Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = running shoe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1303 KiB  
Article
Spectral and Spatial Analysis of Plantar Force Distributions Across Foot-Strike Patterns During Treadmill Running
by Paul William Macdermid and Stephanie Julie Walker
Appl. Sci. 2025, 15(15), 8709; https://doi.org/10.3390/app15158709 (registering DOI) - 6 Aug 2025
Abstract
Treadmill running gait differs to overland running and is commonly used to evaluate interventions. One challenge is accurately defining strike pattern and related impact kinetics. This study aimed to characterise foot-strike patterns during treadmill running using the spatial distribution of in-shoe plantar forces [...] Read more.
Treadmill running gait differs to overland running and is commonly used to evaluate interventions. One challenge is accurately defining strike pattern and related impact kinetics. This study aimed to characterise foot-strike patterns during treadmill running using the spatial distribution of in-shoe plantar forces and to identify differences in impact kinetics through spectral analysis. Low- and high-frequency power components were analysed in heel, midfoot and forefoot strike patterns. No distinct impact peaks were identified in the force traces; however, significant spatial differences were found. Forefoot strikes exhibited lower peak impact force, average loading rate, and high-frequency power spectral density (PSD) components compared to heel and midfoot strikes, with heel also lower than midfoot. Strike pattern classification was derived from spatial force distribution, where >70% posterior and >50% anterior denote heel and forefoot strikes, while midfoot strikes demonstrate a more balanced distribution with >25% in the central zone. These findings support the integration of spatial, force-based classification with frequency-domain analysis to enhance the evaluation of impact attenuation in treadmill-based running interventions. Full article
Show Figures

Figure 1

14 pages, 689 KiB  
Review
Guidelines for Recommended Footwear for Healthy Children and Adolescents: A Rapid Scoping Review to Characterise the Nature and Extent of Footwear Research and Clinical Policy Guidelines
by Liam Hughes, Mark I. Johnson, Nic Perrem and Peter Francis
Healthcare 2025, 13(13), 1578; https://doi.org/10.3390/healthcare13131578 - 1 Jul 2025
Viewed by 487
Abstract
Background/Objectives: Clinical guidelines for children’s footwear vary widely across governmental and clinical sources, reflecting inconsistencies in best practices for paediatric foot health. These discrepancies arise from differing research interpretations, regional priorities, and clinical expertise. This scoping review evaluates existing guidelines and examines [...] Read more.
Background/Objectives: Clinical guidelines for children’s footwear vary widely across governmental and clinical sources, reflecting inconsistencies in best practices for paediatric foot health. These discrepancies arise from differing research interpretations, regional priorities, and clinical expertise. This scoping review evaluates existing guidelines and examines the evidence supporting them. The objective of this scoping review was to identify and map existing footwear guidelines for healthy children and adolescents across governmental, professional, and clinical sources, and to evaluate the type and strength of evidence underpinning these recommendations. Methods: A systematic search of PubMed, Google Scholar, ScienceDirect, and governmental databases was conducted. Studies on footwear recommendations for healthy children aged 18 months to 18 years were included. Articles published between 1970 and 2024 were considered, as 1970 marked the first mass marketing of running shoes/trainers. Results: Footwear guidelines lack standardisation, with variations in definitions, recommendations, and supporting evidence. Key inconsistencies exist in parameters such as fit, flexibility, and toe allowance, with most recommendations based on expert opinion rather than empirical data. Discrepancies in commercial footwear sizing further complicate proper fit assessment. Conclusions: This is the first comprehensive review of children’s footwear guidelines, integrating governmental, professional body, and clinical recommendations. While there is consensus on the importance of properly fitting shoes, the literature reveals inconsistencies and reliance on expert opinion rather than high-quality research. This review highlights the need for standardised, evidence-based criteria to guide footwear recommendations and serves as a foundation for future research aimed at bridging the gap between research and practice. Full article
(This article belongs to the Special Issue Understanding Foot Health: An Evolutionary Perspective)
Show Figures

