Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = sclerotia production inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 14395 KiB  
Article
Efficacy of Trichoderma longibrachiatum SC5 Fermentation Filtrate in Inhibiting the Sclerotinia sclerotiorum Growth and Development in Sunflower
by Enchen Li, Na Zhu, Shuwu Zhang, Bingliang Xu, Lilong Liu and Aiqin Zhang
Int. J. Mol. Sci. 2025, 26(1), 201; https://doi.org/10.3390/ijms26010201 - 29 Dec 2024
Cited by 3 | Viewed by 1289
Abstract
Sclerotinia sclerotiorum is a destructive pathogen responsible for sunflower sclerotinia rot, resulting in substantial yield and economic losses worldwide. Trichoderma species have demonstrated the capacity to inhibit plant pathogen growth through the production of secondary metabolites. However, there are fewer recent studies focusing [...] Read more.
Sclerotinia sclerotiorum is a destructive pathogen responsible for sunflower sclerotinia rot, resulting in substantial yield and economic losses worldwide. Trichoderma species have demonstrated the capacity to inhibit plant pathogen growth through the production of secondary metabolites. However, there are fewer recent studies focusing on the application of Trichoderma metabolites in inhibiting S. sclerotiorum growth and development and controlling sunflower sclerotinia rot disease. Our results showed that five Trichoderma strains (SC5, T6, TN, P6, and TS3) exhibited mycelial growth inhibition higher than 60% in dual culture assays out of the 11 tested strains. The Trichoderma SC5 fermentation filtrate exhibited superior efficacy compared to other strains, achieving a 94.65% inhibition rate of mycelial growth on S. sclerotiorum, 96% inhibition of myceliogenic germination of sclerotia, and 81.05% reduction in the oxalic acid content of S. sclerotiorum, while significantly increasing the cell membrane permeability. In addition, the Trichoderma SC5 fermentation filtrate significantly decreased the activities of polygalacturonase and pectin methyl-galacturonic enzymes and even caused S. sclerotiorum hyphae to swell, branch, twist, lyse, and inhibited the production and development of sclerotia. Moreover, the Trichoderma SC5 fermentation filtrate downregulated genes expression that associated with the growth and infection of S. sclerotiorum. The control efficacies of the protective and curative activities of the Trichoderma SC5 fermentation filtrate were 95.45% and 75.36%, respectively, on detached sunflower leaves at a concentration of 8 mg/mL. Finally, the Trichoderma SC5 was identified as Trichoderma longibrachiatum through morphological and phylogenetic analysis. Our research indicates that the T. longibrachiatum SC5 can be considered a promising biological control candidate against S. sclerotiorum and controlling the sunflower sclerotinia rot disease, both in vitro and in vivo. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

16 pages, 7086 KiB  
Article
The Gene vepN Regulated by Global Regulatory Factor veA That Affects Aflatoxin Production, Morphological Development and Pathogenicity in Aspergillus flavus
by Jia Xu, Mengqi Jiang, Peng Wang and Qing Kong
Toxins 2024, 16(4), 174; https://doi.org/10.3390/toxins16040174 - 3 Apr 2024
Cited by 8 | Viewed by 2211
Abstract
Velvet (VeA), a light-regulated protein that shuttles between the cytoplasm and the nucleus, serves as a key global regulator of secondary metabolism in various Aspergillus species and plays a pivotal role in controlling multiple developmental processes. The gene vepN was chosen for further [...] Read more.
Velvet (VeA), a light-regulated protein that shuttles between the cytoplasm and the nucleus, serves as a key global regulator of secondary metabolism in various Aspergillus species and plays a pivotal role in controlling multiple developmental processes. The gene vepN was chosen for further investigation through CHIP-seq analysis due to significant alterations in its interaction with VeA under varying conditions. This gene (AFLA_006970) contains a Septin-type guanine nucleotide-binding (G) domain, which has not been previously reported in Aspergillus flavus (A. flavus). The functional role of vepN in A. flavus was elucidated through the creation of a gene knockout mutant and a gene overexpression strain using a well-established dual-crossover recombinational technique. A comparison between the wild type (WT) and the ΔvepN mutant revealed distinct differences in morphology, reproductive capacity, colonization efficiency, and aflatoxin production. The mutant displayed reduced growth rate; dispersion of conidial heads; impaired cell wall integrity; and decreased sclerotia formation, colonization capacity, and aflatoxin levels. Notably, ΔvepN exhibited complete growth inhibition under specific stress conditions, highlighting the essential role of vepN in A. flavus. This study provides evidence that vepN positively influences aflatoxin production, morphological development, and pathogenicity in A. flavus. Full article
Show Figures

