Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = salecan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5150 KiB  
Article
Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing
by Maria Minodora Marin, Ioana Catalina Gifu, Gratiela Gradisteanu Pircalabioru, Madalina Albu Kaya, Rodica Roxana Constantinescu, Rebeca Leu Alexa, Bogdan Trica, Elvira Alexandrescu, Cristina Lavinia Nistor, Cristian Petcu and Raluca Ianchis
Gels 2023, 9(5), 425; https://doi.org/10.3390/gels9050425 - 19 May 2023
Cited by 5 | Viewed by 2678
Abstract
Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials [...] Read more.
Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide’s polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine. Full article
(This article belongs to the Special Issue Hydrogels for 3D Printing)
Show Figures

Figure 1

20 pages, 6216 KiB  
Article
Novel Green Crosslinked Salecan Hydrogels and Preliminary Investigation of Their Use in 3D Printing
by Raluca Ianchis, Rebeca Leu Alexa, Ioana Catalina Gifu, Maria Minodora Marin, Elvira Alexandrescu, Roxana Constantinescu, Andrada Serafim, Cristina Lavinia Nistor and Cristian Petcu
Pharmaceutics 2023, 15(2), 373; https://doi.org/10.3390/pharmaceutics15020373 - 21 Jan 2023
Cited by 9 | Viewed by 2702
Abstract
Salecan, a kind of polysaccharide, is produced by the Agrobacterium ZX09 salt tolerant strain. In this study, green crosslinked citric acid-salecan hydrogels are explored as novel materials with a high potential for use in regenerative medicine. The impact of salecan and citric acid [...] Read more.
Salecan, a kind of polysaccharide, is produced by the Agrobacterium ZX09 salt tolerant strain. In this study, green crosslinked citric acid-salecan hydrogels are explored as novel materials with a high potential for use in regenerative medicine. The impact of salecan and citric acid on the final crosslinked hydrogels was intensively studied and estimated in terms of the whole physicochemical properties and antimicrobial activity. FTIR spectra demonstrated the successful green crosslinking of salecan through its esterification with citric acid where the formation of strong covalent bonds collaboratively helped to stabilize the entire hydrogel systems in a wet state. Hydrogels presented a microporous morphology, good swelling capacity, pH responsiveness, great mechanical stability under stress conditions and good antibacterial activity, all related to the concentration of the biopolymers used in the synthesis step. Additionally, salecan hydrogels were preliminary investigated as printing inks. Thanks to their excellent rheological behavior, we optimized the citrate-salecan hydrogel inks and printing parameters to render 3D constructs with great printing fidelity and integrity. The novel synthesized salecan green crosslinked hydrogels enriches the family of salecan-derived hydrogels. Moreover, this work not only expands the application of salecan hydrogels in various fields, but also provides a new potential option of designing salecan-based 3D printed scaffolds for customized regenerative medicine. Full article
Show Figures

Figure 1

14 pages, 2956 KiB  
Article
Novel Nanocomposite Hydrogels Based on Crosslinked Microbial Polysaccharide as Potential Bioactive Wound Dressings
by Maria Minodora Marin, Madalina Albu Kaya, Durmus Alpaslan Kaya, Roxana Constantinescu, Bogdan Trica, Ioana Catalina Gifu, Elvira Alexandrescu, Cristina Lavinia Nistor, Rebeca Leu Alexa and Raluca Ianchis
Materials 2023, 16(3), 982; https://doi.org/10.3390/ma16030982 - 20 Jan 2023
Cited by 5 | Viewed by 2493
Abstract
A multitude of dressings have been developed to promote wound repair, such as membranes, foams, hydrocolloids and hydrogels. In this study, a crosslinked polysaccharide hydrogel was mixed with a bioactive ingredient to synthesize a novel nanocomposite material to be used in wound healing. [...] Read more.
A multitude of dressings have been developed to promote wound repair, such as membranes, foams, hydrocolloids and hydrogels. In this study, a crosslinked polysaccharide hydrogel was mixed with a bioactive ingredient to synthesize a novel nanocomposite material to be used in wound healing. Variation of the ratio between hydrogel components was followed and its effect was analyzed in regard to swelling, degradation rate and thermo-mechanical behavior. The resulting crosslinked structures were characterized by FTIR and microscopy analyses. The antimicrobial activity of the crosslinked hydrogels loaded with bioactive agent was evaluated using two bacterial strains (Gram-positive Staphylococcus aureus and Gram-negative bacteria Escherichia Coli). All the results showed that the new synthesized biopolymer nanocomposites have adequate properties to be used as antibacterial wound dressings. Full article
Show Figures

