Estimation of 3D Ground Reaction Force and 2D Center of Pressure Using Deep Learning and Load Cells Across Various Gait Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment
2.2. Shoe with Three Uniaxial Load Cells
2.3. Data Collection and Processing
2.4. Model
2.5. Validation
- Bias: the mean difference between predicted and measured values
- 95% confidence interval (CI) of the bias, indicating the magnitude of systematic error
- Limits of agreement (LoA): the 95% CI of the difference, representing the agreement range between two measurements
- 95% CI of the LoA: the precision or error bounds of the upper- and lower-LoA values
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baker, R.; Esquenazi, A.; Benedetti, M.G.; Desloovere, K. Gait Analysis: Clinical Facts. Eur. J. Phys. Rehabil. Med. 2016, 52, 560. [Google Scholar] [PubMed]
- Perry, J. Gait Analysis. In Slack; CRC Press: Boca Raton, FL, USA, 1992; pp. 19–129. [Google Scholar]
- Fineberg, D.B.; Asselin, P.; Harel, N.Y.; Agranova-Breyter, I.; Kornfeld, S.D.; Bauman, W.A.; Spungen, A.M. Vertical Ground Reaction Force-Based Analysis of Powered Exoskeleton-Assisted Walking in Persons with Motor-Complete Paraplegia. J. Spinal. Cord. Med. 2013, 36, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Muniz, A.M.S.; Liu, H.; Lyons, K.E.; Pahwa, R.; Liu, W.; Nobre, F.F.; Nadal, J. Comparison among Probabilistic Neural Network, Support Vector Machine and Logistic Regression for Evaluating the Effect of Subthalamic Stimulation in Parkinson Disease on Ground Reaction Force during Gait. J. Biomech. 2010, 43, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Alaqtash, M.; Sarkodie-Gyan, T.; Yu, H.; Fuentes, O.; Brower, R.; Abdelgawad, A. Automatic Classification of Pathological Gait Patterns using Ground Reaction Forces and Machine Learning Algorithms. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 453–457. [Google Scholar]
- Huo, F. Limits of Stability and Postural Sway in Young and Older People; National Library of Canada: Ottawa, ON, Canada, 1999. [Google Scholar]
- Ma, J. Associations between Finger Tapping, Gait and Fall Risk with Application to Fall Risk Assessment. arXiv 2021, arXiv:2006.16648. [Google Scholar]
- Kluitenberg, B.; Bredeweg, S.W.; Zijlstra, S.; Zijlstra, W.; Buist, I. Comparison of Vertical Ground Reaction Forces during Overground and Treadmill Running. A Validation Study. BMC Musculoskelet. Disord. 2012, 13, 1–235. [Google Scholar] [CrossRef]
- Brauer, S.G.; Woollacott, M.; Shumway-Cook, A. The Interacting Effects of Cognitive Demand and Recovery of Postural Stability in Balance-Impaired Elderly Persons. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, 489. [Google Scholar] [CrossRef]
- John, C.T.; Seth, A.; Schwartz, M.H.; Delp, S.L. Contributions of Muscles to Mediolateral Ground Reaction Force Over a Range of Walking Speeds. J. Biomech. 2012, 45, 2438–2443. [Google Scholar] [CrossRef]
- Giakas, G.; Baltzopoulos, V. Time and Frequency Domain Analysis of Ground Reaction Forces during Walking: An Investigation of Variability and Symmetry. Gait Posture 1997, 5, 189–197. [Google Scholar] [CrossRef]
- Schöllhorn, W.I.; Nigg, B.M.; Stefanyshyn, D.J.; Liu, W. Identification of Individual Walking Patterns using Time Discrete and Time Continuous Data Sets. Gait Posture 2002, 15, 180–186. [Google Scholar] [CrossRef]