Figure 1

13 pages, 1924 KiB  
Article
Fungicidal Effect of Guava Wood Vinegar against Colletotrichum coccodes Causing Black Dot Disease of Potatoes
by Mansour M. El-Fawy, Kamal A. M. Abo-Elyousr, Nashwa M. A. Sallam, Rafeek M. I. El-Sharkawy and Yasser Eid Ibrahim
Horticulturae 2023, 9(6), 710; https://doi.org/10.3390/horticulturae9060710 - 16 Jun 2023
Cited by 11 | Viewed by 3319
Abstract
Wood vinegar (WV) by-product of charcoal production is considered one of the most promising alternatives to synthetic pesticide and fertilizer applications, especially for organic production. Our goal in this study is to evaluate the efficacy of guava (Psidium guajava) WV to [...] Read more.
Wood vinegar (WV) by-product of charcoal production is considered one of the most promising alternatives to synthetic pesticide and fertilizer applications, especially for organic production. Our goal in this study is to evaluate the efficacy of guava (Psidium guajava) WV to control Colletotrichum coccodes, which causes black dot disease, and how it influences potato plant development and yield. This study tested the efficacy of guava WV against the pathogen both in vitro and under greenhouse conditions. Different guava WV concentrations were tested on pathogen growth development, including 0, 0.25%, 0.50%, 1%, 2%, and 3% (v/v). Data revealed that the pathogen’s mycelial growth was significantly inhibited at all the concentrations, and the highest inhibition (100%) was obtained at 3% guava WV. In greenhouse trials conducted for two seasons (2021 and 2022), guava WV applied as a foliar spray at the concentration of 2% and 3% considerably reduced the potato black dot severity evaluated as stem colonization (average of 22.9% for 2021, average of 22.5% for 2022), root covering with sclerotia (average of 21.7% for 2021, average of 18.3% for 2022) and wilted plants percentage (average of 27.8% for 2021, average of 33.3% for 2022). Overall, guava WV also showed a positive effect on plant growth by increasing plant height, stem diameter, and tuber yield per plant of treated potato in both seasons. Gas chromatography-mass spectrometry (GC-MS) analyses revealed the presence in guava WV of phenols, esters, organic acids, antioxidants, and alcohols. In conclusion, guava WV could represent a viable alternative for potato black dot disease management and for plant growth promotion. Full article
(This article belongs to the Special Issue Sustainable Control Strategies of Plant Pathogens in Horticulture)
Show Figures

Figure 1

17 pages, 6791 KiB  
Article
Electron Beam Irradiation to Control Rhizoctonia solani in Potato
by Natalya Chulikova, Anna Malyuga, Polina Borshchegovskaya, Yana Zubritskaya, Victoria Ipatova, Alexander Chernyaev, Dmitry Yurov, Sergei Zolotov, Alexander Nikitchenko, Ulyana Bliznyuk and Igor Rodin
Agriculture 2023, 13(6), 1221; https://doi.org/10.3390/agriculture13061221 - 9 Jun 2023
Cited by 6 | Viewed by 2382
Abstract
This study focuses on the influence of pre-planting irradiation on the development, health, and yield of seed potatoes infected with Rhizoctonia solani. The research was prompted by the need to ensure crop security and sustainability in the modern-day environment, which calls into [...] Read more.
This study focuses on the influence of pre-planting irradiation on the development, health, and yield of seed potatoes infected with Rhizoctonia solani. The research was prompted by the need to ensure crop security and sustainability in the modern-day environment, which calls into question the future sufficiency of crop yields. Considering that the focus has shifted to non-chemical methods of crop treatment at all plant development stages in response to more stringent regulations governing potato production, it is particularly important to refine physics-based methods to suppress fungal diseases caused by Rhizoctonia solani. Irradiation of tubers with 20–150 Gy inhibited the potato development phases and the doses exceeding 150 Gy completely suppressed the potato sprouting. Doses ranging from 20 Gy to 100 Gy decreased the quantity of large tubers by 10–20% on average while the number of medium and small tubers increased by 5–15% and 3–10%, respectively. Irradiation of seed potatoes also decreased the sclerotia and non-sclerotia forms of diseases caused by Rhizoctonia solani in the harvested tubers. It was found that 1 MeV electron irradiation with doses ranging from 20 Gy to 30 Gy is the most efficient for the pre-planting treatment of seed potatoes since the penetration of low-energy accelerated electrons into the upper layers of potato tubers ensures the suppression of diseases caused by Rhizoctonia solani by at least 10% from the value of non-irradiated samples and prevents the reduction of total yield allowing for a maximum of 25% loss. Full article
(This article belongs to the Special Issue Innovative Methods and Technology for Resilience Agrifood Systems)
Show Figures