Figure 1

43 pages, 53629 KiB  
Review
Polysaccharide-Based Composite Hydrogels as Sustainable Materials for Removal of Pollutants from Wastewater
by Claudiu-Augustin Ghiorghita, Maria Valentina Dinu, Maria Marinela Lazar and Ecaterina Stela Dragan
Molecules 2022, 27(23), 8574; https://doi.org/10.3390/molecules27238574 - 5 Dec 2022
Cited by 42 | Viewed by 4649
Abstract
Nowadays, pollution has become the main bottleneck towards sustainable technological development due to its detrimental implications in human and ecosystem health. Removal of pollutants from the surrounding environment is a hot research area worldwide; diverse technologies and materials are being continuously developed. To [...] Read more.
Nowadays, pollution has become the main bottleneck towards sustainable technological development due to its detrimental implications in human and ecosystem health. Removal of pollutants from the surrounding environment is a hot research area worldwide; diverse technologies and materials are being continuously developed. To this end, bio-based composite hydrogels as sorbents have received extensive attention in recent years because of advantages such as high adsorptive capacity, controllable mechanical properties, cost effectiveness, and potential for upscaling in continuous flow installations. In this review, we aim to provide an up-to-date analysis of the literature on recent accomplishments in the design of polysaccharide-based composite hydrogels for removal of heavy metal ions, dyes, and oxyanions from wastewater. The correlation between the constituent polysaccharides (chitosan, cellulose, alginate, starch, pectin, pullulan, xanthan, salecan, etc.), engineered composition (presence of other organic and/or inorganic components), and sorption conditions on the removal performance of addressed pollutants will be carefully scrutinized. Particular attention will be paid to the sustainability aspects in the selected studies, particularly to composite selectivity and reusability, as well as to their use in fixed-bed columns and real wastewater applications. Full article
(This article belongs to the Special Issue Exclusive Review Papers in Green Chemistry)
Show Figures

Figure 1

7 pages, 865 KiB  
Communication
Exploring the Rheological and Structural Characteristics of Novel Pectin-Salecan Gels
by Zhiping Fan, Ping Cheng, Lixia Chu and Jun Han
Polymers 2022, 14(21), 4619; https://doi.org/10.3390/polym14214619 - 31 Oct 2022
Cited by 6 | Viewed by 2042
Abstract
The hydrogels based on natural polysaccharide offers high hydrophilicity and excellent biocompatibility while exhibiting soft physical properties related to texture and tissues, making them ideal candidates for food and biomedical applications. Herein, a new gel system composed of pectin and salecan (PS) was [...] Read more.
The hydrogels based on natural polysaccharide offers high hydrophilicity and excellent biocompatibility while exhibiting soft physical properties related to texture and tissues, making them ideal candidates for food and biomedical applications. Herein, a new gel system composed of pectin and salecan (PS) was designed and prepared, and its structural and functional characteristics were further explored by scanning electron microscopy and rheological testing. Data fitting based on Herschel–Bulkley (HB) and Power-Law models enable in-depth comparisons and elucidations of the PS gels’ flow behavior. The cyclic strain time scanning test gave an interesting maximum strain recovery rate of about 70%; meanwhile, the creep data reported an adjustable creep compliance of 0.0146 to 0.1802. The comprehensive analysis of the structure and rheological exploration of the novel pectin-salecan hydrogels demonstrated their potential advantages over pectin and broader applicability in different food or biomedical fields. Full article
Show Figures

