef]
- Harff, J.; Bailey, G.; Luth, F. Geology and Archaeology: Submerged Landscapes of the Continental Shelf; Geological Society Special Publications 411; Geological Society of London: London, UK, 2016; p. 294. ISBN 978–1-86239-691-3. [Google Scholar]
- Cawthra, H.C.; Compton, J.S.; Fisher, E.C.; MacHutchon, M.R.; Marean, C.W. (Eds.) Submerged Shorelines and Landscape Features Offshore of Mossel Bay, South Africa; Geological Society Special Publications 411; Geological Society of London: London, UK, 2016; pp. 219–233. [Google Scholar]
- Benjamin, J.; O’Leary, M.; Ward, I.; Hacker, J.; Ulm, S.; Veth, P.; Holst, M.; McDonald, J.; Ross, P.J.; Bailey, G. Underwater archaeology and submerged landscapes in Western Australia. Antiquity 2018, 92, 1–9. [Google Scholar]
- Mattei, G.; Troisi, S.; Aucelli, P.; Pappone, G.; Peluso, F.; Stefanile, M. Sensing the Submerged Landscape of Nisida Roman Harbour in the Gulf of Naples from Integrated Measurements on a USV. Water 2018, 10, 1686. [Google Scholar] [CrossRef] [Green Version]
- Sturt, F.; Flemming, N.C.; Carabias, D.; Jöns, H.; Adams, J. The next frontiers in research on submerged prehistoric sites and landscapes on the continental shelf. Proc. Geol. Assoc. 2018, 129, 654–683. [Google Scholar] [CrossRef] [Green Version]
- Veth, P.; McDonald, J.; Ward, I.; O’Leary, M.; Beckett, E.; Benjamin, J.; Ulm, S.; Hacker, J.; Ross, P.J.; Bailey, G. A Strategy for Assessing Continuity in Terrestrial and Maritime Landscapes from Murujuga (Dampier Archipelago), North West Shelf, Australia. J. Isl. Coast. Archaeol. 2019, 27. [Google Scholar] [CrossRef]
- Orrù, P.; Ulzega, A. Rilevamento geomorfologico costiero e sottomarino applicato alla definizione delle risorse ambientali (Golfo di Orosei, Sardegna orientale). Mem. Soc. Geol. Ital. 1988, 37, 123–131. [Google Scholar]
- Orrù, P.; Panizza, V.; Ulzega, A. Submerged geomorphosites in the marine protected areas of Sardinia (Italy): Assessment and improvement. Ital. J. Quat. Sci. 2005, 18, 167–174. [Google Scholar]
- Orrù, P.; Panizza, V. Assessment and Management of Submerged Geomorphosites. A Case Study in Sardinia (Italy). In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Pfeil: Munchen, Germany, 2009; pp. 201–212. [Google Scholar]
- Brooks, A.J.; Kenyon, N.H.; Leslie, A.; Long, D.; Gordon, J.E. Characterising Scotland’s Marine Environment to Define Search Locations for New Marine Protected Areas; Part 2: The Identification of Key Geodiversity Areas in Scottish Waters (Interim Report July 2011); Commissioned Report No. 430; Scottish Natural Heritage: Inverness, UK, 2011; Available online: http://nora.nerc.ac.uk/id/eprint/16861/1/430.pdf (accessed on 5 August 2020).
- Rovere, A.; Vacchi, M.; Parravini, V.; Bianchi, C.N.; Zouros, N.; Firpo, M. Bringing geoheritage underwater: Definitions, methods, and application in two Mediterranean marine areas. Environ. Earth Sci. 2011, 64, 133–142. [Google Scholar] [CrossRef]
- Mansini Maia, M.A.; de Alencar Castro, W.J. Methodological proposal for characterization of marine geodiversity in the South Atlantic: Vitória-Trindade Ridge and adjacent areas, Southeast of Brazil. J. Integr. Coast. Zone Manag. 2015, 15, 293–309. [Google Scholar]
- Veloo, F. A New Method to Analyze Seafloor Geodiversity Around the Hawaiian and Canarian Archipelagos and the New Zealand Subduction Cone. Bachelor’s Thesis, University of Amsterdam, Amsterdam, The Netherlands, 2017. [Google Scholar]
- Gordon, J.E.; Brooks, A.J.; Chaniotis, P.D.; James, B.D.; Kenyon, N.H.; Leslie, A.B.; Long, D.; Rennie, A.F. Progress in marine geoconservation in Scotland’s seas: Assessment of key interests and their contribution to Marine Protected Area network planning. Proc. Geol. Assoc. 2016, 127, 716–737. [Google Scholar] [CrossRef] [Green Version]
- Gordon, J.E.; Crofts, R.; Díaz-Martínez, E.; Woo, K.S. Enhancing the role of geoconservation in protected area management and nature conservation. Geoheritage 2018, 10, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Coratza, P.; Vandelli, V.; Fiorentini, L.; Paliaga, G.; Faccini, F. Bridging Terrestrial and Marine Geoheritage: Assessing Geosites in Portofino Natural Park (Italy). Water 2019, 11, 2112. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.G.; Normark, W.R.; Holcomb, R.T. Giant Hawaiian landslides. Annu. Rev. Earth Planet. Sci. 1994, 22, 119–144. [Google Scholar] [CrossRef]
- Mulder, T.; Savoye, B.; Syvitki, J.P. Numerical modelling of a mid-sized gravity flow: The 1979 Nice turbidity current (dynamics, processes, sediment budget and seafloor impact). Sedimentology 1997, 44, 305–326. [Google Scholar] [CrossRef]
- Assier-Rzadkieaicz, S.; Heinrich, P.; Sabatier, P.C.; Savoye, B.; Bourillet, J.F. Numerical modelling of a landslide-generated tsunami: The 1979 Nice event. Pure Appl. Geophys. 2000, 157, 1707–1727. [Google Scholar] [CrossRef]
- Caplan-Auerbach, J.; Fox, C.G.; Duennebier, F.K. Hydroacoustic detection of submarine landslides on Kilauea volcano. Geophys. Res. Lett. 2001, 28, 1811–1813. [Google Scholar] [CrossRef] [Green Version]
- Gee, M.J.; Watts, A.B.; Masson, D.G.; Mitchell, N.C. Landslides and the evolution of El Hierro in the Canary Islands. Mar. Geol. 2001, 177, 271–293. [Google Scholar] [CrossRef]
- Masson, D.G.; Watts, A.B.; Gee, M.J.R.; Urgeles, R.; Mitchell, N.C.; Le Bas, T.P.; Canals, M. Slope failures on the flanks of the western Canary Islands. Earth Sci. Rev. 2002, 57, 1–35. [Google Scholar] [CrossRef]
- McMurtry, G.M.; Watts, P.; Fryer, G.J.; Smith, J.R.; Imamura, F. Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian Islands. Mar. Geol. 2004, 203, 219–233. [Google Scholar] [CrossRef]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global warming and coastal erosion. Clim. Chang. 2004, 64, 41–58. [Google Scholar] [CrossRef]
- Dan, G.; Sultan, N.; Savoye, B. The 1979 Nice harbour catastrophe revisited: Trigger mechanism inferred from geotechnical measurements and numerical modelling. Mar. Geol. 2007, 245, 40–65. [Google Scholar] [CrossRef] [Green Version]
- Scheffers, A.; Scheffers, S. Tsunami deposits on the coastline of west Crete (Greece). Earth Planet Sci. Lett. 2007, 259, 613–624. [Google Scholar] [CrossRef]
- Chiocci, F.L.; Romagnoli, C.; Tommasi, P.; Bosman, A. The Stromboli 2002 tsunamigenic submarine slide: Characteristics and possible failure mechanisms. J. Geophys. Res.Solid Earth 2008, 113, B10102. [Google Scholar] [CrossRef]