Figure 1

13 pages, 4603 KiB  
Article
Verification of Footwear Effects on a Foot Deformation Approach for Estimating Ground Reaction Forces and Moments
by Naoto Haraguchi, Hajime Ohtsu, Bian Yoshimura and Kazunori Hase
Sensors 2025, 25(12), 3705; https://doi.org/10.3390/s25123705 - 13 Jun 2025
Viewed by 465
Abstract
The foot deformation approach (FDA) estimates the ground reaction force (GRF) and moment (GRM) from kinematic data with practical accuracy, low computational cost, and no requirement for training data. Our previous study demonstrated practical estimation accuracy of the FDA under barefoot conditions. However, [...] Read more.
The foot deformation approach (FDA) estimates the ground reaction force (GRF) and moment (GRM) from kinematic data with practical accuracy, low computational cost, and no requirement for training data. Our previous study demonstrated practical estimation accuracy of the FDA under barefoot conditions. However, since the FDA estimates GRFs and GRMs based on foot deformation under body weight, there are concerns about its applicability to footwear conditions, where the foot deformation characteristics differ from those of bare feet. Following the issue, this study conducted a walking experiment at three different speeds with running shoes and sneakers to investigate the impact of footwear on GRF prediction using the FDA. The results showed that the FDA successfully provided practical accuracy when shoes were worn, comparable to that for a barefoot participant. The FDA offers advantages for estimating GRFs and GRMs for the footwear condition, while eliminating the need for collecting training data and enabling rapid analysis and feedback in clinical settings. Although the FDA cannot fully eliminate the effects of footwear and movement speed on prediction accuracy, it has the potential to serve as a convenient biomechanical-based method for estimating GRFs and GRMs during sports and daily activities with footwear. Full article
Show Figures

Figure 1

11 pages, 1245 KiB  
Article
Estimation of 3D Ground Reaction Force and 2D Center of Pressure Using Deep Learning and Load Cells Across Various Gait Conditions
by Junggil Kim, Ki-Cheon Kim, Gyerae Tack and Jin-Seung Choi
Sensors 2025, 25(11), 3357; https://doi.org/10.3390/s25113357 - 26 May 2025
Viewed by 945
Abstract
Traditional force plate-based systems offer high measurement precision but are limited to laboratory settings, restricting their use in real-world environments. To address this, we propose a method for estimating a three-axis ground reaction force (GRF) and two-axis center of pressure (CoP) using a [...] Read more.
Traditional force plate-based systems offer high measurement precision but are limited to laboratory settings, restricting their use in real-world environments. To address this, we propose a method for estimating a three-axis ground reaction force (GRF) and two-axis center of pressure (CoP) using a shoe embedded with three uniaxial load cells. The estimation was conducted under five gait conditions: straight walking, turning, uphill, downhill, and running. Data were collected from 40 healthy young adults. Four deep-learning models—Fully Connected Neural Network (FCNN), Convolutional Neural Network (CNN), Sequence-to-Sequence Long Short-Term Memory (Seq2Seq-LSTM), and Transformer—were evaluated. Among them, Seq2Seq-LSTM and CNN achieved the highest performance in predicting both GRF and CoP. However, the medio-lateral (ML) components showed lower accuracy than the vertical and anterior–posterior directions. In slope conditions, particularly for vertical GRF, relatively higher root mean-square error (RMSE) values were observed. Despite some variation across gait types, predicted values showed high agreement with measurements. Compared with previous studies, the proposed method achieved comparable or better performance with a minimal sensor setup. These findings highlight the feasibility of accurate GRF and CoP estimation in diverse gait scenarios and support the potential for real-world applications. Future work will focus on sensor optimization and broader population validation. Full article
(This article belongs to the Special Issue Wearable Devices for Physical Activity and Healthcare Monitoring)
Show Figures