Figure 1

12 pages, 1708 KiB  
Article
Characterization of a Bacillus subtilis S-16 Thiazole-Synthesis-Related Gene thiS Knockout and Antimicrobial Activity Analysis
by Jinghan Hu, Zhenhe Su, Baozhu Dong, Dong Wang, Xiaomeng Liu, Huanwen Meng, Qinggang Guo and Hongyou Zhou
Curr. Issues Mol. Biol. 2023, 45(6), 4600-4611; https://doi.org/10.3390/cimb45060292 - 26 May 2023
Cited by 2 | Viewed by 2090
Abstract
Bacillus subtilis S-16 isolated from sunflower-rhizosphere soil is an effective biocontrol agent for preventing soilborne diseases in plants. Previous research revealed that the volatile organic compounds (VOCs) produced by the S-16 strain have strong inhibitory effects on Sclerotinia sclerotiorum. The identification of [...] Read more.
Bacillus subtilis S-16 isolated from sunflower-rhizosphere soil is an effective biocontrol agent for preventing soilborne diseases in plants. Previous research revealed that the volatile organic compounds (VOCs) produced by the S-16 strain have strong inhibitory effects on Sclerotinia sclerotiorum. The identification of the VOCs of S-16 using gas chromatography-tandem mass spectrometry (GC-MS/MS) revealed 35 compounds. Technical-grade formulations of four of these compounds were chosen for further study: 2-pentadecanone, 6,10,14-trimethyl-2-octanone, 2-methyl benzothiazole (2-MBTH), and heptadecane. The major constituent, 2-MBTH, plays an important role in the antifungal activity of the VOCs of S-16 against the growth of Sclerotinia sclerotiorum. The purpose of this study was to determine the impact of the thiS gene’s deletion on the 2-MBTH production and to conduct an antimicrobial activity analysis of the Bacillus subtilis S-16. The thiazole-biosynthesis gene was deleted via homologous recombination, after which the contents of 2-MBTH in the wild-type and mutant S-16 strains were analyzed using GC-MS. The antifungal effects of the VOCs were determined using a dual-culture technique. The morphological characteristics of the Sclerotinia sclerotiorum mycelia were examined via scanning-electron microscopy (SEM). Additionally, the lesion areas on the sunflower leaves with and without treatment with the VOCs from the wild-type and mutant strains were measured to explore the effects of the VOCs on the virulence of the Sclerotinia sclerotiorum. Moreover, the effects of the VOCs on the sclerotial production were assessed. We showed that the mutant strain produced less 2-MBTH. The ability of the VOCs produced by the mutant strain to inhibit the growth of the mycelia was also reduced. The SEM observation showed that the VOCs released by the mutant strain also caused more flaccid and gapped hyphae in the Sclerotinia sclerotiorum. The Sclerotinia sclerotiorum treated by the VOCs produced by the mutant strains caused more damage to the leaves than that treated by the VOCs produced by the wild type and the mutant-strain-produced VOCs inhibited sclerotia formation less. The production of 2-MBTH and its antimicrobial activities were adversely affected to varying degrees by the deletion of thiS. Full article
Show Figures