- Baldi, P.; Bosman, A.; Chiocci, F.L.; Marsella, M.; Romagnoli, C.; Sonnessa, A. Integrated subaerial-submarine morphological evolution of the Sciara del Fuoco after the 2002 landslide. In The Stromboli Volcano: An Integrated Study of the 2002–2003 Eruption; Calvari, S., Inguaggiato, S., Puglisi, G., Ripepe, M., Rosi, M., Eds.; American Geophysical Union: Washington, DC, USA, 2008; pp. 171–182. [Google Scholar]
- Parrott, D.R.; Todd, B.J.; Shaw, J.; Hughes Clarke, J.E.; Griffin, J.; MacGowan, B.; Lamplugh, M.; Webster, T. Integration of multibeam bathymetry and LiDAR surveys of the Bay of Fundy, Canada. In Proceedings of the Canadian Hydrographic Conference and National Surveyors Conference 2008, Victoria, BC, Canada, 5–8 May 2008; Paper 6-2. pp. 1–15. [Google Scholar]
- Casalbore, D. Studio di Fenomeni d’Instabilità Gravitativa sui Fondali Marini, con Particolare Riferimento all’Isola di Stromboli. Ph.D. Thesis, Alma Mater Studiorum Università di Bologna, Dottorato di Ricerca in Scienze Della Terra, Bologna, Italy, 2009. [Google Scholar]
- Violante, C. Rocky coast: Geological constraints for hazard assessment. In Geohazard in Rocky Coastal Areas; Violante, C., Ed.; Geological Society Special Publications 322; Geological Society: London, UK, 2009; pp. 1–31. [Google Scholar]
- De Blasio, F.V.; Mazzanti, P. Subaerial and subaqueous dynamics of coastal rockfalls. Geomorphology 2010, 115, 188–193. [Google Scholar] [CrossRef]
- De Gange, A.R.; Vernon Byrd, G.; Walker, L.R.; Waythomas, C.F. Introduction–The Impacts of the 2008 Eruption of Kasatochi Volcano on Terrestrial and Marine Ecosystems in the Aleutian Islands, Alaska. Arct. Antarct. Alp. Res. 2012, 42, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Sultan, N.; Savoye, B.; Jouet, G.; Leynaud, D.; Cochonat, P.; Henry, P.; Stegmann, S.; Kopf, A. Investigation of a possible submarine landslide at the Var delta front (Nice continental slope, southeast France). Can. Geotech. J. 2010, 47, 486–496. [Google Scholar] [CrossRef] [Green Version]
- Casalbore, D.; Romagnoli, C.; Bosman, A.; Chiocci, F.L. Potential tsunamigenic landslides at Stromboli Volcano (Italy): Insights from marine DEM analysis. Geomorphology 2011, 126, 42–50. [Google Scholar] [CrossRef]
- Casalbore, D.; Chiocci, F.L.; Scarascia Mugnozza, G.; Tommasi, P.; Sposato, A. Flash-flood hyperpycnal flows generating shallow-water landslides at Fiumara mouths in Western Messina Straits (Italy). Mar. Geophys. Res. 2011, 32, 257–271. [Google Scholar] [CrossRef]
- Chiocci, F.L.; Ridente, D. Regional-scale seafloor mapping and geohazard assessment. The experience from the Italian project MaGIC (Marine Geohazards along the Italian Coasts). Mar. Geophys. Res. 2011, 32, 13–23. [Google Scholar] [CrossRef]
- Lambeck, K.; Antonioli, F.; Anzidei, M.; Ferranti, L.; Leoni, G.; Scicchitano, G.; Silenzi, S. Sea level change along the Italian coast during the Holocene and projections for the future. Quat. Int. 2011, 232, 250–257. [Google Scholar] [CrossRef]
- Mazzanti, P.; Bozzano, F. Revisiting the February 6th 1783 Scilla (Calabria, Italy) landslide and tsunami by numerical simulation. Mar. Geophys. Res. 2011, 32, 273–286. [Google Scholar] [CrossRef]
- De Jongh, C.; van Opstal, H. Coast-Map-IO TopoBathy Database. Report Pilot Project; Leading Partner CARIS BV, 2012; pp. 20–26. Available online: https://www.dhyg.de/images/hn_ausgaben/HN094.pdf (accessed on 5 August 2019).
- Della Seta, M.; Martino, S.; Scarascia Mugnozza, G. Quaternary sea-level change and slope instability in coastal areas: Insights from the Vasto Landslide (Adriatic coast, central Italy). Geomorphology 2013, 201, 462–478. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.; Harrison, S. The impacts of climate change on terrestrial Earth surface systems. Nat. Clim. Chang. 2013, 3, 24–29. [Google Scholar] [CrossRef]
- Masselink, G.; Russell, P. Impacts of climate change on coastal erosion. MCCIP Sci Rev. 2013, 1, 71–86. [Google Scholar]
- Mastronuzzi, G.; Brückner, H.; De Martini, P.M.; Regnauld, H. Tsunami: From the open sea to the coastal zone and beyond. In Tsunami: From Fundamentals to Damage Mitigation; Mambretti, S., Ed.; WIT Press: Southampton, UK, 2013; pp. 1–36. [Google Scholar]
- Minelli, L.; Billi, A.; Faccenna, C.; Gervasi, A.; Guerra, I.; Orecchio, B.; Speranza, G. Discovery of a gliding salt-detached megaslide, Calabria, Ionian Sea, Italy. Geophys. Res. Lett. 2013, 40, 4220–4224. [Google Scholar] [CrossRef]
- Carracedo, J.C. Structural Collapses in the Canary Islands. In Landscapes and Landforms of Spain; Gutiérrez, F., Gutiérrez, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 289–306. [Google Scholar]
- Cazenave, A.; Cozannet, G.L. Sea level rise and its coastal impacts. Earth’s Future 2014, 2, 15–34. [Google Scholar] [CrossRef]
- Mataspaud, A.; Letortu, P.; Costa, S.; Cantat, O.; Héquette, A.; Ruz, M.-H. Conditions météo-marines et facteurs de prédisposition à l’origine de phénomènes de submersion marine: Analyse comparative entre Manche orientale et Mer du Nord méridionale. Presented at International Conference Connaissance et Compréhension des Risques Côtiers: Aléas, Enjeux, Représentations, Gestion. IUEM Brest, Brest, France, 3–4 July 2014; pp. 53–62. [Google Scholar]
- Mottershead, D.; Bray, M.; Soar, P.; Farres, P.J. Extreme wave events in the central Mediterranean: Geomorphic evidence of tsunami on the Maltese Islands. Z. Geomorphol. 2014, 58, 385–411. [Google Scholar] [CrossRef] [Green Version]
- Biolchi, S.; Furlani, S.; Antonioli, F.; Baldassini, N.; Deguara, J.C.; Devoto, S.; Di Stefano, A.; Evans, J.; Gambin, T.; Gauci, R.; et al. Boulder accumulations related to extreme wave events on the eastern coast of Malta. Nat. Hazard. Earth Syst. 2016, 16, 737–756. [Google Scholar] [CrossRef] [Green Version]
- Yonggang, J.I.A.; Chaoqi, Z.; Liping, L.; Dong, W. Marine geohazards: Review and future perspective. Acta Geol. Sin. Engl. 2016, 90, 1455–1470. [Google Scholar] [CrossRef]