- Foucher, K.C.; Thorp, L.E.; Orozco, D.; Hildebrand, M.; Wimmer, M.A. Differences in Preferred Walking Speeds in a Gait Laboratory Compared with the Real World After Total Hip Replacement. Arch. Phys. Med. Rehabil. 2010, 91, 1390–1395. [Google Scholar] [CrossRef]
- Takayanagi, N.; Sudo, M.; Yamashiro, Y.; Lee, S.; Kobayashi, Y.; Niki, Y.; Shimada, H. Relationship between Daily and in-Laboratory Gait Speed among Healthy Community-Dwelling Older Adults. Sci. Rep. 2019, 9, 3496. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, J.M. Comparing Gait between Outdoors and Inside a Laboratory. Ph.D. Dissertation, Virginia Tech, Blacksburg, VA, USA, 2014. [Google Scholar]
- Kim, I.B.; Park, T.S.; Kang, J.H. Comparison of barefoot and shod gait cycle for adult women. J. Converg. Inf. Technol. 2018, 8, 9–14. [Google Scholar]
- Kim, J.; Kang, H.; Lee, S.; Choi, J.; Tack, G. A Deep Learning Model for 3D Ground Reaction Force Estimation using Shoes with Three Uniaxial Load Cells. Sensors 2023, 23, 3428. [Google Scholar] [CrossRef]
- Honert, E.C.; Hoitz, F.; Blades, S.; Nigg, S.R.; Nigg, B.M. Estimating Running Ground Reaction Forces from Plantar Pressure during Graded Running. Sensors 2022, 22, 3338. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Lee, C.H.; Shim, M.; Han, J.I.; Baek, Y.S. Design of an Artificial Neural Network Algorithm for a Low-Cost Insole Sensor to Estimate the Ground Reaction Force (GRF) and Calibrate the Center of Pressure (CoP). Sensors 2018, 18, 4349. [Google Scholar] [CrossRef]
- Carter, J.; Chen, X.; Cazzola, D.; Trewartha, G.; Preatoni, E. Consumer-Priced Wearable Sensors Combined with Deep Learning can be used to Accurately Predict Ground Reaction Forces during various Treadmill Running Conditions. PeerJ 2024, 12, e17896. [Google Scholar] [CrossRef]
- Eguchi, R.; Takahashi, M. Estimation of Three-Dimensional Ground Reaction Forces during Walking and Turning using Insole Pressure Sensors Based on Gait Pattern Recognition. IEEE Sens. J. 2023, 23, 31278–31286. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Takahashi, Y.; Sasaki, Y. Prediction of three-directional ground reaction forces during walking using a shoe sole sensor system and machine learning. Sensors 2023, 23, 8985. [Google Scholar] [CrossRef]
- Strike, S.C.; Taylor, M.J.D. The Temporal–spatial and Ground Reaction Impulses of Turning Gait: Is Turning Symmetrical? Gait Posture 2009, 29, 597–602. [Google Scholar] [CrossRef]
- Lay, A.N.; Hass, C.J.; Smith, D.W.; Gregor, R.J. Characterization of a System for Studying Human Gait during Slope Walking. J. Appl. Biomech. 2005, 21, 153–166. [Google Scholar] [CrossRef]
- Keller, T.S.; Weisberger, A.M.; Ray, J.L.; Hasan, S.S.; Shiavi, R.G.; Spengler, D.M. Relationship between Vertical Ground Reaction Force and Speed during Walking, Slow Jogging, and Running. Clin. Biomech. 1996, 11, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Zeni, J.A.; Richards, J.G.; Higginson, J.S. Two Simple Methods for Determining Gait Events during Treadmill and Overground Walking using Kinematic Data. Gait Posture 2008, 27, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Jafarnezhadgero, A.; Fatollahi, A.; Amirzadeh, N.; Siahkouhian, M.; Granacher, U. Ground Reaction Forces and Muscle Activity while Walking on Sand Versus Stable Ground in Individuals with Pronated Feet Compared with Healthy Controls. PLoS ONE 2019, 14, e0223219. [Google Scholar] [CrossRef] [PubMed]
