Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = satellite on-orbit test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2561 KiB  
Article
JPSS-4 VIIRS Pre-Launch Calibration Performance and Assessment
by Amit Angal, David Moyer, Xiaoxiong Xiong, Daniel Link, Thomas Schwarting, Jeff McIntire, Qiang Ji and Chengbo Sun
Remote Sens. 2025, 17(13), 2146; https://doi.org/10.3390/rs17132146 - 23 Jun 2025
Viewed by 299
Abstract
The Joint Polar Satellite System (JPSS) is a collaborative program between NASA and NOAA to provide scientific measurements from multiple polar-orbiting satellites. The development, testing, launch, and operation of the satellites is jointly overseen by NASA and NOAA, with NASA responsible for developing [...] Read more.
The Joint Polar Satellite System (JPSS) is a collaborative program between NASA and NOAA to provide scientific measurements from multiple polar-orbiting satellites. The development, testing, launch, and operation of the satellites is jointly overseen by NASA and NOAA, with NASA responsible for developing and building instruments, spacecraft, ground systems, and launching into orbit. While three VIIRS instruments are currently on-orbit, spacecraft integration of the two VIIRS instruments planned for launch on the JPSS-3 and -4 spacecraft is ongoing. The latest build in the series, set to be launched on the JPSS-4 platform, recently completed its main ground calibration program at the vendor facility. This program covered a comprehensive series of performance metrics designed to ensure that the instrument can maintain its calibration successfully on-orbit. In this paper, we present the results from the radiometric calibration process, which includes metrics such as dynamic range, signal-to-noise ratio, noise equivalent differential temperature, polarization sensitivity, scattered light response, relative spectral response, response versus scan angle, and crosstalk. All key metrics have met or exceeded their design requirements, with some minor exceptions. Also included are comparisons with previous VIIRS instruments, as well as a description of their expected performance once on-orbit. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

24 pages, 7065 KiB  
Article
Center of Mass Auto-Location in Space
by Lucas McLeland, Brian Erickson, Brendan Ruchlin, Eryn Daman, James Mejia, Benjamin Ho, Joshua Lewis, Bryan Mann, Connor Paw, James Ross, Christopher Reis, Scott Walter, Stefanie Coward, Thomas Post, Andrew Freeborn and Timothy Sands
Technologies 2025, 13(6), 246; https://doi.org/10.3390/technologies13060246 - 12 Jun 2025
Viewed by 389
Abstract
Maintaining a spacecraft’s center of mass at the origin of a body-fixed coordinate system is often key to precision trajectory tracking. Typically, the inertia matrix is estimated and verified with preliminary ground testing. This article presents groundbreaking preliminary results and significant findings from [...] Read more.
Maintaining a spacecraft’s center of mass at the origin of a body-fixed coordinate system is often key to precision trajectory tracking. Typically, the inertia matrix is estimated and verified with preliminary ground testing. This article presents groundbreaking preliminary results and significant findings from on-orbit space experiments validating recently proposed methods as part of a larger study over multiple years. Time-varying estimates of inertia moments and products are used to reveal time-varying estimates of the location of spacecraft center of mass using geosynchronous orbiting test satellites proposing a novel two-norm optimal projection learning method. Using the parallel axis theorem, the location of the mass center is parameterized using the cross products of inertia, and that information is extracted from spaceflight maneuver data validating modeling and simulation. Mass inertia properties are discerned, and the mass center is experimentally revealed to be over thirty centimeters away from the assumed locations in two of the three axes. Rotation about one axis is found to be very well balanced, with the center of gravity lying on that axis. Two-to-three orders of magnitude corrections to inertia identification are experimentally demonstrated. Combined-axis three-dimensional maneuvers are found to obscure identification compared with single-axis maneuvering as predicted by the sequel analytic study. Mass center location migrates 36–95% and subsequent validating experiments duplicate the results to within 0.1%. Full article
(This article belongs to the Special Issue Advanced Autonomous Systems and Artificial Intelligence Stage)
Show Figures