- Antonioli, F.; Anzidei, M.; Amorosi, A.; Lo Presti, V.; Mastronuzzi, G.; Deiana, G.; De Falco, G.; Fontana, A.; Fontolan, G.; Lisco, S.; et al. Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100. Quat. Sci. Rev. 2017, 158, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Aucelli, P.P.C.; Di Paola, G.; Incontri, P.; Rizzo, A.; Vilardo, G.; Benassai, G.; Buonocore, B.; Pappone, G. Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain–southern Italy). Estuar. Coast. Shelf Sci. 2017, 198, 597–609. [Google Scholar] [CrossRef]
- Zaggia, L.; Lorenzetti, G.; Manfé, G.; Scarpa, G.M.; Molinaroli, E.; Parnell, K.E.; Rapaglia, J.P.; Gionta, M.; Soomere, T. Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis. PLoS ONE 2017, 12, e0187210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casalbore, D.; Romagnoli, C.; Bosman, A.; Anzidei, M.; Chiocci, F.L. Coastal hazard due to submarine canyons in active insular volcanoes: Examples from Lipari Island (southern Tyrrhenian Sea). J. Coast. Conserv. 2018, 22, 989–999. [Google Scholar] [CrossRef]
- Di Paola, G.; Alberico, I.; Aucelli, P.P.C.; Matano, F.; Rizzo, A.; Vilardo, G. Coastal subsidence detected by Synthetic Aperture Radar interferometry and its effects coupled with future sea-level rise: The case of the Sele Plain (Southern Italy). J. Flood Risk Manag. 2018, 11, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.; Davis, G.; Dabson, O. Applied geomorphology and geohazard assessment for deepwater development. In Submarine Geomorphology; Micallef, A., Krastel, S., Savini, A., Eds.; Springer: Cham, Switzerland, 2018; pp. 459–479. [Google Scholar]
- Obrocki, L.; Vött, A.; Wilken, D.; Fischer, P.; Willershäuser, T.; Koster, B.; Lang, F.; Papanikolaou, I.; Rabbel, W.; Reicherter, K. Tracing tsunami signatures of the AD 551 and AD 1303 tsunamis at the Gulf of Kyparissia (Peloponnese, Greece) using direct push in situ sensing techniques combined with geophysical studies. Sedimentology 2020, 67, 1274–1308. [Google Scholar] [CrossRef]
- Pennetta, M. Beach Erosion in the Gulf of Castellammare di Stabia in Response to the Trapping of Longshore Drifting Sediments of the Gulf of Napoli (Southern Italy). Geosciences 2018, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Urlaub, M.; Petersen, F.; Gross, F.; Bonforte, A.; Puglisi, G.; Guglielmino, F.; Krastel, S.; Lange, D.; Kopp, H. Gravitational collapse of Mount Etna’s southeastern flank. Sci. Adv. 2018, 4, eaat9700. [Google Scholar] [CrossRef] [Green Version]
- Biolchi, S.; Denamiel, C.; Devoto, S.; Korbar, T.; Macovaz, V.; Scicchitano, G.; Vilibic, I.; Furlani, S. Impact of the October 2018 Storm Vaia on Coastal Boulders in the Northern Adriatic Sea. Water 2019, 11, 2229. [Google Scholar] [CrossRef] [Green Version]
- Buosi, C.; Porta, M.; Trogu, D.; Casti, M.; Ferraro, F.; De Muro, S.; Ibba, A. Data on coastal dunes vulnerability of eleven microtidal wave-dominated beaches of Sardinia (Italy, western Mediterranean). Data Brief 2019, 24, 103897. [Google Scholar] [CrossRef] [PubMed]
- Mucerino, L.; Albarella, M.; Carpi, L.; Besio, G.; Benedetti, A.; Corradi, N.; Firpo, M.; Ferrari, M. Coastal exposure assessment on Bonassola bay. Ocean. Coast. Manag. 2019, 167, 20–31. [Google Scholar] [CrossRef]
- Toker, E.; Sharvit, J.; Fischer, M.; Melzer, Y.; Potchter, O. Archaeological, geomorphological and cartographical evidence of the sea level rise in the southern Levantine Basin in the 19th and 20th centuries. Quatern. Int. 2019, 522, 55–65. [Google Scholar] [CrossRef]
- Rizzo, A.; Vandelli, V.; Buhagiar, G.; Micallef, A.S.; Soldati, M. Coastal vulnerability assessment along the north-eastern sector of Gozo Island (Malta, Mediterranean Sea). Water 2020, 12, 1405. [Google Scholar] [CrossRef]
- Hogrefe, K.R.; Wright, D.J.; Hochberg, E.J. Derivation and Integration of Shallow-Water Bathymetry: Implications for Coastal Terrain Modelling and Subsequent Analyses. Mar. Geod. 2008, 31, 299–317. [Google Scholar] [CrossRef]
- McKean, J.A.; Isaak, D.J.; Wright, C.W. Geomorphic controls on salmon nesting patterns described by a new, narrow-beam terrestrial–aquatic LiDAR. Front. Ecol. Environ. 2008, 6, 125–130. [Google Scholar] [CrossRef]
- McKean, J.; Nagel, D.; Tonina, D.; Bailey, P.; Wright, C.W.; Bohn, C.; Nayegandhi, A. Remote sensing of channels and riparian zones with a narrow-beam aquatic-terrestrial LIDAR. Remote Sens. 2009, 1, 1065–1096. [Google Scholar] [CrossRef] [Green Version]
- Tallis, H.; Ferdana, Z.; Gray, E. Linking terrestrial and marine conservation planning and threats analysis. Conserv. Biol. 2008, 22, 120–130. [Google Scholar] [CrossRef]
- Vierling, K.T.; Vierling, L.A.; Gould, W.A.; Martinuzzi, S.; Clawges, R.M. Lidar: Shedding new light on habitat characterization and modelling. Front. Ecol. Environ. 2008, 6, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.J.; Smith, S.J.; Lawton, P.; Anderson, J.T. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar. Coast. Shelf Sci. 2011, 92, 502–520. [Google Scholar] [CrossRef]
- Marchese, F.; Fallati, L.; Corselli, C.; Savini, A. Testing the use of Unmanned Aerial Vehicle and structure from motion technique for acquisition of ultra-shallow water bathymetric data. In Proceedings of the 9th International Conference on Geomorphology (9th ICG), Vigyan Bhawan, New Delhi, India, 6–11 November 2017. [Google Scholar]
- Prampolini, M.; Blondel, P.; Foglini, F.; Madricardo, F. Habitat mapping of the Maltese continental shelf using acoustic textures and bathymetric analyses. Estuar Coast. Shelf Sci. 2018, 207, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.T.; Baker, E.K. Why map benthic habitats? In Seafloor Geomorphology as Benthic Habitat–GeoHAB Atlas of Seafloor Geomorphic Features and Benthic Habitats, 2nd ed.; Harris, P.T., Baker, E.K., Eds.; Elsevier: London, UK, 2020; pp. 3–15. [Google Scholar]
- Cicin-Sain, B.; Belfiore, S. Linking marine protected areas to integrate coastal and ocean management: A review of theory and practice. Ocean. Coast. Manag. 2005, 48, 847–868. [Google Scholar] [CrossRef]
- Sardá, R.; Avila, C.; Mora, J. A methodological approach to be used in integrated coastal zone management processes: The case of the Catalan Coast (Catalonia, Spain). Estuar. Coast. Shelf Sci. 2005, 62, 427–439. [Google Scholar] [CrossRef]
- Schultz-Zehden, A.; Gee, K.; Scibior, K. Handbook on Integrated Maritime Spatial Planning; Interreg IIIB CADSES PlanCoast Project; April 2008; Available online: https://www.msp-platform.eu/practices/handbook-integrated-maritime-spatial-planning (accessed on 5 August 2019).