Figure 1

16 pages, 3915 KiB  
Article
Histone 2-Hydroxyisobutyryltransferase Encoded by Afngg1 Is Involved in Pathogenicity and Aflatoxin Biosynthesis in Aspergillus flavus
by Jing Wang, Liuke Liang, Shan Wei, Shuaibing Zhang, Yuansen Hu and Yangyong Lv
Toxins 2023, 15(1), 7; https://doi.org/10.3390/toxins15010007 - 21 Dec 2022
Cited by 10 | Viewed by 2647
Abstract
Aflatoxin, a carcinogenic secondary metabolite produced by Aspergillus flavus, is a significant threat to human health and agricultural production. Histone 2-hydroxyisobutyrylation is a novel post-translational modification that regulates various biological processes, including secondary metabolism. In this study, we identified the novel histone [...] Read more.
Aflatoxin, a carcinogenic secondary metabolite produced by Aspergillus flavus, is a significant threat to human health and agricultural production. Histone 2-hydroxyisobutyrylation is a novel post-translational modification that regulates various biological processes, including secondary metabolism. In this study, we identified the novel histone 2-hydroxyisobutyryltransferase Afngg1 in A. flavus, and explored its role in cell growth, development and aflatoxin biosynthesis. Afngg1 gene deletion markedly decreased lysine 2-hydroxyisobutyrylation modification of histones H4K5 and H4K8 compared with the control strain. Additionally, Afngg1 deletion inhibited mycelial growth of A. flavus, and the number of conidia and hydrophobicity were significantly decreased. Notably, aflatoxin B1 biosynthesis and sclerotia production were completely inhibited in the ΔAfngg1 strain. Furthermore, the pathogenicity of the ΔAfngg1 strain infecting peanut and corn grains was also diminished, including reduced spore production and aflatoxin biosynthesis compared with A. flavus control and Afngg1 complementation strains. Transcriptome analysis showed that, compared with control strains, differentially expressed genes in ΔAfngg1 were mainly involved in chromatin remodelling, cell development, secondary metabolism and oxidative stress. These results suggest that Afngg1 is involved in histone 2-hydroxyisobutyrylation and chromatin modification, and thus affects cell development and aflatoxin biosynthesis in A. flavus. Our results lay a foundation for in-depth research on the 2-hydroxyisobutyrylation modification in A. flavus, and may provide a novel target for aflatoxin contamination prevention. Full article
(This article belongs to the Special Issue Research on Pathogenic Fungi and Mycotoxins in China (2nd Edition))
Show Figures

Figure 1

18 pages, 4963 KiB  
Article
Inhibition of the Growth and Development of Sclerotinia sclerotiorum (Lib.) De Bary by Combining Azoxystrobin, Penicillium chrysogenum VKM F-4876d, and Bacillus Strains
by Vera V. Yaderets, Nataliya V. Karpova, Elena V. Glagoleva, Alexander I. Ovchinnikov, Kseniya S. Petrova and Vakhtang V. Dzhavakhiya
Agronomy 2021, 11(12), 2520; https://doi.org/10.3390/agronomy11122520 - 11 Dec 2021
Cited by 10 | Viewed by 6655
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a plant pathogen with a wide host range, which causes significant yield and storage losses of edible roots and other plant products. Due to its ability to sclerotia formation, the efficient control of this pathogen is complicated. [...] Read more.
Sclerotinia sclerotiorum (Lib.) de Bary is a plant pathogen with a wide host range, which causes significant yield and storage losses of edible roots and other plant products. Due to its ability to sclerotia formation, the efficient control of this pathogen is complicated. The study of five Bacillus strains (B. subtilis VKM B-3154D, VKM B-3155D, VKM B-3505D, VKM B-2998D, and B. amyloliquefaciens VKM B-3153D) showed their ability to produce polyene antibiotics suppressing the growth and development of plant pathogenic fungi. The maximum concentration of polyene compounds was revealed for B. subtilis VKM B-2998D. A high in vitro antifungal activity of a dry mycelium biomass (DMP) of Penicillium chrysogenum VKM F-4876D, B. subtilis VKM B-2998D, and their combination has been demonstrated in relation to S. sclerotiorum. A combined application of DMP (0.3 g/L) and azoxystrobin at low dosage (2.5 mg/L) showed a high suppressing activity towards S. sclerotiorum (100% growth inhibition) including inhibition of a sclerotia formation that may be useful for the development of efficient methods of crop protection against this plant pathogen. A high performance liquid chromatography (HPLC) analysis of DMP revealed the presence of mevastatin suggesting the mechanism of the DMP antifungal activity is based on the blocking of the ergosterol (the main component of fungal cell walls) biosynthesis. The results of the study provide a prerequisite to the development of biopreparations to control S. sclerotiorum, whose use may provide a reduction of concentrations of fungicides used in agriculture and the corresponding reduction of their negative xenobiotic impact on the environment and recovery of the ecological balance in the soil. Full article
Show Figures