Figure 1

13 pages, 6089 KiB  
Article
Electromyographic Patterns of Muscle Activation During Running with Different Footwear at Different Speeds in Nulliparous Women: A Secondary Analysis
by María García-Arrabé, Fabien Guerineau, Beatriz Ruiz-Ruiz, Javier López-Ruiz, Mónica García-Mateos and María-José Giménez
Sensors 2025, 25(10), 3016; https://doi.org/10.3390/s25103016 - 10 May 2025
Viewed by 627
Abstract
With the global increase in women’s participation in running, understanding factors like footwear in performance and injury prevention has become essential. Minimalist shoes (MSs) and traditional shoes (TSs) influence muscle activation patterns, affecting running technique. Proper coordination of the core muscles is essential [...] Read more.
With the global increase in women’s participation in running, understanding factors like footwear in performance and injury prevention has become essential. Minimalist shoes (MSs) and traditional shoes (TSs) influence muscle activation patterns, affecting running technique. Proper coordination of the core muscles is essential for efficient stride and posture. This study analyzed muscle activation in nulliparous women running in MSs and TSs at different speeds and explored the correlations with age and BMI. A crossover clinical trial assessed the EMG activation of the lumbar erector (LE), gluteus maximus (GM), pelvic floor, and internal oblique (IO) muscles during treadmill running at 6, 9, and 11 km/h. Fifty-one healthy women (26.55 ± 5.11 years; body mass index (BMI): 21.29 ± 2.07 kg/m2) participated. The protocol included a warm-up, 30 s runs at each speed, and a 5-minute washout between trials. The statistical analyses included Wilcoxon, Friedman, and Spearman’s correlation tests. GM and IO showed the highest activation (p < 0.001) regardless of the footwear or speed. No significant differences were found between MSs and TSs. Weak-to-moderate correlations emerged between BMI and LE muscle activation with MSs, and between BMI and IO with both footwear. Significant correlations were also found with IO activations, but none with PF muscles. The correlations between personal variables, shoe types, and muscle activation suggest that individual and external factors may influence neuromuscular modulation, impacting injury prevention and personalized interventions. Full article
Show Figures

Figure 1

41 pages, 35264 KiB  
Article
A New Method and Set of Parameters for Evaluating the Cushioning Effect of Shoe Heels, Revealing the Inadvertent Design of Running Shoes
by Franz Konstantin Fuss, Tizian Scharl and Niko Nagengast
Bioengineering 2025, 12(5), 467; https://doi.org/10.3390/bioengineering12050467 - 28 Apr 2025
Viewed by 5899
Abstract
According to standards, the heel soles of running shoes are currently tested with an energy absorption of 5 J. This study offers an alternative method to improve the measurement of cushioning properties. The new method uses the ratio of absorbed energy to applied [...] Read more.
According to standards, the heel soles of running shoes are currently tested with an energy absorption of 5 J. This study offers an alternative method to improve the measurement of cushioning properties. The new method uses the ratio of absorbed energy to applied force and determines the maximum of this ratio (optimum or shoulder point) and the associated optimal force, energy, and displacement. This method was applied to 112 shoe models using compression testing. The method was found to be insensitive to strain rates and identified shoes that were over-, well-, or under-designed (running before, at, or after the shoulder point, respectively) relative to the range of the first ground reaction force peak (0.700–2 kN). The optimum ratio was between 0.6 J/kN (barefoot shoes) and 11.2 J/kN (Puma RuleBreaker), the optimal energy was between 0.5 and 40.6 J, the optimal force was between 0.1 and 4.6 kN, and the optimal displacement was between 3 and 23 mm. Participants ran at or near the shoulder point (within the design forgiveness range) unless they were too heavy and ran at their preferred running speed. This study proposes replacing current standards with the new method, allowing consumers to make informed decisions regarding injury prevention while running. Full article
Show Figures

Figure 1

20 pages, 4435 KiB  
Article
Biomechanical Strategies to Improve Running: Cadence, Footwear, and Orthoses—A Quasi-Experimental Study
by Yves Lescure, Marie Adelaide Nicolas, Eleonore Perrin, Enrique Sanchis-Sales, Eva Lopezosa-Reca, Corentin Travouillon and Gabriel Gijon-Nogueron
Sensors 2025, 25(8), 2414; https://doi.org/10.3390/s25082414 - 11 Apr 2025
Viewed by 1459
Abstract
Background: Running-related injuries are often associated with biomechanical inefficiencies, particularly in the sagittal and frontal planes. This study evaluates the effects of three interventions—reduced heel-to-toe drop (HTD) shoes, increased cadence, and inversion foot orthoses—on key kinematic parameters: ankle dorsiflexion, knee flexion, and hip [...] Read more.
Background: Running-related injuries are often associated with biomechanical inefficiencies, particularly in the sagittal and frontal planes. This study evaluates the effects of three interventions—reduced heel-to-toe drop (HTD) shoes, increased cadence, and inversion foot orthoses—on key kinematic parameters: ankle dorsiflexion, knee flexion, and hip adduction (measured at foot strike and at their respective peak joint angles during the stance phase). Methods: Nineteen recreational runners (ten males and nine females; mean ± SD: age 26.4 ± 4.3 years; height 174.2 ± 7.8 cm; weight 68.3 ± 9.6 kg; BMI 22.5 ± 2.1 kg/m2) participated in a 3D motion capture study under five experimental conditions: baseline (10 mm HTD, no cadence adjustment, no foot orthoses), full intervention (5 mm HTD, +10% cadence, orthoses), and three partial interventions: HTD combined with orthoses, HTD combined with increased cadence, and cadence increase alone. Kinematic changes were analyzed for statistical significance. Results: The full intervention significantly increased ankle dorsiflexion at foot strike (from 8.11° to 10.44°; p = 0.005) and reduced peak knee flexion (from 45.43° to 43.07°; p = 0.003). Cadence adjustments consistently produced improvements, while orthoses and HTD alone showed effects on ankle flexion only. Conclusions: Combining structural (HTD and orthoses) and dynamic (cadence) modifications optimizes running biomechanics, providing evidence-based strategies for injury prevention and performance enhancement. Full article
(This article belongs to the Special Issue Sensors for Human Posture and Movement)
Show Figures