- Cogan, C.B.; Todd, B.J.; Lawton, P.; Noji, T.T. The role of marine habitat mapping in ecosystem-based management. ICES J. Mar. Sci. 2009, 66, 2033–2042. [Google Scholar] [CrossRef]
- Ehler, C.; Douvere, F. Marine Spatial Planning: A Step-by-Step Approach Toward Ecosystem-Based Management; (IOC Manual and Guide n. 53, ICAM Dossier n. 6); UNESCO: Paris, France, 2009; p. 99. [Google Scholar]
- Watts, M.E.; Ball, I.R.; Stewart, R.S.; Klein, C.J.; Wilson, K.; Steinback, C.; Lourival, R.; Kircher, L.; Possingham, H.P. Marxan with Zones: Software for optimal conservation based land-and sea-use zoning. Environ. Model. Softw. 2009, 24, 1513–1521. [Google Scholar] [CrossRef] [Green Version]
- Meiner, A. Integrated maritime policy for the European Union–consolidating coastal and marine information to support maritime spatial planning. J. Coast. Conserv. 2010, 14, 1–11. [Google Scholar] [CrossRef]
- Schlacke, S.; Maier, N.; Markus, T. Legal implementation of integrated ocean policies: The EU’s marine strategy framework directive. Int. J. Mar. Coast. Law 2011, 26, 59–90. [Google Scholar] [CrossRef]
- Smith, D.H.; Maes, F.; Stojanovic, T.A.; Ballinger, R.C. The integration of land and marine spatial planning. J. Coast. Conserv. 2011, 15, 291–303. [Google Scholar] [CrossRef]
- Qiu, W.; Jones, P.J.S. The emerging policy landscape for marine spatial planning in Europe. Mar. Policy 2013, 39, 182–190. [Google Scholar] [CrossRef]
- Kerr, S.; Johnson, K.; Side, J.C. Planning at the edge: Integrating across the land sea divide. Mar. Policy 2014, 47, 118–125. [Google Scholar] [CrossRef]
- Ramieri, E.; Andreoli, E.; Fanelli, A.; Artico, G.; Bertaggia, R. Methodological Handbook on Maritime Spatial Planning in the Adriatic Sea; Final Report of Shape Project WP4 “Shipping Towards Maritime Spatial Planning”; February 2014; Available online: http://paprac.org/storage/app/media/Meetings/2019/Sub-regional%20meeting%20Adriatic%20Ionian%20cooperation%20towards%20MSP/Methodological%20Handbook%20on%20MSP%20in%20the%20Adriatic.pdf (accessed on 5 August 2020).
- Ramieri, E.; Bocci, M.; Markovic, M. SIMWESTMED - Relationship between LSI and ICZM. (R5). Zenodo 2019. [Google Scholar] [CrossRef]
- Barbanti, A.; Campostrini, P.; Musco, F.; Sarretta, A.; Gissi, E. Developing a Maritime Spatial Plan for the Adriatic–Ionian Region; CNR-ISMAR: Venice, Italy, 2015. [Google Scholar]
- Domínguez-Tejo, E.; Metternicht, G.; Johnston, E.; Hedge, L. Marine Spatial Planning advancing the Ecosystem-Based Approach to coastal zone management: A review. Mar. Policy 2016, 72, 115–130. [Google Scholar] [CrossRef]
- UNEP/MAP. Mediterranean Strategy for Sustainable Development 2016–2025; Plan Bleu, Regional Activity Centre: Valbonne, France, 2016; p. 84. [Google Scholar]
- UNEP-MAP PAP/RAC. Conceptual Framework for Marine Spatial Planning. In Proceedings of the 20th Ordinary Meeting of the Contracting Parties to the Barcelona Convention, Tirana, Albania, 17–20 December 2017. [Google Scholar]
- UNEP(DEPI)/MED IG.22/28. Decision IG.22/1: UNEP/MAP Mid-Term Strategy 2016–2021. Available online: https://wedocs.unep.org/rest/bitstreams/8364/retrieve (accessed on 5 August 2020).
- UNEP(DEPI)/MED IG.22/28. Decision IG.22/2: UNEP/MAP Mid-Term Strategy 2016–2025. Available online: https://wedocs.unep.org/rest/bitstreams/8379/retrieve (accessed on 5 August 2020).
- Sustainable Development Goals 14 “Conserve and Sustainably Use the Oceans, Seas and Marine Resources for Sustainable Development”. Available online: https://unstats.un.org/sdgs/report/2017/Goal-14/ (accessed on 20 July 2020).
- Sustainable Development Goals 15 “Protect, Restore and Promote Sustainable Use of Terrestrial Ecosystems, Sustainably Managed Forests, Combat Desertification, and Halt and Reverse Land Degradation and Halt Biodiversity Loss”. Available online: https://unstats.un.org/sdgs/report/2017/Goal-15/ (accessed on 20 July 2020).
- UNEP/MAP/PAP: Protocol on Integrated Coastal Zone Management in the Mediterranean. Split, Priority Actions Programme. 2008. Available online: http://iczmplatform.org/ (accessed on 5 August 2020).