- Oubre, B.; Lane, S.; Holmes, S.; Boyer, K.; Lee, S.I. Estimating Ground Reaction Force and Center of Pressure using Low-Cost Wearable Devices. IEEE Trans. Biomed. Eng. 2022, 69, 1461–1468. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Baum, B.S.; Hobara, H.; Kim, Y.H.; Shim, J.K. Amputee Locomotion: Ground Reaction Forces during Submaximal Running with Running-Specific Prostheses. J. Appl. Biomech. 2016, 32, 287–294. [Google Scholar] [CrossRef]
- Cavanagh, P.R.; Lafortune, M.A. Ground Reaction Forces in Distance Running. J. Biomech. 1980, 13, 397–406. [Google Scholar] [CrossRef]
- Mündermann, L.; Corazza, S.; Andriacchi, T.P. The Evolution of Methods for the Capture of Human Movement Leading to Markerless Motion Capture for Biomechanical Applications. J. Neuroeng. Rehabil. 2006, 3, 6. [Google Scholar] [CrossRef]
- Lay, A.N.; Hass, C.J.; Gregor, R.J. The Effects of Sloped Surfaces on Locomotion: A Kinematic and Kinetic Analysis. J. Biomech. 2006, 39, 1621–1628. [Google Scholar] [CrossRef]
- Pellegrini, B.; Peyré-Tartaruga, L.A.; Zoppirolli, C.; Bortolan, L.; Bacchi, E.; Figard-Fabre, H.; Schena, F. Exploring Muscle Activation during Nordic Walking: A Comparison between Conventional and Uphill Walking. PLoS ONE 2015, 10, e0138906. [Google Scholar] [CrossRef]
- Damavandi, M.; Dixon, P.C.; Pearsall, D.J. Ground Reaction Force Adaptations during Cross-Slope Walking and Running. Hum. Mov. Sci. 2012, 31, 182–189. [Google Scholar] [CrossRef]
- Kammoun, A.; Ravier, P.; Buttelli, O. Comparison of the Accuracy of Ground Reaction Force Component Estimation between Supervised Machine Learning and Deep Learning Methods using Pressure Insoles. Sensors 2024, 24, 5318. [Google Scholar] [CrossRef]
Age | Height | Weight | Dominant Foot (R/L) | Foot Size | Gender (M/F) |
---|---|---|---|---|---|
24.56 ± 2.47 | 169.32 ± 8.83 | 71.64 ± 16.79 | 41/2 | 256.28 ± 19.03 | 29/14 |
Trial | Straight | Turn | Run | Slope (Up) | Slope (Down) |
---|---|---|---|---|---|
Max Vertical GRF (N) | 757.70 ± 198.15 | 719.18 ± 165.77 | 1417.57 ± 295.94 | 792.9 ± 204.45 | 878.95 ± 258.59 |
p (With Normal) | - | 0.053 | 0 * | 0.15 | 0 * |
Threshold (N) | 20 | 20 | 37.42 | 20 | 23.2 |
Trial | Straight | Turn | Run | Slope (Up) | Slope (Down) |
---|---|---|---|---|---|
n of data | 126 | 228 | 196 | 151 | 118 |
Trial | Straight | Turn | Run | Slope (up) | Slope (down) | |||||
---|---|---|---|---|---|---|---|---|---|---|
GRF | CoP | GRF | CoP | GRF | CoP | GRF | CoP | GRF | CoP | |
Method | Seq2Seq | Seq2Seq | CNN | Seq2Seq | Seq2Seq | Seq2Seq | Seq2Seq | Seq2Seq | CNN | CNN |
Layers | 4 | 4 | 2 | 3 | 4 | 2 | 4 | 1 | 4 | 2 |
Initial Units | 100 | 200 | 4 | 100 | 100 | 200 | 100 | 100 | 32 | 4 |
LR | 0.01 | 0.001 | 0.001 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.1 |
ML Correlation | 0.88 | 0.86 | 0.80 | 0.65 | 0.67 | 0.51 | 0.91 | 0.22 | 0.76 | 0.33 |
AP Correlation | 0.99 | 0.99 | 0.98 | 0.99 | 0.90 | 0.79 | 0.93 | 0.93 | 0.89 | 0.76 |