Figure 1

17 pages, 7803 KiB  
Article
Stray Light Suppression Design and Test for the Jilin-1 GF04A Satellite Remote Sensing Camera
by Xing Zhong, Jiashi Feng, Yanjie Li, Chenglong Yang, Feifei Zhang and Haofeng Li
Remote Sens. 2025, 17(9), 1512; https://doi.org/10.3390/rs17091512 - 24 Apr 2025
Viewed by 589
Abstract
The stray light suppression design aims to reduce the impact of stray light on optical systems. For high-resolution optical remote sensing systems, practical tests of stray light suppression performance are essential to ensure optimal functionality. However, due to system complexity and spatial constraints, [...] Read more.
The stray light suppression design aims to reduce the impact of stray light on optical systems. For high-resolution optical remote sensing systems, practical tests of stray light suppression performance are essential to ensure optimal functionality. However, due to system complexity and spatial constraints, physical test methods for evaluating the stray light suppression performance of large-aperture, long-focal-length remote sensing cameras remain scarce. To address this issue, a comprehensive test is conducted on the stray light suppression performance of the Jilin-1 GF04A satellite remote sensing camera by integrating multiple test methods, including the environmental light effect test, neighborhood point source response test, key surface response test, and sneak path of stray light test. The experimental results indicate that the stray light response ratios obtained from different test methods are all below 1%. The on-orbit performance of GF04A further validates the effectiveness of its stray light suppression design. Full article
(This article belongs to the Special Issue Optical Remote Sensing Payloads, from Design to Flight Test)
Show Figures

Graphical abstract

18 pages, 2578 KiB  
Article
Joint Iterative Satellite Pose Estimation and Particle Swarm Optimization
by Patcharin Kamsing, Chunxiang Cao, You Zhao, Wuttichai Boonpook, Lalida Tantiparimongkol and Pisit Boonsrimuang
Appl. Sci. 2025, 15(4), 2166; https://doi.org/10.3390/app15042166 - 18 Feb 2025
Cited by 2 | Viewed by 1558
Abstract
Satellite pose estimation (PE) is crucial for space missions and orbital maneuvering. High-accuracy satellite PE could reduce risks, enhance safety, and help achieve the objectives of close proximity and docking operations for autonomous systems by reducing the need for manual control in the [...] Read more.
Satellite pose estimation (PE) is crucial for space missions and orbital maneuvering. High-accuracy satellite PE could reduce risks, enhance safety, and help achieve the objectives of close proximity and docking operations for autonomous systems by reducing the need for manual control in the future. This article presents a joint iterative satellite PE and particle swarm optimization (PE-PSO) method. The PE-PSO method uses the number of batches derived from satellite PE as the number of particles and keeps the number of epochs from the satellite PE process as the number of epochs for PSO. The objective function of PSO is the training function of the implemented network. The output obtained from the previous objective function is applied to update the new positions of the particles, which serve as the inputs of the current training function. The PE-PSO method is tested on synthetic Soyuz satellite image datasets acquired from the Unreal Rendered Spacecrafts On-Orbit Datasets (URSOs) under different preset hyperparameters. The proposed method significantly reduces the incurred loss, especially during the batch-processing operation of each epoch. The results illustrate the accuracy improvement attained by the PE-PSO method over epoch processing, but its time consumption is not distinct from that of the conventional method. In addition, PE-PSO achieves better performance by reducing the mean position estimation error by 13.1% and the mean orientation estimation error on the testing dataset by 29.1% based on the pretrained weights of Common Objects in Context (COCO). Additionally, PE-PSO improves the accuracy of the Soyuz_hard-based weight by 7.8% and 0.3% in terms of the mean position estimation error and mean orientation estimation error, respectively. Full article
Show Figures