- Smith, M.J.; Paron, P.; Griffiths, J.S. Geomorphological Mapping: Methods and Applications; Elsevier: Oxford, UK, 2011. [Google Scholar]
- Biolchi, S.; Furlani, S.; Devoto, S.; Gauci, R.; Castaldini, D.; Soldati, M. Geomorphological identification, classification and spatial distribution of coastal landforms of Malta (Mediterranean Sea). J. Maps 2016, 12, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Micallef, A. Marine geomorphology: Geomorphological mapping and the study of submarine landslides. In Geomorphological Mapping: Methods and Applications; Smith, M.J., Paron, P., Griffiths, J.S., Eds.; Elsevier: Oxford, UK, 2011; Volume 15, pp. 377–395. [Google Scholar]
- Gorini, M.A.V. Physiographic classification of the ocean floor: A multi-scale geomorphometric approach. In Proceedings of Geomorphometry 2009, Zurich, Switzerland, 31 August–2 September 2009; Purves, R., Gruber, S., Straumann, R., Hengl, T., Eds.; University of Zurich: Zurich, Switzerland, 2009; pp. 98–105. [Google Scholar]
- Rubin, D.M.; McCulloch, D.S. Single and superimposed bedforms: A synthesis of San Francisco Bay and flume observations. Sediment. Geol. 1980, 26, 207–231. [Google Scholar] [CrossRef]
- Ashley, G.M. Classification of large-scale subaqueous bedforms; a new look at an old problem. J. Sediment. Res. 1990, 60, 160–172. [Google Scholar]
- Wynn, R.B.; Stow, D.A. Classification and characterisation of deep-water sediment waves. Mar. Geol. 2002, 192, 7–22. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Hernández-Molina, F.J.; Llave, E.; Sayago, M.; Díaz del Río, V.; Branson, A. Bedform-velocity matrix: The estimation of bottom current velocity from bedform observations. Geology 2009, 37, 327–330. [Google Scholar] [CrossRef]
- Madricardo, F.; Foglini, F.; Kruss, A.; Ferrarin, C.; Pizzeghello, N.M.; Murri, C.; Rossi, M.; Bajo, M.; Bellafiore, D.; Campiani, E.; et al. High resolution multibeam and hydrodynamic datasets of tidal channels and inlets of the Venice Lagoon. Sci. Data 2017, 4, 170121. [Google Scholar] [CrossRef] [Green Version]
- Gavazzi, G.M.; Madricardo, F.; Janowski, L.; Kruss, A.; Blondel, P.; Sigovini, M.; Foglini, F. Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats–Application to the Venice Lagoon, Italy. Estuar. Coast. Shelf Sci. 2016, 170, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Selley, R.C.; Cocks, R.; Plimer, I. Encyclopedia of Geology; Academic Press: London, UK, 2005. [Google Scholar]
- Thorsnes, T.; Bjarnadóttir, L.R.; Jarna, A.; Baeten, N.; Scott, G.; Guinan, J.; Monteys, X.; Dove, D.; Green, S.; Gafeira, J.; et al. National Programmes: Geomorphological Mapping at Multiple Scales for Multiple Purposes. In Submarine Geomorphology; Micallef, A., Krastel, S., Savini, A., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–9. [Google Scholar]
- Dove, D.; Bradwell, T.; Carter, G.; Cotterill, C.; Gafeira Goncalves, J.; Green, S.; Krabbendam, M.; Mellett, C.; Stevenson, A.; Stewart, H.; et al. Seabed Geomorphology: A Two-Part Classification System; British Geological Survey: Edinburgh, UK, 2016; (Unpublished); Available online: http://nora.nerc.ac.uk/id/eprint/514946/ (accessed on 5 August 2020).
- European Marine Observation and Data Network (EMODnet) Geology. Available online: http://www.emodnet-geology.eu (accessed on 8 April 2020).
- Asch, K. Interoperability, Standards and EMODnet Geology: Building the Mosaic of European Sea Floor Data. In Geophysical Research Abstracts; EGU General Assembly: Munich, Germany, 2019; Volume 21, EGU2019-17389. [Google Scholar]
- BGS. EMODnet Geology III–Work Package 8: Submerged Landscape Data Harmonisation and Confidence Analysis Task Guide; British Geological Survey: Nottingham, UK, 2018. [Google Scholar]
- Grehan, A.J.; Arnaud-Haond, S.; D’Onghia, G.; Savini, A.; Yesson, C. Towards ecosystem based management and monitoring of the deep Mediterranean, North-East Atlantic and Beyond. Deep-Sea Res. Part II 2017, 145, 1–7. [Google Scholar] [CrossRef]
- Boero, F.; Foglini, F.; Fraschetti, S.; Goriup, P.; Macpherson, E.; Planes, S.; Soukissian, T.; The CoCoNet Consortium. CoCoNet: Towards coast to coast networks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential. Sci. Res. Inform. Technol. 2016, 6, 1–95. [Google Scholar]
- Foglini, F.; Angeletti, L.; Campiani, E.; Mercorella, A.; Prampolini, M.; Grande, V.; Savini, A.; Taviani, M.; Tessarolo, C. Habitat mapping for establishing Coast to Coast Network of marine protected areas in the framework of COCONET Project: From coastal area to deep sea in the South Adriatic (Italy). In Proceedings of the GEOHAB—Marine Environment Mapping and Interpretation, Abstract Volume, Lorne, Australia, 4–8 May 2014; p. 32. [Google Scholar]
- Davies, J.S.; Guillaumont, B.; Tempera, F.; Vertino, A.; Beuck, L.; Ólafsdóttir, S.H.; Smith, C.; Fosså, J.H.; Van den Beld, I.M.J.; Savini, A.; et al. A new classification scheme of European cold-water coral habitats: Implications for ecosystem-based management of the deep sea. Deep Sea Res. Part II 2017, 145, 102–109. [Google Scholar] [CrossRef] [Green Version]
- European Classification Scheme EUNIS. Available online: https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification (accessed on 10 May 2020).
- ISPRA Geological and Geothematic Sheets at the Scale 1:50,000 of the Italian Territory. Available online: http://www.isprambiente.gov.it/it/cartografia/carte-geologiche-e-geotematiche/carta-geologica-alla-scala-1-a-50000 (accessed on 8 April 2020).
- Fabbri, A.; Argnani, A.; Bortoluzzi, G.; Correggiari, A.; Gamberi, F.; Ligi, M.; Marani, M.; Penitenti, D.; Roveri, M.; Trincardi, F.; et al. Carta Geologica dei Mari Italiani alla Scala 1: 250.000. Guida al Rilevamento; Presidenza del Consiglio dei Ministri, Dipartimento per i Servizi Tecnici Nazionali; Servizio Geologico, Quaderni: Bologna, Italy, 2002; Volume 8, Serie III. [Google Scholar]
- Progetto Visibilità dei Dati Afferenti all’Attività di Esplorazione Petrolifera in Italia (ViDEPi). Available online: https://www.videpi.com/videpi/videpi.asp (accessed on 26 May 2020).
- Waelbroeck, C.; Labeyrie, L.; Michela, E.; Duplessya, J.C.; McManusc, J.F.; Lambeck, K.; Balbona, E.; Labracheriee, M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 2002, 21, 295–305. [Google Scholar] [CrossRef]
- Grant, K.M.; Rohling, E.J.; Bar-Matthews, M.; Ayalon, A.; Medina-Elizalde, M.; Bronk Ramsey, C.; Satow, C.; Roberts, A.P. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 2012, 491, 744–747. [Google Scholar] [CrossRef]
- Hopkins, D.M. Cenozoic history of the Bering land bridge. Science 1959, 129, 1519–1528. [Google Scholar] [CrossRef]
- Bond, J.D. Paleodrainage Map of Beringia. In Yukon Geological Survey; Open File 2019-2; 2019. Available online: http://data.geology.gov.yk.ca/Reference/81642#InfoTab (accessed on 5 August 2020).
