Exploring the Rheological and Structural Characteristics of Novel Pectin-Salecan Gels
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Hydrogel Design and Morphology Observation
3.2. Hydrogels Flow Behavior
3.3. Creep Recovery Analysis
3.4. Cyclic Strain Time Sweep
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, Z.; Cheng, P.; Ling, L.; Han, J. Dynamic bond crosslinked poly(γ-glutamic acid)/Salecan derived hydrogel as a platform for 3D cell culture. Mater. Lett. 2020, 273, 127936. [Google Scholar] [CrossRef]
- Correa, S.; Grosskopf, A.K.; Lopez Hernandez, H.; Chan, D.; Yu, A.C.; Stapleton, L.M.; Appel, E.A. Translational Applications of Hydrogels. Chem. Rev. 2021, 121, 11385–11457. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, L.; Liu, L.; Wu, Z.; Pan, D.; Liu, L. Recent Advances of Stimuli-Responsive Polysaccharide Hydrogels in Delivery Systems: A Review. J. Agric. Food. Chem. 2022, 70, 6300–6316. [Google Scholar] [CrossRef]
- Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 2012, 336, 1124–1128. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Xia, Q.; Liu, L.; Wu, Z.; Pan, D. Recent advances of cereal beta-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application. Crit. Rev. Food Sci. Nutr. 2021, 1–17. [Google Scholar] [CrossRef]
- Yang, D. Recent Advances in Hydrogels. Chem. Mater. 2022, 34, 1987–1989. [Google Scholar] [CrossRef]
- Fan, Z.; Deng, J.; Li, P.Y.; Chery, D.R.; Su, Y.; Zhu, P.; Kambayashi, T.; Blankenhorn, E.P.; Han, L.; Cheng, H. A new class of biological materials: Cell membrane-derived hydrogel scaffolds. Biomaterials 2019, 197, 244–254. [Google Scholar] [CrossRef]
- Chaudhuri, O.; Cooper-White, J.; Janmey, P.A.; Mooney, D.J.; Shenoy, V.B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 2020, 584, 535–546. [Google Scholar] [CrossRef]
- Patole, S.; Cheng, L.; Yang, Z. Impact of incorporations of various polysaccharides on rheological and microstructural characteristics of heat-induced quinoa protein isolate gels. Food Biophys. 2022, 17, 314–323. [Google Scholar] [CrossRef]
- Kongjaroen, A.; Methacanon, P.; Gamonpilas, C. On the assessment of shear and extensional rheology of thickened liquids from commercial gum-based thickeners used in dysphagia management. J. Food Eng. 2022, 316, 110820. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.M.; Yeoh, T.; Shah, J.C. API-polymer interactions in Sepineo P600 based topical gel formulation-impact on rheology. Int. J. Pharm. 2022, 621, 121824. [Google Scholar] [CrossRef]
- Liu, Y.; Weng, P.; Liu, Y.; Wu, Z.; Wang, L.; Liu, L. Citrus pectin research advances: Derived as a biomaterial in the construction and applications of micro/nano-delivery systems. Food Hydrocoll. 2022, 133, 107910. [Google Scholar] [CrossRef]
- Ishwarya, S.P.; Nisha, P. Advances and prospects in the food applications of pectin hydrogels. Crit. Rev. Food Sci. Nutr. 2021, 62, 4393–4417. [Google Scholar] [CrossRef]
- Wan, L.; Yang, Z.; Cai, R.; Pan, S.; Liu, F.; Pan, S. Calcium-induced-gel properties for low methoxyl pectin in the presence of different sugar alcohols. Food Hydrocoll. 2021, 112, 106252. [Google Scholar] [CrossRef]
- Qi, X.; Wu, L.; Su, T.; Zhang, J.; Dong, W. Polysaccharide-based cationic hydrogels for dye adsorption. Colloids Surf. B 2018, 170, 364–372. [Google Scholar] [CrossRef]