Figure 1

20 pages, 7294 KiB  
Article
Prelaunch Reflective Solar Band Radiometric Performance of JPSS-3 and -4 VIIRS
by Amit Angal, David Moyer, Xiaoxiong Xiong, Qiang Ji and Daniel Link
Remote Sens. 2024, 16(24), 4799; https://doi.org/10.3390/rs16244799 - 23 Dec 2024
Cited by 1 | Viewed by 660
Abstract
The Joint Polar Satellite System 3 (JPSS-3) and -4 (JPSS-4) Visible Infrared Imaging Radiometer Suite (VIIRS) instruments are the last in the series (S-NPP VIIRS launched in October 2011, JPSS-1 VIIRS launched in November 2017, and JPSS-2 VIIRS launched in November 2022) of [...] Read more.
The Joint Polar Satellite System 3 (JPSS-3) and -4 (JPSS-4) Visible Infrared Imaging Radiometer Suite (VIIRS) instruments are the last in the series (S-NPP VIIRS launched in October 2011, JPSS-1 VIIRS launched in November 2017, and JPSS-2 VIIRS launched in November 2022) of highly advanced polar-orbiting environmental satellites. Both instruments underwent a comprehensive sensor-level thermal vacuum (TVAC) testing at the Raytheon Technologies El Segundo facility to characterize the spatial, spectral, and radiometric aspects of the VIIRS sensor performance. This paper focuses on the radiometric performance of the 14 reflective solar bands (RSBs) that cover the wavelength range from 0.41 to 2.3 µm. Key instrument calibration parameters such as instrument gain, signal-to-noise ratio (SNR), dynamic range, and radiometric calibration uncertainty were derived from the TVAC measurements for both the primary and redundant electronics at three instrument temperature plateaus: cold, nominal, and hot. This paper shows that all the JPSS-3 and -4 VIIRS RSB detectors have been well characterized, with key performance metrics comparable to the previous VIIRS instruments on-orbit. The radiometric calibration uncertainty of the RSBs is within the 2% requirement, except in the case of band M1 of JPSS-4. Comparison of the radiometric performance to sensor requirements, as well as a summary of key instrument testing and performance issues, is also presented. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

20 pages, 5308 KiB  
Article
Atmospheric Modulation Transfer Function Calculation and Error Evaluation for the Panchromatic Band of the Gaofen-2 Satellite
by Zhengqiang Li, Mingjun Liang, Yan Ma, Yang Zheng, Zhaozhou Li and Zhenting Chen
Remote Sens. 2024, 16(24), 4676; https://doi.org/10.3390/rs16244676 - 14 Dec 2024
Viewed by 1640
Abstract
In the optical satellite on-orbit imaging quality estimation system, the calculation of Modulation Transfer Function (MTF) is not fully standardized, and the influence of atmosphere is often simplified, making it difficult to obtain completely consistent on-orbit MTF measurements and comparisons. This study investigates [...] Read more.
In the optical satellite on-orbit imaging quality estimation system, the calculation of Modulation Transfer Function (MTF) is not fully standardized, and the influence of atmosphere is often simplified, making it difficult to obtain completely consistent on-orbit MTF measurements and comparisons. This study investigates the effects of various factors—such as edge angle, edge detection methods, oversampling rate, and interpolation techniques—on the accuracy of MTF calculations in the commonly used slanted-edge method for on-orbit MTF assessment, informed by simulation experiments. A relatively optimal MTF calculation process is proposed, which employs the Gaussian fitting method for edge detection, the adaptive oversampling rate, and the Lanczos (a = 3) interpolation method, minimizing the absolute deviation in the MTF results. A method to quantitatively analyze the atmospheric scattering and absorption MTF is proposed that employs a radiative transfer model. Based on the edge images of GF-2 satellite, images with various atmospheric conditions and imaging parameters are simulated, and their atmospheric scattering and absorption MTF is obtained through comparing the MTFs of the ground and top atmosphere radiance. The findings reveal that aerosol optical depth (AOD), viewing zenith angle (VZA), and altitude (ALT) are the primary factors influencing the accuracy of GF-2 satellite on-orbit MTF measurements in complex scenarios. The on-orbit MTF decreases with the increase in AOD and VZA and increases with the increase in ALT. Furthermore, a collaborative analysis of the main influencing factors of atmospheric scattering and absorption MTF indicates that, taking the PAN band of the GF-2 satellite as an example, the atmospheric MTF values are consistently below 0.7905. Among these, 90% of the data are less than 0.7520, with corresponding AOD conditions ranging from 0 to 0.08, a VZA ranging from 0 to 50°, and an ALT ranging from 0 to 5 km. The results can provide directional guidance for the selection of meteorological conditions, satellite attitude, and geographical location during satellite on-orbit testing, thereby enhancing the ability to accurately measure satellite MTF. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