Vertical Correlation | 0.99 | - | 0.98 | - | 0.98 | - | 0.94 | - | 0.91 | - |
ML RMSE (NRMSE) | 11.23 (22.57) | 5.64 (15.18) | 24.32 (30.32) | 7.16 (15.00) | 33.24 (37.67) | 6.27 (14.05) | 35.48 (33.99) | 10.52 (13.71) | 17.12 (29.32) | 8.95 (24.31) |
AP RMSE (NRMSE) | 11.55 (6.73) | 10.12 (4.00) | 18.10 (9.60) | 8.48 (3.57) | 48.90 (19.29) | 10.04 (10.53) | 36.44 (16.51) | 17.33 (10.43) | 31.99 (15.46) | 18.22 (11.31) |
Vertical RMSE (NRMSE) | 99.77 (12.22) | - | 73.92 (9.57) | - | 181.47 (12.42) | - | 351.12 (30.38) | - | 179.53 (20.02) | - |
GRF | CoP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LLoA, ULoA(N) | LoA 95% CI (N) | Mean Difference 95% CI (N) | LLoA, ULoA (N) | LoA 95% CI (N) | Mean Difference 95% CI (N) | ||||||||
Straight | ML | −24.51 | 18.85 | −26.68 | 21.02 | −5.00 | −0.66 | −21.07 | 17.27 | −22.98 | 19.18 | −3.82 | 0.02 |
AP | −24.27 | 25.94 | −26.78 | 28.45 | −1.68 | 3.34 | −24.43 | 23.46 | −26.82 | 25.85 | −2.88 | 1.91 | |
Vertical | −172.09 | 249.48 | −193.17 | 270.56 | 17.62 | 59.77 | |||||||
Turn | ML | −62.05 | 37.33 | −67.02 | 42.3 | −17.33 | −7.39 | −25.72 | 25.33 | −28.28 | 27.88 | −2.75 | 2.36 |
AP | −41.64 | 30.94 | −45.27 | 34.56 | −8.98 | −1.72 | −23.7 | 22.79 | −26.02 | 25.12 | −2.78 | 1.87 | |
Vertical | −114.07 | 195.23 | −129.54 | 210.7 | 25.11 | 56.04 | |||||||
Run | ML | −61.11 | 83.14 | −68.32 | 90.35 | 3.80 | 18.23 | −25.78 | 28.08 | −28.47 | 30.77 | −1.54 | 3.84 |
AP | −816.54 | 81.94 | −861.46 | 126.86 | −412.22 | −322.38 | −21.95 | 25.57 | −24.33 | 27.94 | −0.57 | 4.18 | |
Vertical | −227.19 | 1037.9 | −290.44 | 1101.16 | 342.1 | 468.61 | |||||||
Slope (Up) | ML | −84.51 | 21.45 | −89.81 | 26.75 | −36.83 | −26.23 | −38.69 | 50.2 | −43.13 | 54.64 | 1.31 | 10.2 |
AP | −59.56 | 75.54 | −66.31 | 82.3 | 1.24 | 14.75 | −49.5 | 56.3 | −54.79 | 61.59 | −1.89 | 8.69 | |
Vertical | −175.02 | 768.67 | −222.21 | 815.86 | 249.64 | 344.01 | |||||||
Slope (Down) | ML | −35.18 | 39.05 | −38.9 | 42.76 | −1.78 | 5.64 | −40.03 | 47.3 | −44.39 | 51.66 | −0.73 | 8 |
AP | −66.14 | 50.41 | −71.96 | 56.24 | −13.69 | −2.04 | −42.42 | 45.99 | −46.84 | 50.41 | −2.63 | 6.21 | |
Vertical | −211.32 | 378.17 | −240.8 | 407.65 | 53.95 | 112.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, K.-C.; Tack, G.; Choi, J.-S. Estimation of 3D Ground Reaction Force and 2D Center of Pressure Using Deep Learning and Load Cells Across Various Gait Conditions. Sensors 2025, 25, 3357. https://doi.org/10.3390/s25113357
Kim J, Kim K-C, Tack G, Choi J-S. Estimation of 3D Ground Reaction Force and 2D Center of Pressure Using Deep Learning and Load Cells Across Various Gait Conditions. Sensors. 2025; 25(11):3357. https://doi.org/10.3390/s25113357
Chicago/Turabian StyleKim, Junggil, Ki-Cheon Kim, Gyerae Tack, and Jin-Seung Choi. 2025. "Estimation of 3D Ground Reaction Force and 2D Center of Pressure Using Deep Learning and Load Cells Across Various Gait Conditions" Sensors 25, no. 11: 3357. https://doi.org/10.3390/s25113357
APA StyleKim, J., Kim, K.-C., Tack, G., & Choi, J.-S. (2025). Estimation of 3D Ground Reaction Force and 2D Center of Pressure Using Deep Learning and Load Cells Across Various Gait Conditions. Sensors, 25(11), 3357. https://doi.org/10.3390/s25113357