Figure 1

12 pages, 2115 KiB  
Article
Longitudinal Bending Stiffness Analysis of Composite Carbon Plates and Shoe Sole, Based on Three-Point Bending Test
by Yangyu Guo, Yunlong Jia, Yusen Wu and Xiaolan Zhu
Appl. Sci. 2025, 15(5), 2785; https://doi.org/10.3390/app15052785 - 5 Mar 2025
Viewed by 1643
Abstract
The forefoot longitudinal bending stiffness of shoe soles, measured through the widely used three-point bending test, is a key factor influencing running economy and lower-limb biomechanics. This study utilizes the finite element method to simulate three-point bending, examining the influence of different loading [...] Read more.
The forefoot longitudinal bending stiffness of shoe soles, measured through the widely used three-point bending test, is a key factor influencing running economy and lower-limb biomechanics. This study utilizes the finite element method to simulate three-point bending, examining the influence of different loading rates on stiffness and analyzing the impact of various plate thicknesses and forefoot curvature radii on the stiffness of plates and the ‘plate-sole’ system. The results indicate that within the same displacement range, varying the loading rates did not affect stiffness. However, increased thickness significantly enhanced both the stiffness of the plate and the ‘plate-sole’, while a larger curvature radius of the plate resulted in a modest 5–10% stiffness increase for both. To conclude, the present study provides a theoretical foundation for further exploring the mechanical properties of carbon plate configurations in footwear. Plate stiffness is affected by both thickness and curvature radius, with thickness having a greater impact. The same applies to the ‘plate-sole’. The stiffness of the ‘plate-sole’ is not a simple sum of the individual contributions from the shoe and the plate. This non-additive response emphasizes the significant role of the shoe material in altering the plate’s mechanical properties, which is an important consideration for optimizing shoe design. Full article
Show Figures

Figure 1

12 pages, 1926 KiB  
Article
The Effects of Cushioning Properties on Parameters of Gait in Habituated Females While Walking and Running
by Paul William Macdermid, Stephanie Julie Walker and Darryl Cochrane
Appl. Sci. 2025, 15(3), 1120; https://doi.org/10.3390/app15031120 - 23 Jan 2025
Cited by 1 | Viewed by 1811
Abstract
The purpose of this study was to compare the mechanical properties of a non-cushioned minimalistic shoe and cushioned shoe during walking at 6 and running at 10 and 14 km∙h−1 in habituated female runners. Twelve habituated female runners completed two trials (cushioned [...] Read more.
The purpose of this study was to compare the mechanical properties of a non-cushioned minimalistic shoe and cushioned shoe during walking at 6 and running at 10 and 14 km∙h−1 in habituated female runners. Twelve habituated female runners completed two trials (cushioned shoe vs. minimalist shoe) with three within-trial speeds (6, 10, and 14 km∙h−1) in a counter-balanced design. Flexible pressure insole sensors were used to determine kinetic variables (peak vertical impact force, average loading rate, active vertical peak force, time to active peak vertical force, and impulse) and spatiotemporal variables (stride duration, cadence, ground contact time, swing time, and time to midstance). Cushioned running shoes exhibited greater energy absorption (690%), recovered energy (920%), and heat dissipation (350%). The cushioned shoes significantly reduced peak vertical impact (~12%) and average loading rate (~11%) at running speeds 10–14 km∙h−1. However, these effects were not observed during walking, nor did the cushioned shoes influence peak active force, impulse, stride duration, ground contact or swing time. Cushioned running shoes provide significant benefits in energy absorption, energy recovery, and heat dissipation, which decrease impact-related forces and loading rates in female runners without changing the spatiotemporal variables of gait. Full article
Show Figures