13 pages, 4293 KiB  
Technical Note
Thermal Deformation Analysis of a Star Camera to Ensure Its High Attitude Measurement Accuracy in Orbit
by Fan Jiang, Lei Wang, Huaxia Deng, Lei Zhu, Dezhu Kong, Hongyu Guan, Jinguo Liu and Zhongsu Wang
Remote Sens. 2024, 16(23), 4567; https://doi.org/10.3390/rs16234567 - 5 Dec 2024
Cited by 2 | Viewed by 1263
Abstract
With the continuous advancement of high-resolution satellite technology, the impact of thermal deformation on the performance of star cameras is becoming more significant, particularly in relation to installation conditions and orbital environments. To address this challenge, an in-depth investigation of the thermal design [...] Read more.
With the continuous advancement of high-resolution satellite technology, the impact of thermal deformation on the performance of star cameras is becoming more significant, particularly in relation to installation conditions and orbital environments. To address this challenge, an in-depth investigation of the thermal design of a star camera is conducted in this study. The thermal deformation of this camera is evaluated systematically through simulation analysis, thermal balance tests, and on-orbit temperature measurements. In addition, a simulation analysis is used to identify and quantitatively evaluate the thermal deformation error sources that affect the spatial attitude measurement accuracy of the star camera. The results indicate that thermal deformations of the optical system, the mounting surface of the star camera, and the support significantly impact on-orbit measurement accuracy. Ultimately, the limit error attributable to on-orbit thermal deformation is determined to be 0.62″. In the thermal balance experiments, the maximum absolute difference between the test results and the thermal simulation analysis results is under 1.8 °C. Additionally, analysis of the orbital temperature data reveals that the maximum absolute difference between the orbital results and the thermal simulation results is 1.18 °C, while the attitude accuracy of the star sensor is better than 0.54″. These findings validate the effectiveness of the thermal design and the accuracy of the thermal simulation analysis. The analysis of error sources presented in this paper offers crucial insights for effectively controlling the thermal deformation errors of star cameras and lays the groundwork for optimizing overall thermal design. Full article
Show Figures

Graphical abstract

19 pages, 8144 KiB  
Article
Thermal Optimization Design for a Small Flat-Panel Synthetic Aperture Radar Satellite
by Tian Bai, Yuanbo Zhang, Lin Kong, Hongrui Ao, Jisong Yu and Lei Zhang
Aerospace 2024, 11(12), 982; https://doi.org/10.3390/aerospace11120982 - 27 Nov 2024
Viewed by 1337
Abstract
This article introduces a small microwave remote sensing satellite weighing 310 kg, operating in low earth orbit (LEO). It is equipped with an X-band synthetic aperture radar (SAR) antenna, capable of a maximum imaging resolution of 0.6 m. To achieve the objectives of [...] Read more.
This article introduces a small microwave remote sensing satellite weighing 310 kg, operating in low earth orbit (LEO). It is equipped with an X-band synthetic aperture radar (SAR) antenna, capable of a maximum imaging resolution of 0.6 m. To achieve the objectives of lower cost, reduced weight, minimized power consumption, and enhanced temperature stability, an optimized thermal design method tailored for satellites has been developed, with a particular focus on SAR antennas. The thermal control method of the antenna is closely integrated with structural design, simplifying the thermal design and its assembly process, reducing the resource consumption of thermal control systems. The distribution of thermal interface material (TIM) in the antenna assembly has been carefully calculated, achieving a zero-consumption thermal design for the SAR antenna. And the temperature difference of the entire antennas when powered on and powered off would not exceed 17 °C, meeting the specification requirements. In addition, to ensure the accuracy of antenna pointing, the support plate of antennas requires stable temperature. The layout of the heaters on the board has been optimized, reducing the use of heaters by 30% while ensuring that the temperature variation of the support board remains within 5 °C. Then, an on-orbit thermal simulation analysis of the satellite was conducted to refine the design and verification. Finally, the thermal test of the SAR satellite under vacuum conditions was conducted, involving operating the high-power antenna, verifying that the peak temperature of T/RM is below 29 °C, the temperature fluctuation amplitude during a single imaging task is 10 °C, and the lowest temperature point of the support plate is 16 °C. The results of the thermal simulation and test are highly consistent, verifying the correctness and effectiveness of the thermal design. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