Figure 1

15 pages, 8718 KiB  
Article
Preparation and Properties of Salecan–Soy Protein Isolate Composite Hydrogel Induced by Thermal Treatment and Transglutaminase
by Jing Gan, Lirong Sun, Chenxia Guan, Teng Ren, Qinling Zhang, Shihui Pan, Qian Zhang and Hao Chen
Int. J. Mol. Sci. 2022, 23(16), 9383; https://doi.org/10.3390/ijms23169383 - 20 Aug 2022
Cited by 15 | Viewed by 3144
Abstract
Salecan (Sal) is a novel marine microbial polysaccharide. In the present research, Sal and soy protein isolate (SPI) were adopted to fabricate Sal–SPI composite hydrogel based on a stepwise process (thermal treatment and transglutaminase induction). The effect of Sal concentration on morphology, texture [...] Read more.
Salecan (Sal) is a novel marine microbial polysaccharide. In the present research, Sal and soy protein isolate (SPI) were adopted to fabricate Sal–SPI composite hydrogel based on a stepwise process (thermal treatment and transglutaminase induction). The effect of Sal concentration on morphology, texture properties, and the microstructure of the hydrogel was evaluated. As Sal concentration varied from 0.4 to 0.6 wt%, hydrogel elasticity increased from 0.49 to 0.85 mm. Furthermore, the internal network structure of Sal–SPI composite hydrogel also became denser and more uniform as Sal concentration increased. Rheological studies showed that Sal–SPI elastic hydrogel formed under the gelation process. Additionally, FTIR and XRD results demonstrated that hydrogen bonds formed between Sal and SPI molecules, inferring the formation of the interpenetrating network structure. This research supplied a green and simple method to fabricate Sal–SPI double network hydrogels. Full article
(This article belongs to the Special Issue Biopolymers for Enhanced Health Benefits)
Show Figures

Figure 1

14 pages, 15124 KiB  
Article
Synthesis and Rheological Characterization of a Novel Salecan Hydrogel
by Qinling Zhang, Teng Ren, Jing Gan, Lirong Sun, Chenxia Guan, Qian Zhang, Shihui Pan and Hao Chen
Pharmaceutics 2022, 14(7), 1492; https://doi.org/10.3390/pharmaceutics14071492 - 18 Jul 2022
Cited by 15 | Viewed by 2787
Abstract
Salecan (Sal) is a novel microbial polysaccharide. In the present research, thermal treatment was performed to fabricate Sal hydrogel. The effect of Sal concentration on water holding capacity, swelling properties, texture properties, and microstructure of the hydrogels was discussed. It was found that [...] Read more.
Salecan (Sal) is a novel microbial polysaccharide. In the present research, thermal treatment was performed to fabricate Sal hydrogel. The effect of Sal concentration on water holding capacity, swelling properties, texture properties, and microstructure of the hydrogels was discussed. It was found that the equilibrium degree of swelling (EDS) of Sal hydrogels was above 1500%, inferred Sal was a highly hydrophilic polysaccharide. As Sal concentration increased from 3.5 to 8.0 wt%, the hardness increased from 0.88 to 2.07 N and the water hold capability (WHC) increased from 91.3% to 98.2%. Furthermore, the internal network structure of Sal hydrogel also became denser and more uniform. Rheological studies suggested that elastic hydrogel formed under the gelation process. All these results demonstrated that Sal hydrogel prepared by thermal treatment had good gelling properties, which opened up a new safe way for the preparation of Sal hydrogel and broadened the application range of Sal. Full article
Show Figures

