Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = roadway characteristic index (RCI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 16455 KiB  
Article
Automated Detection of Pedestrian and Bicycle Lanes from High-Resolution Aerial Images by Integrating Image Processing and Artificial Intelligence (AI) Techniques
by Richard Boadu Antwi, Prince Lartey Lawson, Michael Kimollo, Eren Erman Ozguven, Ren Moses, Maxim A. Dulebenets and Thobias Sando
ISPRS Int. J. Geo-Inf. 2025, 14(4), 135; https://doi.org/10.3390/ijgi14040135 - 23 Mar 2025
Viewed by 1061
Abstract
The rapid advancement of computer vision technology is transforming how transportation agencies collect roadway characteristics inventory (RCI) data, yielding substantial savings in resources and time. Traditionally, capturing roadway data through image processing was seen as both difficult and error-prone. However, considering the recent [...] Read more.
The rapid advancement of computer vision technology is transforming how transportation agencies collect roadway characteristics inventory (RCI) data, yielding substantial savings in resources and time. Traditionally, capturing roadway data through image processing was seen as both difficult and error-prone. However, considering the recent improvements in computational power and image recognition techniques, there are now reliable methods to identify and map various roadway elements from multiple imagery sources. Notably, comprehensive geospatial data for pedestrian and bicycle lanes are still lacking across many state and local roadways, including those in the State of Florida, despite the essential role this information plays in optimizing traffic efficiency and reducing crashes. Developing fast, efficient methods to gather this data are essential for transportation agencies as they also support objectives like identifying outdated or obscured markings, analyzing pedestrian and bicycle lane placements relative to crosswalks, turning lanes, and school zones, and assessing crash patterns in the associated areas. This study introduces an innovative approach using deep neural network models in image processing and computer vision to detect and extract pedestrian and bicycle lane features from very high-resolution aerial imagery, with a focus on public roadways in Florida. Using YOLOv5 and MTRE-based deep learning models, this study extracts and segments bicycle and pedestrian features from high-resolution aerial images, creating a geospatial inventory of these roadway features. Detected features were post-processed and compared with ground truth data to evaluate performance. When tested against ground truth data from Leon County, Florida, the models demonstrated accuracy rates of 73% for pedestrian lanes and 89% for bicycle lanes. This initiative is vital for transportation agencies, enhancing infrastructure management by enabling timely identification of aging or obscured lane markings, which are crucial for maintaining safe transportation networks. Full article
(This article belongs to the Special Issue Spatial Information for Improved Living Spaces)
Show Figures

Figure 1

27 pages, 12958 KiB  
Article
Turning Features Detection from Aerial Images: Model Development and Application on Florida’s Public Roadways
by Richard Boadu Antwi, Michael Kimollo, Samuel Yaw Takyi, Eren Erman Ozguven, Thobias Sando, Ren Moses and Maxim A. Dulebenets
Smart Cities 2024, 7(3), 1414-1440; https://doi.org/10.3390/smartcities7030059 - 13 Jun 2024
Cited by 4 | Viewed by 2231
Abstract
Advancements in computer vision are rapidly revolutionizing the way traffic agencies gather roadway geometry data, leading to significant savings in both time and money. Utilizing aerial and satellite imagery for data collection proves to be more cost-effective, more accurate, and safer compared to [...] Read more.
Advancements in computer vision are rapidly revolutionizing the way traffic agencies gather roadway geometry data, leading to significant savings in both time and money. Utilizing aerial and satellite imagery for data collection proves to be more cost-effective, more accurate, and safer compared to traditional field observations, considering factors such as equipment cost, crew safety, and data collection efficiency. Consequently, there is a pressing need to develop more efficient methodologies for promptly, safely, and economically acquiring roadway geometry data. While image processing has previously been regarded as a time-consuming and error-prone approach for capturing these data, recent developments in computing power and image recognition techniques have opened up new avenues for accurately detecting and mapping various roadway features from a wide range of imagery data sources. This research introduces a novel approach combining image processing with a YOLO-based methodology to detect turning lane pavement markings from high-resolution aerial images, specifically focusing on Florida’s public roadways. Upon comparison with ground truth data from Leon County, Florida, the developed model achieved an average accuracy of 87% at a 25% confidence threshold for detected features. Implementation of the model in Leon County identified approximately 3026 left turn, 1210 right turn, and 200 center lane features automatically. This methodology holds paramount significance for transportation agencies in facilitating tasks such as identifying deteriorated markings, comparing turning lane positions with other roadway features like crosswalks, and analyzing intersection-related accidents. The extracted roadway geometry data can also be seamlessly integrated with crash and traffic data, providing crucial insights for policymakers and road users. Full article
Show Figures

Graphical abstract

Back to TopTop