13 pages, 1015 KiB  
Technical Note
Linearity Assessment from the Plankton, Aerosol, Cloud, and Ocean Ecosystem Ocean Color Instrument Pre-Launch Testing and On-Orbit Operations
by Jeff McIntire, Gerhard Meister, Julia A. Barsi, Ulrik Gliese, Kim Jepsen, Samuel Kitchen-McKinley and Shihyan Lee
Remote Sens. 2024, 16(21), 4032; https://doi.org/10.3390/rs16214032 - 30 Oct 2024
Viewed by 704
Abstract
Satellite observations have become increasingly important in scientific studies of the Earth’s climate, especially for oceanographic science. A next generation sensor known as the Ocean Color Instrument (OCI) was launched in February 2024 onboard the Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) platform, [...] Read more.
Satellite observations have become increasingly important in scientific studies of the Earth’s climate, especially for oceanographic science. A next generation sensor known as the Ocean Color Instrument (OCI) was launched in February 2024 onboard the Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) platform, and will extend the data set of on-orbit scientific observations used for ocean and atmospheric science research. Delivering high quality data from a space-borne sensor requires the instrument to be well calibrated; while much of the calibration can be performed on-orbit, some aspects of the calibration must be measured or the mechanisms verified pre-launch. One aspect of the OCI calibration that is novel to its design (for a space-based sensor) is its ability to perform linearity measurements on orbit. When viewing the Sun reflected off a dim diffuser with ∼2–3% reflectance, the sensor is capable of recording successive pixels with increasing integration times. The result is a series of light levels measured from the same source in a given scan line. These measurements are then used to assess the linearity. During the pre-launch test campaign, this mechanism was verified using a known source in the Earth view portion of the scan. Results from these tests form a baseline that was verified once on-orbit (and the calibration may be replaced if the linearity is shown to change). The linearity measured both prior to launch and post-launch will be assessed in this work. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

15 pages, 3797 KiB  
Technical Note
Estimation of IFOV Inter-Channel Deviation for Microwave Radiation Imager Onboard FY-3G Satellite
by Pengjuan Yao, Shengli Wu, Yang Guo, Jian Shang, Kesong Dong, Weiwei Xu and Jiachen Wang
Remote Sens. 2024, 16(19), 3571; https://doi.org/10.3390/rs16193571 - 25 Sep 2024
Viewed by 1011
Abstract
The Microwave Radiation Imager (MWRI) onboard the FengYun satellite plays a crucial role in global change monitoring and numerical weather prediction. Estimating and correcting geolocation errors are important to retrieving accurate geophysical variables. However, the instantaneous field of view (IFOV) inter-channel deviation, which [...] Read more.
The Microwave Radiation Imager (MWRI) onboard the FengYun satellite plays a crucial role in global change monitoring and numerical weather prediction. Estimating and correcting geolocation errors are important to retrieving accurate geophysical variables. However, the instantaneous field of view (IFOV) inter-channel deviation, which is mainly caused by the structure mounting error and measurement error of feedhorns, is less studied. In this present study, we constructed a general theoretical model to automatically estimate the IFOV inter-channel deviations suitable for conical-scanning instruments. The model can automatically detect the along-track and across-track vectors that pass through the land–sea boundary points and are perpendicular to the actual coastlines. Regarding the midpoints of the vectors as the brightness temperature (Tb) inflection points, the IFOV inter-channel deviation is the pixel offset or distance of the maximum gradients of the Tb near the inflection points for each channel relative to the 89-GHz V-pol channel. We tested the model’s operational performance using the FY-3G/MWRI-Rainfall Mission (MWRI-RM) observations. Considering that parameter uploading adjusted the IFOV inter-channel deviations, the model’s validity was verified by comparing the adjustments calculated by the model with the theoretical changes caused by parameter uploading. The result shows that the differences between them for all window channels are less than 100 m, indicating the model’s effectiveness in evaluating the IFOV inter-channel deviation for the MWRI-RM. Furthermore, the estimated on-orbit IFOV inter-channel deviations for the MWRI-RM show that all channel deviations are less than 1 km, meeting the instrument’s design requirement of 2 km. We believe this study will provide a foundation for IFOV inter-channel registration of passive microwave payloads and spatial matching of multiple payloads. Full article
Show Figures

Graphical abstract

17 pages, 13169 KiB  
Article
Variable Switching System for Heat Protection and Dissipation of Ultra-LEO Satellites Based on LHP Coupled with TEC
by Jin Huang, Liang Chang, Baiyang Dong, Jianping Wang and Hulin Huang
Aerospace 2024, 11(7), 539; https://doi.org/10.3390/aerospace11070539 - 1 Jul 2024
Cited by 4 | Viewed by 4270
Abstract
Ultra-low Earth orbit (LEO) satellites are widely used in the military, remote sensing, scientific research, and other fields. The ultra-LEO satellite faces the harsh aerothermal environment, and the complex variable attitude task requires the radiator of the satellite to not only meet the [...] Read more.
Ultra-low Earth orbit (LEO) satellites are widely used in the military, remote sensing, scientific research, and other fields. The ultra-LEO satellite faces the harsh aerothermal environment, and the complex variable attitude task requires the radiator of the satellite to not only meet the heat dissipation requirements of the load but also to resist aerothermal flux. In this study, the aerothermal flux of 160–110 km was calculated, and the loop heat pipe (LHP) coupled with a thermo-electric cooler (TEC) and multi-layer insulation (MLI) were applied to ultra-LEO satellites to determine the variable switching and fast response of heat dissipation and heat protection. An aerothermal flux simulation test platform was built. After the assessment of the ultra-LEO aerothermal flux test, even when the head temperature was as high as 350 °C and the side radiator temperature was as high as 160 °C, the temperature of the internal heat source could be controlled within 22.5 °C through the efficient work of the thermal variable switch system. The study confirms the accuracy and feasibility of the system, which provides an important reference for the subsequent actual on-orbit mission. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