- Soldati, M.; Barrows, T.T.; Prampolini, M.; Fifield, K.L. Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea). J. Coast. Conserv. 2018, 22, 831–844. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, M.; Soldati, M.; Vandelli, V. The Great Diversity of Italian Landscapes and Landforms: Their Origin and Human Imprint. In Landscapes and Landforms of Italy; Soldati, M., Marchetti, M., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 7–20. [Google Scholar]
- Aucelli, P.P.C.; Brancaccio, L.; Cinque, A. Vesuvius and Campi Flegrei: Volcanic History, Landforms and Impact on Settlements. In Landscapes and Landforms of Italy; Soldati, M., Marchetti, M., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 389–398. [Google Scholar]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Zarnetske, P.L.; Read, Q.D.; Record, S.; Gaddis, K.D.; Pau, S.; Hobi, M.L.; Wilson, A.M. Towards connecting biodiversity and geodiversity across scales with satellite remote sensing. Glob. Ecol. Biogeogr. 2019, 28, 548–556. [Google Scholar] [CrossRef] [Green Version]
- Burek, C.V.; Ellis, N.V.; Evans, D.H.; Hart, M.B.; Larwood, J.G. Marine geoconservation in the United Kingdom. Proc. Geol. Assoc. 2013, 124, 581–592. [Google Scholar] [CrossRef]
- Gordon, J.E. Geoconservation principles and protected area management. Int. J. Geoherit. Parks 2019, 7, 199–210. [Google Scholar] [CrossRef]
- Bosello, F.; De Cian, E. Climate change, sea level rise, and coastal disasters. A review of modelling practices. Energy Econ. 2014, 46, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Handmer, J.; Honda, Y.; Kundzewicz, Z.W.; Arnell, N.; Benito, G.; Hatfield, J.; Mohamed, I.F.; Peduzzi, P.; Wu, S.; Sherstyukov, B.; et al. Changes in Impacts of Climate Extremes: Human Systems and Ecosystems. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 231–290. [Google Scholar]
- Hanson, S.; Nicholls, R.; Ranger, N.; Hallegatte, S.; Corfee-Morlot, J.; Herweijer, C.; Chateau, J. A global ranking of port cities with high exposure to climate extremes. Clim. Chang. 2011, 104, 89–111. [Google Scholar] [CrossRef] [Green Version]
- Quadros, N.D. What Users Want in Their Bathymetry; Hydro International: Clevedon, UK, 2012; Volume 18–23. [Google Scholar]
- Stallins, J.A. Geomorphology and ecology: Unifying themes for complex systems in biogeomorphology. Geomorphology 2006, 77, 207–216. [Google Scholar] [CrossRef]
- Hopley, D.; Smithers, S.G.; Parnell, K.E. The Geomorphology of the Great Barrier Reef: Development, Diversity and Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Savini, A.; Vertino, A.; Marchese, F.; Beuck, L.; Freiwald, A. Mapping Cold-Water Coral Habitats at Different Scales within the northern Ionian Sea (central Mediterranean): An assessment of coral coverage and associated vulnerability. PLoS ONE 2014, 9, e87108. [Google Scholar] [CrossRef] [Green Version]
- Bracchi, V.; Savini, A.; Marchese, F.; Palamara, S.; Basso, D.; Corselli, C. Coralligenous habitat in the Mediterranean Sea: A geomorphological description from remote data. Ital. J. Geosci. 2015, 134, 32–40. [Google Scholar] [CrossRef]
- Savini, A.; Marchese, F.; Verdicchio, G.; Vertino, A. Submarine slide topography and the distribution of vulnerable marine ecosystems: A case study in the Ionian Sea (eastern Mediterranean). In Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research; Lamarche, G., Mountjoy, J., Bull, S., Hubble, T., Krastel, S., Lane, E., Micallef, A., Moscardelli, L., Mueller, C., Pecher, I., et al., Eds.; Springer: Dordrecht, The Netherlands, 2016; Volume 41, pp. 163–170. [Google Scholar]
- Bracchi, V.; Basso, D.; Marchese, F.; Corselli, C.; Savini, A. Coralligenous morphotypes on subhorizontal substrate: A new categorization. Cont. Shelf Res. 2017, 144, 10–20. [Google Scholar] [CrossRef]
- Bargain, A.; Marchese, F.; Savini, A.; Taviani, M.; Fabri, M.-C. Santa Maria di Leuca Province (Mediterranean Sea): Identification of suitable mounds for cold-water coral settlement using geomorphometry proxies and Maxent methods. Front. Mar. Sci. Deep Sea Environ. Ecol. 2017, 4, 338. [Google Scholar]
- Lo Iacono, C.; Savini, A.; Basso, D. Cold-Water Carbonate Bioconstructions. In Submarine Geomorphology; Micallef, A., Krastel, S., Savini, A., Eds.; Springer: Cham, Switzerland, 2018; pp. 425–455. [Google Scholar]
- Riegl, B.; Purkis, S.J. Detection of Shallow Subtidal Corals from IKONOS Satellite and QTC View (50,200 kHz) Single-Beam Sonar Data (Arabian Gulf; Dubai, UAE). Remote Sens. Environ. 2005, 95, 96–114. [Google Scholar] [CrossRef]
- Bejarano, S.; Mumby, P.J.; Hedley, J.D.; Sotheran, I. Combining Optical and Acoustic Data to Enhance the Detection of Caribbean Fore-reef Habitats. Remote Sens. Environ. 2010, 114, 2768–2778. [Google Scholar] [CrossRef]
- Savini, A.; Marchese, F.; Fallati, L.; Corselli, C.; Galli, P. Integrating acoustics and photogrammetry-based 3D point clouds for the generation of a continuous bathymetric model in coral reef environment. In EGU General Assembly; EGU General Assembly 2020, Online, 4–8 May 2020; EGU General Assembly: Vienna, Austria, 2020. [Google Scholar] [CrossRef]
- Coggan, R.; Populus, J.; White, J.; Sheehan, K.; Fitzpatrick, F.; Piel, S. Review of Standards and Protocols for Seabed Habitat Mapping; MESH Mapping European Seabed Habitats, INTERREG European Program; 2007; Available online: www.searchmesh.net/Files/Standards_&_Protocols_2nd (accessed on 5 August 2020).
- Todd, B.J.; Greene, H.G. Mapping the Seafloor for Habitat Characterization; Special Publication 47; Geological Association of Canada: Newfoundland, NF, Canada, 2007. [Google Scholar]
- Thorsnes, T. MAREANO–An introduction. Norw. J. Geol. 2009, 89, 3. [Google Scholar]
- Buhl-Mortensen, L.; Buhl-Mortensen, P.; Dolan, M.F.; Holte, B. The MAREANO programme—A full coverage mapping of the Norwegian off-shore benthic environment and fauna. Mar. Biol. Res. 2015, 11, 4–17. [Google Scholar] [CrossRef]
- Buhl-Mortensen, L.; Buhl-Mortensen, P.; Dolan, M.J.F.; Gonzalez-Mirelis, G. Habitat mapping as a tool for conservation and sustainable use of marine resources: Some perspectives from the MAREANO Programme, Norway. J. Sea Res. 2015, 100, 46–61. [Google Scholar] [CrossRef]
- Diesing, M.; Green, S.L.; Stephens, D.; Lark, R.M.; Stewart, H.; Dove, D. Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont. Shelf Res. 2014, 84, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Howe, J.A.; Stevenson, A.; Gatliff, R. Seabed mapping for the 21st century—the Marine Environmental Mapping Programme (MAREMAP): Preface. Earth Environ. Sci. Trans. R. Soc. Edinb. 2015, 105, 239–240. [Google Scholar] [CrossRef] [Green Version]
- Castellanos-Galindo, G.A.; Casella, E.; Mejía-Rentería, J.C.; Rovere, A. Habitat mapping of remote coasts: Evaluating the usefulness of lightweight unmanned aerial vehicles for conservation and monitoring. Biol. Conserv. 2019, 239, 108282. [Google Scholar] [CrossRef]
- Commission of the European Communities. Roadmap for Maritime Spatial Planning: Achieving Common Principles in the EU; COM (2008) 791 Final; Communication of the European Communities: Brussels, Belgium, 25 November 2008. [Google Scholar]
- Ruttenberg, B.I.; Granek, E.I. Bridging the marine–terrestrial disconnect to improve marine coastal zone science and management. Mar. Ecol. Prog. Ser. 2011, 434, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Mason, T.; Rainbow, B.; McVey, S. Colouring the ‘White Ribbon–Strategic Coastal Monitoring in the South-East of England. Hydro International. 2006. Available online: http://www.hydro-international.com/issues/articles/id611-Colouring_the_White_Ribbon.html (accessed on 18 September 2019).