Figure 1

14 pages, 1347 KiB  
Article
The Impact of Advanced Footwear Technology on the Performance and Running Biomechanics of Mountain Runners
by Pedro Corbí-Santamaría, Marina Gil-Calvo, Alba Herrero-Molleda, Juan García-López, Daniel Boullosa and José Vicente García-Tormo
Appl. Sci. 2025, 15(2), 531; https://doi.org/10.3390/app15020531 - 8 Jan 2025
Cited by 1 | Viewed by 2758
Abstract
In recent years, advanced footwear technology (AFT) has been shown to improve performance in long-distance road running by altering biomechanics and perceived comfort. This type of footwear is now being marketed for mountain running, although its effects in such races remain unevaluated. This [...] Read more.
In recent years, advanced footwear technology (AFT) has been shown to improve performance in long-distance road running by altering biomechanics and perceived comfort. This type of footwear is now being marketed for mountain running, although its effects in such races remain unevaluated. This study aimed to examine the impact of AFT on performance, biomechanics, and perceived comfort during a simulated mountain running event. Twelve trained mountain runners participated in a 3-day experiment, with a 7-day recovery between sessions. On the first day, a maximal aerobic speed test assessed the runners’ performance levels. On the second day, participants familiarized themselves with a 5.19 km mountain circuit and comfort scale. On the third day, they completed two time trials on the same circuit, separated by 30 min of passive recovery, using conventional and AFT shoes in a randomized order. Physiological and biomechanical variables were recorded, including body mass, blood lactate, running biomechanics, vertical stiffness, shoe comfort, and rating of perceived exertion (RPE). The findings indicate that AFT does not improve performance or physiological responses during a simulated mountain race, regardless of segment (uphill, downhill, or mixed). However, AFT significantly alters running biomechanics, reducing step frequency and increasing the vertical oscillation of the center of gravity, especially in uphill and downhill sections. While overall comfort remained unchanged, specific differences were observed with AFT. Coaches and practitioners should consider these findings when using AFT in mountain running training or competition. Full article
(This article belongs to the Special Issue Advances in Sports Training and Biomechanics)
Show Figures

Figure 1

130 pages, 134729 KiB  
Article
Gender Differences in the Dynamics and Kinematics of Running and Their Dependence on Footwear
by Tizian Scharl, Michael Frisch and Franz Konstantin Fuss
Bioengineering 2024, 11(12), 1261; https://doi.org/10.3390/bioengineering11121261 - 12 Dec 2024
Cited by 1 | Viewed by 2083
Abstract
Previous studies on gender differences in running biomechanics have predominantly been limited to joint angles and have not investigated a potential influence of footwear condition. This study shall contribute to closing this gap. Lower body biomechanics of 37 recreational runners (19 f, 18 [...] Read more.
Previous studies on gender differences in running biomechanics have predominantly been limited to joint angles and have not investigated a potential influence of footwear condition. This study shall contribute to closing this gap. Lower body biomechanics of 37 recreational runners (19 f, 18 m) were analysed for eight footwear and two running speed conditions. Presenting the effect size Cliff’s Delta enabled the interpretation of gender differences across a variety of variables and conditions. Known gender differences such as a larger range of hip movement in female runners were confirmed. Further previously undiscovered gender differences in running biomechanics were identified. In women, the knee extensors are less involved in joint work. Instead, compared to men, the supinators contribute more to deceleration and the hip abductors to acceleration. In addition to differences in extent, women also show a temporal delay within certain variables. For the foot, ankle and shank, as well as for the distribution of joint work, gender differences were found to be dependent on footwear condition, while sagittal pelvis and non-sagittal hip and thigh kinematics are rather consistent. On average, smaller gender differences were found for an individual compared to a uniform running speed. Future studies on gender differences should consider the influence of footwear and running speed and should provide an accurate description of the footwear condition used. The findings of this study could be used for the development of gender-specific running shoes and sports and medical products and provide a foundation for the application of smart wearable devices in gender-specific training and rehabilitation. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