24 pages, 78104 KiB  
Article
Spacecraft and Asteroid Thermal Image Generation for Proximity Navigation and Detection Scenarios
by Matteo Quirino and Michèle Roberta Lavagna
Appl. Sci. 2024, 14(13), 5377; https://doi.org/10.3390/app14135377 - 21 Jun 2024
Cited by 3 | Viewed by 1848
Abstract
On-orbit autonomous relative navigation performance strongly depends on both sensor suite and state reconstruction selection. Whenever that suite relies on image-based sensors working in the visible spectral band, the illumination conditions strongly affect the accuracy and robustness of the state reconstruction outputs. To [...] Read more.
On-orbit autonomous relative navigation performance strongly depends on both sensor suite and state reconstruction selection. Whenever that suite relies on image-based sensors working in the visible spectral band, the illumination conditions strongly affect the accuracy and robustness of the state reconstruction outputs. To cope with that limitation, we investigate the effectiveness of exploiting image sensors active in the IR spectral band, not limited by the lighting conditions. To run effective and comprehensive testing and validation campaigns on navigation algorithms, a large dataset of images is required, either available or easy to obtain in the visible band, not trivial and not accessible for the thermal band. The paper presents an open-source tool that exploits accurate finite volume thermal models of celestial objects and artificial satellites to create thermal images based on the camera dynamic. The thermal model relies on open CFD code (OpenFOAM), pushed to catch the finest details of the terrain or of the target geometries, and then the temperature field is processed to compute the view factors between the camera and each face of the mesh; thus, the radiative flux emitted by each face is extracted. Such data feed the rendering engine (Blender) that, together with the camera position and attitude, outputs the thermal image. The complete pipeline, fed by the orbiting target and the imaging sensor kinematic, outputs a proper synthetic thermal image dataset, exploitable either by a relative navigation block or any other scope of research. Furthermore, in the same framework, the article proposes two different thermal sensor models but any sensor model can be applied, providing full customization of the output. The tool performance is critically discussed and applied for two typical proximity scenarios, asteroid and artificial satellite; for both cases, the challenges and capabilities of the implemented tool for synthetic thermal images are highlighted. In the end, the tool is applied in a phase B mission design sponsored by ESA and in related research works; for such cases, the results are reported in the article. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

24 pages, 8043 KiB  
Article
Pre-Launch Polarization Assessment of JPSS-3 and -4 VIIRS VNIR Bands and Comparison with Previous Builds
by David Moyer, Jeff McIntire, Amit Angal and Xiaoxiong Xiong
Remote Sens. 2024, 16(12), 2178; https://doi.org/10.3390/rs16122178 - 15 Jun 2024
Cited by 3 | Viewed by 1202
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, deployed on multiple satellites including the Suomi National Polar-orbiting Partnership (S-NPP), National Oceanic and Atmospheric Administration 20 (NOAA-20), NOAA-21, Joint Polar Satellite System (JPSS-3), and JPSS-4 spacecraft, with launches in 2011, 2017, 2022, 2032, and [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, deployed on multiple satellites including the Suomi National Polar-orbiting Partnership (S-NPP), National Oceanic and Atmospheric Administration 20 (NOAA-20), NOAA-21, Joint Polar Satellite System (JPSS-3), and JPSS-4 spacecraft, with launches in 2011, 2017, 2022, 2032, and 2027, respectively, has polarization sensitivity that affects the at-aperture radiometric Sensor Data Record (SDR) calibration in the Visible Near InfraRed (VNIR) spectral region. These SDRs are key inputs into the VIIRS atmospheric, land, and water Environmental Data Records (EDRs) that are integral to weather and climate applications. If the polarization sensitivity of the VIIRS instrument is left uncorrected, EDR quality will degrade, causing diminished quality of weather and climate data. Pre-launch characterization of the instrument’s polarization sensitivity was performed to mitigate this on-orbit calibration effect and improve the quality of the EDRs. Specialized ground test equipment, built specifically for the VIIRS instrument, enabled high-fidelity characterization of the instrument’s polarization performance. This paper will discuss the polarization sensitivity characterization test approach, methodology, and results for the JPSS-3 and -4 builds. This includes a description of the ground test equipment, instrument requirements, and how the testing was executed and analyzed. A comparison of the polarization sensitivity results of the on-orbit S-NPP, NOAA-20, and -21 instruments with the JPSS-3 and -4 VIIRS instruments will be discussed as well. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