- Kinzel, P.J.; Wright, C.W.; Nelson, J.M.; Burman, A.R. Evaluation of an experimental LiDAR for surveying a shallow, braided, sand-bedded river. J. Hydraul. Eng. 2007, 133, 838–842. [Google Scholar] [CrossRef] [Green Version]
- Boeder, V.; Kersten, T.P.; Hesse, C.; Thies, T.; Sauer, A. Initial experience with the integration of a terrestrial laser scanner into the mobile hydrographic multi sensor system on a ship. In Proceedings of the ISPRS Workshop 2010 on Modeling of optical airborne and spaceborne Sensors, Istanbul, Turkey, 11–13 October 2010; Volume XXXVIII-1/W17, pp. 1–8. [Google Scholar]
- Coveney, S.; Monteys, X. Integration potential of INFOMAR airborne LIDAR bathymetry with external onshore LIDAR data sets. J. Coastal. Res. 2011, 62, 19–29. [Google Scholar] [CrossRef]
- Dix, M.; Abd-Elrahman, A.; Dewitt, B.; Nash, L., Jr. Accuracy evaluation of terrestrial LiDAR and multibeam sonar systems mounted on a survey vessel. J. Surv. Eng. 2011, 138, 203–213. [Google Scholar] [CrossRef]
- Stubbing, D.; Smith, K. Surveying from a vessel using a multibeam echosounder and a terrestrial laser scanner in New Zeland. In Proceedings of the Australasian Coasts & Ports Conference 2015: 22nd Australasian Coastal and Ocean Engineering Conference and the 15th Australasian Port and Harbour Conference, Auckland, New Zealand, 15–18 September 2015; Engineers Australia and IPENZ: Auckland, New Zealand, 2015; pp. 860–865. [Google Scholar]
- Eakins, B.W.; Taylor, L.A.; Carignan, K.S.; Kenny, M.R. Advances in coastal digital elevation models. Eos 2011, 92, 149–150. [Google Scholar] [CrossRef]
- Eakins, B.W.; Grothe, P.R. Challenges in Building Coastal Digital Elevation Models. J. Coast. Res. 2014, 297, 942–953. [Google Scholar] [CrossRef] [Green Version]
- Biscara, L.; Maspataud, A.; Schmitt, T. Generation of bathymetric digital elevation models along French coasts: Coastal risk assessment. Hydro Int. 2016, 20, 26–29. [Google Scholar]
- Mitchell, P.J.; Aldridge, J.; Diesing, M. Legacy data: How decades of seabed sampling can produce robust predictions and versatile products. Geosci. 2019, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Lurton, X. Seafloor-mapping sonar systems and Sub-bottom investigations. In An Introduction to Underwater Acoustics: Principles and Applications, 2nd ed.; Springer: Berlin, Germany, 2010; pp. 75–114. [Google Scholar]
- Maa, K.; Xub, W.; Xu, J. The Comparison between Traditional and Interferometric Multibeam Systems. In Proceedings of the 6th International Conference on Sensor Network and Computer Engineering, Xi’an, China, 8–10 July 2016; Atlantis Press: Xi’an, China, 2016; pp. 261–264. [Google Scholar]
- Brisson, L.; Hiller, T. Multiphase Echosounder to Improve Shallow-Water Surveys; Hybrid Approach to Produce Bathymetry and Side Scan Data. Sea Technol. 2015, 56, 10–14. [Google Scholar]
- Massot-Campos, M.; Oliver-Codina, G. Optical Sensors and Methods for Underwater 3D Reconstruction. Sensors 2015, 15, 31525–31557. [Google Scholar] [CrossRef] [Green Version]
- Harpold, A.A.; Marshall, J.A.; Lyon, S.W.; Barnhart, T.B.; Fisher, B.A.; Donovan, M.; Brubaker, K.M.; Crosby, C.J.; Glenn, N.F.; Glennie, C.I.; et al. Laser vision: Lidar as a transformative tool to advance critical zone science. Hydrol. Earth Syst. Sci. 2015, 19, 2881–2897. [Google Scholar] [CrossRef] [Green Version]
- Menna, F.; Agrafiotis, P.; Georgopoulos, A. State of the art and applications in archaeological underwater 3D recording and mapping. J. Cult. Herit. 2018, 33, 231–248. [Google Scholar] [CrossRef]
- Filisetti, A.; Marouchos, A.; Martini, A.; Martin, T.; Collings, S. Developments and applications of underwater LiDAR systems in support of marine science. In Proceedings of the OCEANS 2018 MTS/IEEE, Charleston, SC, USA, 22–25 October 2018; pp. 1–10. [Google Scholar]
- Castillón, M.; Palomer, A.; Forest, J.; Ridao, P. State of the Art of Underwater Active Optical 3D Scanners. Sensors 2019, 19, 5161. [Google Scholar] [CrossRef] [Green Version]
- Guenther, G.C.; Brooks, M.W.; LaRocque, P.E. New capabilities of the “SHOALS” airborne lidar bathymeter. Remote Sens. Environ. 2000, 73, 247–255. [Google Scholar] [CrossRef]
- Bailly, J.S.; Le Coarer, Y.; Languille, P.; Stigermark, C.J.; Allouis, T. Geostatistical estimations of bathymetric LiDAR errors on rivers. Earth Surf. Proc. Land 2010, 35, 1199–1210. [Google Scholar] [CrossRef]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ). ISPRS J. Photogramm. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Diaz, J.C.; Carter, W.E.; Shrestha, R.L.; Leisz, S.J.; Fisher, C.T.; Gonzalez, A.M.; Thompson, D.; Elkins, S. Archaeological prospection of north Eastern Honduras with airborne mapping LiDAR. In 2014 IEEE Geoscience and Remote Sensing Symposium; IEEE: Quebec City, QC, Canada, 2014; pp. 902–905. [Google Scholar]
- Jagalingam, P.; Akshaya, B.J.; Hegde, A.V. Bathymetry mapping using Landsat 8 satellite imagery. Procedia Eng. 2015, 116, 560–566. [Google Scholar] [CrossRef] [Green Version]
- Friedman, A.; Pizarmaaro, O.; Williams, S.B.; Johnson-Roberson, M. Multi-scale measures of rugosity, slope and aspect from benthic stereo image reconstructions. PLoS ONE 2012, 7, e50440. [Google Scholar] [CrossRef]
- Lavest, J.M.; Rives, G.; Lapresté, J.T. Underwater camera calibration. In European Conference on Computer Vision; Vernon, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 654–668. [Google Scholar]
- Agrafiotis, P.; Skarlatos, D.; Georgopoulos, A.; Karantzalos, K. Shallow water bathymetry mapping from UAV imagery based on machine learning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W10, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Fallati, L.; Saponari, L.; Savini, A.; Marchese, F.; Corselli, C.; Galli, P. Multi-Temporal UAV Data and Object-Based Image Analysis (OBIA) for Estimation of Substrate Changes in a Post-Bleaching Scenario on a Maldivian Reef. Remote Sens. 2020, 12, 2093. [Google Scholar] [CrossRef]