- Fan, Z.; Cheng, P.; Yin, G.; Wang, Z.; Han, J. In situ forming oxidized salecan/gelatin injectable hydrogels for vancomycin delivery and 3D cell culture. J. Biomater. Sci. Polym. Ed. 2020, 31, 762–780. [Google Scholar] [CrossRef]
- Qi, X.; Wei, W.; Shen, J.; Dong, W. Salecan polysaccharide-based hydrogels and their applications: A review. J. Mater. Chem. B 2019, 7, 2577–2587. [Google Scholar] [CrossRef]
- Xiu, A.; Zhou, M.; Zhu, B.; Wang, S.; Zhang, J. Rheological properties of Salecan as a new source of thickening agent. Food Hydrocoll. 2011, 25, 1719–1725. [Google Scholar] [CrossRef]
- Fan, Z.; Cheng, P.; Zhang, P.; Zhang, G.; Han, J. Rheological insight of polysaccharide/protein based hydrogels in recent food and biomedical fields: A review. Int. J. Biol. Macromol. 2022. [Google Scholar] [CrossRef]
- Yin, G.; Fan, Z.; Cheng, P.; Ding, Z.; Wang, Z.; Han, J. Research Progress of Natural Polysaccharide Based Drug Delivery Hydrogels. J. Liaocheng Univ. Nat. Sci. Ed. 2021, 34, 83–90. [Google Scholar]
- Yanes, M.; Durán, L.; Costell, E. Effect of hydrocolloid type and concentration on flow behaviour and sensory properties of milk beverages model systems. Food Hydrocoll. 2002, 16, 605–611. [Google Scholar] [CrossRef]
- Fan, Z.; Cheng, P.; Gao, Y.; Wang, D.; Jia, G.; Zhang, P.; Prakash, S.; Wang, Z.; Han, J. Understanding the rheological properties of a novel composite salecan/gellan hydrogels. Food Hydrocoll. 2022, 123, 107162. [Google Scholar] [CrossRef]
- Fan, Z.; Cheng, P.; Prakash, S.; Zhang, P.; Mei, L.; Ji, S.; Wang, Z.; Han, J. Rheological investigation of a versatile salecan/curdlan gel matrix. Int. J. Biol. Macromol. 2021, 193, 2202–2209. [Google Scholar] [CrossRef]
- Fan, Z.; Cheng, P.; Zhang, P.; Gao, Y.; Zhao, Y.; Liu, M.; Gu, J.; Wang, Z.; Han, J. A novel multifunctional Salecan/κ-carrageenan composite hydrogel with anti-freezing properties: Advanced rheology, thermal analysis and model fitting. Int. J. Biol. Macromol. 2022, 208, 1–10. [Google Scholar] [CrossRef]
Sample Label | Power-Law | HB Equation | |||||
---|---|---|---|---|---|---|---|
K | n | R2 | τo | K | n | R2 | |
PSA | 34.297 | 0.239 | 0.999 | 6.063 | 38.742 | 0.226 | 0.999 |
PSB | 36.110 | 0.205 | 0.999 | 9.754 | 54.018 | 0.158 | 0.999 |
PSC | 21.919 | 0.273 | 0.996 | 1.55 | 20.259 | 0.295 | 0.999 |
PSD | 42.621 | 0.257 | 0.999 | 3.527 | 57.085 | 0.207 | 0.999 |
PSE | 46.681 | 0.215 | 0.999 | 9.769 | 76.368 | 0.149 | 0.999 |
PSF | 32.174 | 0.293 | 0.998 | 6.256 | 37.996 | 0.263 | 0.999 |
PSG | 12.549 | 0.371 | 0.997 | 0.705 | 11.8 | 0.385 | 0.999 |
PSH | 15.079 | 0.435 | 0.999 | 0.989 | 15.469 | 0.429 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Cheng, P.; Chu, L.; Han, J. Exploring the Rheological and Structural Characteristics of Novel Pectin-Salecan Gels. Polymers 2022, 14, 4619. https://doi.org/10.3390/polym14214619
Fan Z, Cheng P, Chu L, Han J. Exploring the Rheological and Structural Characteristics of Novel Pectin-Salecan Gels. Polymers. 2022; 14(21):4619. https://doi.org/10.3390/polym14214619
Chicago/Turabian StyleFan, Zhiping, Ping Cheng, Lixia Chu, and Jun Han. 2022. "Exploring the Rheological and Structural Characteristics of Novel Pectin-Salecan Gels" Polymers 14, no. 21: 4619. https://doi.org/10.3390/polym14214619
APA StyleFan, Z., Cheng, P., Chu, L., & Han, J. (2022). Exploring the Rheological and Structural Characteristics of Novel Pectin-Salecan Gels. Polymers, 14(21), 4619. https://doi.org/10.3390/polym14214619