11 pages, 2989 KiB  
Article
Heat Sink Equivalent Thermal Test Method and Its Application in Low-Orbit Satellites
by Tian Bai, Lin Kong, Hongrui Ao and Feng Jiang
Appl. Sci. 2024, 14(10), 4123; https://doi.org/10.3390/app14104123 - 13 May 2024
Cited by 3 | Viewed by 1287
Abstract
In order to shorten the length of satellite thermal testing and reduce the cost of satellite development, a new method of satellite thermal testing using a heat sink to simulate space heating flow has been proposed. First, based on the characteristics of low-orbit [...] Read more.
In order to shorten the length of satellite thermal testing and reduce the cost of satellite development, a new method of satellite thermal testing using a heat sink to simulate space heating flow has been proposed. First, based on the characteristics of low-orbit satellites and the current research of thermal tests, the necessity of studying high-efficiency thermal test methods for satellites is expounded, and the advantages of the heat sink equivalent thermal tests compared to conventional tests are explained. Then, the principle of the heat sink equivalent thermal tests is described, the formula to calculate the heat sink temperature is given, and an error analysis of the formula is conducted. It is found that when the emissivity of the heat sink surface is greater than 0.9 and the ratio of the heat sink’s surface area to the satellite’s is greater than 10, the error of the heat sink equivalent tests should be within 1 °C. Next, the application of the heat sink equivalent thermal test is described using the Jilin−1 GF02F satellite as an example. Finally, the test results and the flight temperature of the GF02F satellite are acquired and analyzed. The results show that the error of the heat sink equivalent thermal test is 0.9 °C, the test time is shortened by one-third compared to traditional thermal tests, and the cost of the thermal test is reduced by more than 70%. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

13 pages, 5988 KiB  
Article
Development of a Laser Micro-Thruster and On-Orbit Testing
by Jifei Ye, Sibo Wang, Hao Chang, Yanji Hong, Nanlei Li, Weijing Zhou, Baoyu Xing, Bangdeng Du and Chengyin Xie
Aerospace 2024, 11(1), 23; https://doi.org/10.3390/aerospace11010023 - 26 Dec 2023
Cited by 6 | Viewed by 2368
Abstract
Laser micro-thrust technology is a type of propulsion that uses a laser beam to ablate a propellant such as a metal or plastic. The ablated material is expelled out the back of the spacecraft, generating thrust. The technology has the advantages of high [...] Read more.
Laser micro-thrust technology is a type of propulsion that uses a laser beam to ablate a propellant such as a metal or plastic. The ablated material is expelled out the back of the spacecraft, generating thrust. The technology has the advantages of high control precision, high thrust–power ratios, and excellent performances, and it has played an important role in the field of micro-propulsion. In this study, a solid propellant laser micro-thruster was developed and then applied for the attitude control of satellites during on-orbit tests. The micro-thruster had a volume of 0.5 U, a weight of 440 g, and a thrust range of 10 μN–0.6 mN. The propellant, 87% glycidyl azide polymer (GAP) + 10% ammonium perchlorate (AP) + 3% carbon nano-powder, was supplied via a double-layer belt, and the average power was less than 10 W. We present the development of the laser micro-thruster, as well as the results regarding the thruster propulsion performance. The thruster was launched into orbit on 27 February 2022 with the Chuangxin Leishen Satellite developed by Spacety. The on-orbit test of the thruster for satellite attitude control was carried out. The thruster was successfully fired in space and played an obvious role in the attitude control of the satellite. The experimental results show that the thrust is about 315 μN. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology)
Show Figures

Figure 1

Back to TopTop