15 pages, 2535 KiB  
Article
One Shoe to Fit Them All? Effect of Various Carbon Plate Running Shoes on Running Economy in Male and Female Amateur Triathletes and Runners at Individual Training and Race Paces
by Marlene Riedl, Carlo von Diecken and Olaf Ueberschär
Appl. Sci. 2024, 14(24), 11535; https://doi.org/10.3390/app142411535 - 11 Dec 2024
Cited by 1 | Viewed by 4024
Abstract
Carbon plate running shoes (CPRSs) have gained widespread popularity among elite and amateur runners, representing one of the most substantial changes in running gear over the past decade. Compared to elite runners, however, amateurs run at lower speeds and show more diverse running [...] Read more.
Carbon plate running shoes (CPRSs) have gained widespread popularity among elite and amateur runners, representing one of the most substantial changes in running gear over the past decade. Compared to elite runners, however, amateurs run at lower speeds and show more diverse running styles. This is a meaningful difference as many previous studies on CPRSs focus either on highly trained male runners and higher speeds or only on a single CPRSs manufacturer. The present study aims at bridging this gap by investigating how CPRSs from four different manufacturers affect running economy in amateurs of both sexes at their individual running speeds. For this purpose, 21 trained amateur triathletes (12 men; 9 women) completed an incremental treadmill test until volitional exhaustion, yielding running speeds at ventilatory thresholds 1 (vVT1) and 2 (vVT2). In a second session, subjects ran five trials of 3 × 3 min (speeds of 90% vVT1, ½ (vVT1 + vVT2), and 100% vVT2), wearing one out of four different pairs of CPRSs or their own preferred non-CPRS shoes in each trial. Our results show that tested CPRS models resulted in a significant reduction in the mean energy cost of transport, compared to the non-CPRS control condition, with Cohen’s d amounting to −1.52 (p = 0.016), 2.31 (p < 0.001), 2.57 (p < 0.001), and 2.80 (p < 0.001), respectively, although effect sizes varied substantially between subjects and running speeds. In conclusion, this study provides evidence that amateur athletes may benefit from various manufacturers’ CPRS models at their typical running speeds to a similar degree as highly trained runners. It is recommended that amateur athletes evaluate a range of CPRSs and select the shoe that elicits the least subjective sensation of fatigue over a testing distance of at least 400–1000 m. Full article
Show Figures

Figure 1

11 pages, 1581 KiB  
Article
Do Worn-In Tactical Boots Affect Lower-Extremity Biomechanics During Walking and Running?
by Tanner A. Thorsen, Paul T. Donahue, Shelby A. Peel, Lindsey G. Legg and Scott G. Piland
Biomechanics 2024, 4(4), 773-783; https://doi.org/10.3390/biomechanics4040057 - 4 Dec 2024
Viewed by 1172
Abstract
Background: Much of the research conducted on tactical-style boots has evaluated the biomechanical effect of boots in brand-new condition; however, the extent to which changes due to wear influence lower-extremity biomechanics remains uninvestigated. The purpose of this study was to compare lower-extremity biomechanics [...] Read more.
Background: Much of the research conducted on tactical-style boots has evaluated the biomechanical effect of boots in brand-new condition; however, the extent to which changes due to wear influence lower-extremity biomechanics remains uninvestigated. The purpose of this study was to compare lower-extremity biomechanics with worn-in boots and running shoes during both walking and running. Methods: Lower-extremity biomechanical parameters were evaluated during walking and running in 12 individuals with previous tactical experience. Participants were asked to complete one 5 min bout of walking and running at a self-selected pace in both self-selected athletic shoes and their own worn-in standard-issue tactical boots while lower-extremity spatiotemporal, joint kinematic, kinetic, and ground reaction force data were collected. Differences between conditions were evaluated using the Wilcoxon signed-rank test. Results: Spatiotemporal measures of gait, as well as ankle and hip kinematics, were different between shoes and boots during walking. During running, no spatiotemporal differences existed. However, significant differences were found for the ankle, knee, and hip kinematics between shoe and boot conditions during both walking and running. Conclusions: The worn-in boots in our sample performed similarly to running shoes during both walking and running tasks. Though there were several biomechanical differences between boots and shoes during both tasks, small mean differences suggest that these differences may not be large enough to create substantive or relevant changes in performance. This information could aid in developing future tactical boot design strategies to help aid in lower-extremity injury as well as allowing for optimal performance when wearing boots. Full article
(This article belongs to the Section Sports Biomechanics)
Show Figures