Figure 1

15 pages, 5371 KiB  
Article
Mycosynthesis of Silver Nanoparticles Using Screened Trichoderma Isolates and Their Antifungal Activity against Sclerotinia sclerotiorum
by Ali Athafah Tomah, Iman Sabah Abd Alamer, Bin Li and Jing-Ze Zhang
Nanomaterials 2020, 10(10), 1955; https://doi.org/10.3390/nano10101955 - 30 Sep 2020
Cited by 46 | Viewed by 4900
Abstract
To control the disease caused by Sclerotinia sclerotiorum, a total of 15 isolates of the Trichoderma species was screened for the biosynthesis of silver nanoparticles (AgNPs). Among them, the highest yield occurred in the synthesis of AgNPs using a cell-free aqueous filtrate [...] Read more.
To control the disease caused by Sclerotinia sclerotiorum, a total of 15 isolates of the Trichoderma species was screened for the biosynthesis of silver nanoparticles (AgNPs). Among them, the highest yield occurred in the synthesis of AgNPs using a cell-free aqueous filtrate of T.virens HZA14 producing gliotoxin. The synthetic AgNPs were charactered by SEM, EDS, TEM, XRD, and FTIR. Electron microscopy studies revealed that the size of AgNPs ranged from 5–50 nm and had spherical and oval shapes with smooth surfaces. Prepared AgNPs interacted with protein, carbohydrate and heterocyclic compound molecules, and especially, interaction patterns of AgNPs with the gliotoxin molecule were proposed. The antifungal activity assays demonstrated that percentage inhibition of the prepared AgNPs was 100, 93.8 and 100% against hyphal growth, sclerotial formation, and myceliogenic germination of sclerotia at a concentration of 200 μg/mL, respectively. The direct interaction between nanoparticles and fungal cells, including AgNPs’ contact, accumulation, lamellar fragment production and micropore or fissure formation on fungal cell walls, was revealed by SEM and EDS. These will extend our understanding of the mechanisms of AgNPs’ action for preventing diversified fungal disease. Full article
Show Figures

Graphical abstract

17 pages, 3981 KiB  
Article
Biological Control of Tomato Gray Mold Caused by Botrytis Cinerea with the Entomopathogenic Fungus Metarhizium Anisopliae
by Most.Sinthia Sarven, Qiuyan Hao, Junbo Deng, Fang Yang, Gaofeng Wang, Yannong Xiao and Xueqiong Xiao
Pathogens 2020, 9(3), 213; https://doi.org/10.3390/pathogens9030213 - 13 Mar 2020
Cited by 57 | Viewed by 9449
Abstract
Gray mold disease caused by Botrytis cinerea is a devastating disease that leads to serious financial loss. In this study, the entomopathogenic fungus Metarhizium anisopliae that acts against the gray mold pathogen B. cinerea was evaluated. M. anisopliae produced a significant inhibition zone [...] Read more.
Gray mold disease caused by Botrytis cinerea is a devastating disease that leads to serious financial loss. In this study, the entomopathogenic fungus Metarhizium anisopliae that acts against the gray mold pathogen B. cinerea was evaluated. M. anisopliae produced a significant inhibition zone in front of the B. cinerea colony in the dual culture test. In addition, volatile organic compounds generated by M. anisopliae were shown to have an inhibitory effect on B. cinerea mycelia growth and reduced 41% of gray mold severity of postharvest tomatoes. The 10% concentration of the culture filtrate of M. anisopliae inhibited 88.62% of colony radial growth as well as 63.85% of sclerotia germination and all conidia germination of B. cinerea. Furthermore, the culture filtrate of M. anisopliae retained its inhibitory effect against the radial growth of B. cinerea even after heating for 15 min at 100 °C. Feasible mechanisms of M. anisopliae involved in the control of B. cinerea were explored, and it was demonstrated that the plasma membrane of B. cinerea conidia was damaged by the product of metabolism of M. anisopliae. In addition, after treating with culture filtrate of M. anisopliae, the B. cinerea phenotype was shown to be abnormal, and cell organelles of B. cinerea mycelia were damaged significantly. A significant control efficacy of M. anisopliae against tomato gray mold was detected on both the detached leaf assay (84.24%) as well as the whole plant (72.38%). In addition, a 78% reduction in tomato fruit mold was detected at a 10% treated concentration of M. anisopliae. These findings suggest that M. anisopliae possesses potential as a biocontrol agent against tomato gray mold in the greenhouse and during the postharvest stage. Full article
(This article belongs to the Section Plant Pathogens)
Show Figures

Figure 1

Back to TopTop