- Okamoto, A. Wave influences in two-media photogrammetry. Photogramm. Eng. Remote Sens. 1982, 48, 1487–1499. [Google Scholar]
- Fryer, J.G.; Kniest, H.T. Errors in depth determination caused by waves in through-water photogrammetry. Photogramm. Rec. 1985, 11, 745–753. [Google Scholar] [CrossRef]
- Georgopoulos, A.; Agrafiotis, P. Documentation of a submerged monument using improved two media techniques. In Proceedings of the 2012 18th International Conference on Virtual Systems and Multimedia, and VSMM 2012 Virtual Systems in the Information Society, Milano, Italy, 2–5 September 2012; pp. 173–180. [Google Scholar]
- Agrafiotis, P.; Georgopoulos, A. Camera constant in the case of two media photogrammetry. Int. Arch. Photogramm. 2015, 40, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mayer, L.A. Frontiers in sea floor mapping and visualization. Mar. Geophys. Res. 2006, 27, 7–17. [Google Scholar] [CrossRef]
Field of Applications | Relevant Examples | |
---|---|---|
1 | Geomorphological mapping | Miccadei et al. [18,19,20]; Leon et al. [21]; Gasparo Morticelli et al. [22]; Mastronuzzi et al. [23]; Prampolini et al. [6,24]; Brandolini et al. [25]; Furlani et al. [26]; Campobasso et al. [27]; Genchi et al. [28] |
2 | Late-Quaternary changes of coastal landscapes | Bridgland et al. [29]; Pujol et al. [30]; Rovere et al. [31]; Westley et al. [32]; Micallef et al. [33]; Kennedy et al. [34]; Greenwood et al. [35]; Aucelli et al. [36]; Foglini et al. [37]; Benjamin et al. [38]; Furlani et al. [39]; Furlani and Martin [40]; De Gioiosa et al. [41]; Lo Presti et al. [42] |
3 | Geoarchaeology | Antonioli et al. [43]; Bailey and Flemming [44]; Harff and Lüth [45,46]; Fisher et al. [47]; Benjamin et al. [48]; Westley et al. [32]; Bailey et al. [49]; Furlani et al. [50]; Anzidei et al. [51]; Evans et al. [52]; Westley et al. [53]; Bailey et al. [54]; Aucelli et al. [36,55]; Harff et al. [56]; Cawthra et al. [57]; Benjamin et al. [38]; Benjamin et al. [58]; Furlani and Martin [40]; Mattei et al. [59]; Sturt et al. [60]; Veth et al. [61] |
4 | Geoheritage and geodiversity | Orrù and Ulzega [62]; Orrù et al. [63,64]; Brooks et al. [65]; Rovere et al. [66]; Mansini Maia and Alencar Castro [67]; Veloo [68]; Gordon et al. [69,70]; Coratza et al. [71] |
5 | Geohazards | Moore et al. [72]; Mulder et al. [73]; Assier-Rzadkiewicz et al. [74]; Caplan-Auerbach et al. [75]; Gee et al. [76]; Masson et al. [77]; McMurtry et al. [78]; Zhang et al. [79]; Dan et al. [80]; Scheffers and Scheffers [81]; Chiocci et al. [82]; Baldi et al. [83]; Parrott et al. [84]; Casalbore [85]; Violante [86]; De Blasio and Mazzanti [87]; De Gange et al. [88]; Sultan et al. [89]; Casalbore et al. [90,91]; Chiocci and Ridente [92]; Lambeck et al. [93]; Mazzanti and Bozzano [94]; De Jongh and van Opstal [95]; Della Seta et al. [96]; Knight and Harrison [97]; Masselink and Russel [98]; Mastronuzzi et al. [99]; Minelli et al. [100]; Carracedo [101]; Cazenave et al. [102]; Mataspaud et al. [103]; Mottershead et al. [104]; Biolchi et al. [105]; Yonggang et al. [106]; Antonioli et al. [107]; Aucelli et al., [108]; Zaggia et al. [109]; Casalbore et al. [110]; Di Paola et al. [111]; Moore et al. [112]; Obrocki et al. [113]; Pennetta et al. [114]; Urlaub et al. [115]; Biolchi et al. [116]; Buosi et al. [117]; Mucerino et al. [118]; Toker et al. [119]; Rizzo et al. [120] |
6 | Marine and landscape ecology | Hogrefe et al. [121]; McKean et al. [122,123]; Tallis et al. [124]; Wright and Heyman [12]; Vierling et al. [125]; Brown et al. [126]; Leon et al. [21]; Marchese et al. [127]; Prampolini et al. [6,128]; Harris and Baker [129] |
7 | Coastal planning and management | Cicin-Sain and Belfiore [130]; Sarda et al. [131]; Schultz-Zehden et al. [132]; Cogan et al. [133]; Ehler et al. [134]; Watts et al. [135]; Meiner [136]; Schlacke et al. [137]; Smith et al. [138]; Qiu and Jones [139]; Kerr et al. [140]; Ramieri et al. [141,142]; Barbanti et al. [143]; Domínguez-Tejo et al. [144]; UNEP/MAP [145]; UNEP-MAP PAP/RAC [146]; Decision IG. 22/1 [147]; Decision IG. 22/2 [148]; Sustainable Development Goals [149,150]; UNEP/MAP PAP [151] |
Active Sensors | ||||
---|---|---|---|---|
Sensor | Platform | Achievable DTM Resolution (Nearshore) | Survey Environment | |
Acoustic | MBES (beamforming) | Vessel ASV/USV ROV | Sub-metric | Water |
PDBS (Interferometers) | ||||
MPES (Hybrid) | ||||
PROS:
| CONS:
| |||
Optical | Bathymetric LiDAR | Airborne UAV | Sub-metric | Air/water |
PROS:
| CONS:
| |||
LLS | Vessel ROV | Sub-metric | Water | |
PROS:
| CONS:
| |||
Passive Sensors and Computational Techniques | ||||
Name | Platform | DTM Resolution (Nearshore) | Survey Environment | |
Optical | SDB | Satellite | 2 m | Air/Water |
PROS:
| CONS:
| |||
SfM | UAV | Sub-metric | Air/Water | |
PROS:
| CONS:
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prampolini, M.; Savini, A.; Foglini, F.; Soldati, M. Seven Good Reasons for Integrating Terrestrial and Marine Spatial Datasets in Changing Environments. Water 2020, 12, 2221. https://doi.org/10.3390/w12082221
Prampolini M, Savini A, Foglini F, Soldati M. Seven Good Reasons for Integrating Terrestrial and Marine Spatial Datasets in Changing Environments. Water. 2020; 12(8):2221. https://doi.org/10.3390/w12082221
Chicago/Turabian StylePrampolini, Mariacristina, Alessandra Savini, Federica Foglini, and Mauro Soldati. 2020. "Seven Good Reasons for Integrating Terrestrial and Marine Spatial Datasets in Changing Environments" Water 12, no. 8: 2221. https://doi.org/10.3390/w12082221