Figure 1

15 pages, 771 KiB  
Review
Harnessing Foot Mechanics: The Role of Lacing Techniques in Enhancing Comfort and Reducing Injury Risk
by Roberto Tedeschi, Federica Giorgi and Danilo Donati
Appl. Sci. 2024, 14(22), 10190; https://doi.org/10.3390/app142210190 - 6 Nov 2024
Cited by 1 | Viewed by 1759
Abstract
Background: Lacing techniques are often viewed as a functional necessity, but recent research has highlighted their role as a customization tool for foot health and comfort. This review synthesizes findings from studies examining the biomechanical effects of different lacing patterns on pressure distribution, [...] Read more.
Background: Lacing techniques are often viewed as a functional necessity, but recent research has highlighted their role as a customization tool for foot health and comfort. This review synthesizes findings from studies examining the biomechanical effects of different lacing patterns on pressure distribution, tendon loading, and foot mechanics. Methods: We analyzed studies that investigated various lacing techniques, including tightness and patterns. Objective measurements, such as pressure insoles and cadaveric models, were used to quantify the effects. Diverse study populations, including individuals with foot health concerns and athletes, were considered. This study was conducted as a scoping review following the JBI methodology, adhering to the PRISMA-ScR guidelines. Results: The studies collectively reveal that lacing patterns significantly influence dorsal pressure distribution during activities like running. Customized lacing can optimize foot biomechanics, reducing the risk of injuries related to abnormal pressure distribution. A total of 27 records were identified from the initial search. After removing duplicates and screening, four articles were included in the final review. Additionally, certain lacing configurations were found to reduce peak Achilles tendon tension, a crucial finding for injury-prone individuals. Conclusions: Proper lacing techniques are not just a functional aspect but a means to enhance foot health and prevent injuries. Healthcare professionals can provide personalized lacing recommendations to patients, with implications for those with specific foot conditions, athletes, and individuals at risk of injuries. The importance of patient education on the significance of lacing techniques cannot be overstated, emphasizing the need for informed choices when lacing shoes. These findings underscore the multifaceted role of lacing techniques in promoting foot health and well-being. Full article
Show Figures

Figure 1

12 pages, 1699 KiB  
Article
Multi-Activity Step Counting Algorithm Using Deep Learning Foot Flat Detection with an IMU Inside the Sole of a Shoe
by Quentin Lucot, Erwan Beurienne and Michel Behr
Sensors 2024, 24(21), 6927; https://doi.org/10.3390/s24216927 - 29 Oct 2024
Viewed by 1570
Abstract
Step counting devices were previously shown to be efficient in a variety of applications such as athletic training or patient’s care programs. Various sensor placements and algorithms were previously experimented, with a best mean absolute percentage error (MAPE) close to 1% in simple [...] Read more.
Step counting devices were previously shown to be efficient in a variety of applications such as athletic training or patient’s care programs. Various sensor placements and algorithms were previously experimented, with a best mean absolute percentage error (MAPE) close to 1% in simple mono-activity walking conditions. In this study, an existing running shoe was first instrumented with an inertial measurement unit (IMU) and used in the context of multi-activity trials, at various speeds, and including several transition phases. A total of 21 participants with diverse profiles (gender, age, BMI, activity style) completed the trial. The data recorded was used to develop a step counting algorithm based on a deep learning approach, and further validated against a k-fold cross validation process. The results revealed that the step counts were highly correlated to gyroscopes and accelerometers norms, and secondarily to vertical acceleration. Reducing input data to only those three vectors showed a very small decrease in the prediction performance. After the fine-tuning of the algorithm, a MAPE of 0.75% was obtained. Our results show that such very high performances can be expected even in multi-activity conditions and with low computational resource needs making this approach suitable for embedded devices. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

Back to TopTop