Figure 1

20 pages, 6657 KiB  
Article
Salecan-Clay Based Polymer Nanocomposites for Chemotherapeutic Drug Delivery Systems; Characterization and In Vitro Biocompatibility Studies
by Paula Ecaterina Florian, Madalina Icriverzi, Claudia Mihaela Ninciuleanu, Elvira Alexandrescu, Bogdan Trica, Silviu Preda, Raluca Ianchis and Anca Roseanu
Materials 2020, 13(23), 5389; https://doi.org/10.3390/ma13235389 - 27 Nov 2020
Cited by 12 | Viewed by 2584
Abstract
Salecan is a microbial polysaccharide suitable to obtain hydrogel for biomedical applications due to the excellent hydrophilicity and biocompatibility properties. In this work, Salecan of different concentrations was introduced into polymethacrylic acid (PMAA) in the presence of clay to form novel semi synthetic [...] Read more.
Salecan is a microbial polysaccharide suitable to obtain hydrogel for biomedical applications due to the excellent hydrophilicity and biocompatibility properties. In this work, Salecan of different concentrations was introduced into polymethacrylic acid (PMAA) in the presence of clay to form novel semi synthetic hydrogel nanocomposites systems and loaded afterwards with doxorubicin (DOX). The physical–chemical characteristics of the nanocomposites systems and their effect on the viability, and morphology of MDBK (Madin–Darby bovine kidney), HT-29 human colorectal adenocarcinoma and Colo 205 human colon adenocarcinoma cell lines were investigated. DOX release from the nanocomposite systems, cell up-take and subsequent effect on cell proliferation was also analyzed. It was found that Salecan concentration determined the swelling behavior, structural parameters and morphological features of the nanocomposite systems. The hydrogen bonds strongly influenced the formation of PMAA–Salecan–clay systems, each component bringing its own contribution, thus demonstrating the achievement of an advanced crosslinked network and a more compacted hydrogel nanocomposite morphology. All the synthesized nanocomposites had negligible toxicity to normal MDBK cells and chemoresistent HT-29 cell line, whereas in the case of Colo 205 cells a decrease by 40% of the cell viability was obtained for the sample containing the highest amount of Salecan. This effect was correlated with the lowest pore size distribution leading to highest available specific surface area and entrapped amount of DOX which was further released from the nanocomposite sample. Corroborating all the data it can be suggested that the synthesized nanocomposites with Salecan and clay could be good candidates as vehicles for chemotherapeutic agents. Full article
Show Figures

Figure 1

13 pages, 3660 KiB  
Article
β-glucan Salecan Improves Exercise Performance and Displays Anti-Fatigue Effects through Regulating Energy Metabolism and Oxidative Stress in Mice
by Xi Xu, Yijian Ding, Yunxia Yang, Yan Gao, Qi Sun, Junhao Liu, Xiao Yang, Junsong Wang and Jianfa Zhang
Nutrients 2018, 10(7), 858; https://doi.org/10.3390/nu10070858 - 3 Jul 2018
Cited by 59 | Viewed by 6823
Abstract
Fatigue induced by prolonged exercise not only leads to the decrease of exercise capacity, but also might be the cause of many diseases. In consideration of the side effects of pharmacological drugs, dietary supplements seem to be a better choice to ameliorate exercise-induced [...] Read more.
Fatigue induced by prolonged exercise not only leads to the decrease of exercise capacity, but also might be the cause of many diseases. In consideration of the side effects of pharmacological drugs, dietary supplements seem to be a better choice to ameliorate exercise-induced fatigue. The present study aimed to investigate the anti-fatigue effect of Salecan, a novel water-soluble β-glucan, during exercise and explore the underlying mechanisms. Male Institute of Cancer Research (ICR) mice were divided into five groups, including the Rest group and the other four Swim-groups treated with Salecan at 0, 25, 50, and 100 mg/kg/day for four weeks. Salecan treatment markedly increased the exhaustive swimming time of mice in the forced swimming test. Exercise fatigue and injury-related biochemical biomarkers including lactate, blood urea nitrogen (BUN), creatinine kinase (CK), alanine transaminase (ALT), and aspartate transaminase (AST) were ameliorated by Salecan. Salecan reversed the decreased serum glucose levels and glycogen contents caused by exercise. In addition, Salecan improved oxidative stress induced by exercise through regulating Nrf2/HO–1/Trx signaling pathway. Thus, the beneficial effects of Salecan against fatigue may be due to its positive effects on energy metabolism and antioxidation defence. Our results suggest that Salecan could be a novel potential candidate for anti-fatigue dietary supplements. Full article
Show Figures

Figure 1

Back to TopTop