Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = road surveillance system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 917 KiB  
Systematic Review
Publish/Subscribe-Middleware-Based Intelligent Transportation Systems: Applications and Challenges
by Basem Almadani, Ekhlas Hashem, Raneem R. Attar, Farouq Aliyu and Esam Al-Nahari
Appl. Sci. 2025, 15(12), 6449; https://doi.org/10.3390/app15126449 - 8 Jun 2025
Viewed by 588
Abstract
Countries are embracing intelligent transportation systems (ITSs), the application of information and communication technologies to transportation, to address growing challenges in urban mobility, congestion, safety, and sustainability. Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) is a notable ITS framework comprising Enterprise, Functional, [...] Read more.
Countries are embracing intelligent transportation systems (ITSs), the application of information and communication technologies to transportation, to address growing challenges in urban mobility, congestion, safety, and sustainability. Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) is a notable ITS framework comprising Enterprise, Functional, Physical, and Communications Views (or layers). This review focuses on the Communications View, examining how publish/subscribe middleware enhances ITS through the communication layer. It identified application areas across ITS infrastructure, transportation modes, and communication technologies, and highlights key challenges. In the infrastructure domain, publish/subscribe middleware enhances responsiveness and real-time processing in systems such as traffic surveillance, VANETs, and road sensor networks, especially when replacing legacy infrastructure is cost-prohibitive. Moreover, the middleware supports scalable, low-latency communication in land, air, and marine modes, enabling public transport coordination, cooperative driving, and UAV integration. At the communications layer, publish/subscribe systems facilitate interoperable, delay-tolerant data dissemination over heterogeneous platforms, including 4G/5G, ICN, and peer-to-peer networks. However, integrating publish/subscribe middleware in ITS has several challenges, including privacy risks, real-time data constraints, fault tolerance, bandwidth limitations, and security vulnerabilities. This paper provides a domain-informed foundation for researchers and practitioners developing resilient, scalable, and interoperable communication systems in next-generation ITSs. Full article
Show Figures

Figure 1

24 pages, 822 KiB  
Article
Survey on Image-Based Vehicle Detection Methods
by Mortda A. A. Adam and Jules R. Tapamo
World Electr. Veh. J. 2025, 16(6), 303; https://doi.org/10.3390/wevj16060303 - 29 May 2025
Viewed by 857
Abstract
Vehicle detection is essential for real-world applications such as road surveillance, intelligent transportation systems, and autonomous driving, where high accuracy and real-time performance are critical. However, achieving robust detection remains challenging due to scene complexity, occlusion, scale variation, and varying lighting conditions. Over [...] Read more.
Vehicle detection is essential for real-world applications such as road surveillance, intelligent transportation systems, and autonomous driving, where high accuracy and real-time performance are critical. However, achieving robust detection remains challenging due to scene complexity, occlusion, scale variation, and varying lighting conditions. Over the past two decades, numerous studies have been proposed to address these issues. This study presents a comprehensive and structured survey of image-based vehicle detection methods, systematically comparing classical machine learning techniques based on handcrafted features with modern deep learning approaches. Deep learning methods are categorized into one-stage detectors (e.g., YOLO, SSD, FCOS, CenterNet), two-stage detectors (e.g., Faster R-CNN, Mask R-CNN), transformer-based detectors (e.g., DETR, Swin Transformer), and GAN-based methods, highlighting architectural trade-offs concerning speed, accuracy, and practical deployment. We analyze widely adopted performance metrics from recent studies, evaluate characteristics and limitations of popular vehicle detection datasets, and explicitly discuss technical challenges, including domain generalization, environmental variability, computational constraints, and annotation quality. The survey concludes by clearly identifying open research challenges and promising future directions, such as efficient edge deployment strategies, multimodal data fusion, transformer-based enhancements, and integration with Vehicle-to-Everything (V2X) communication systems. Full article
(This article belongs to the Special Issue Vehicle Safe Motion in Mixed Vehicle Technologies Environment)
Show Figures

Figure 1

10 pages, 2080 KiB  
Proceeding Paper
Tunnel Traffic Enforcement Using Visual Computing and Field-Programmable Gate Array-Based Vehicle Detection and Tracking
by Yi-Chen Lin and Rey-Sern Lin
Eng. Proc. 2025, 92(1), 30; https://doi.org/10.3390/engproc2025092030 - 25 Apr 2025
Viewed by 280
Abstract
Tunnels are commonly found in small and enclosed environments on highways, roads, or city streets. They are constructed to pass through mountains or beneath crowded urban areas. To prevent accidents in these confined environments, lane changes, slow driving, or speeding are prohibited on [...] Read more.
Tunnels are commonly found in small and enclosed environments on highways, roads, or city streets. They are constructed to pass through mountains or beneath crowded urban areas. To prevent accidents in these confined environments, lane changes, slow driving, or speeding are prohibited on single- or multi-lane one-way roads. We developed a foreground detection algorithm based on the K-nearest neighbor (KNN) and Gaussian mixture model and 400 collected images. The KNN was used to gather the first 200 image data, which were processed to remove differences and estimate a high-quality background. Once the background was obtained, new images were extracted without the background image to extract the vehicle’s foreground. The background image was processed using Canny edge detection and the Hough transform to calculate road lines. At the same time, the oriented FAST and rotated BRIEF (ORB) algorithm was employed to track vehicles in the foreground image and determine positions and lane deviations. This method enables the calculation of traffic flow and abnormal movements. We accelerated image processing using xfOpenCV on the PYNQ-Z2 and FPGA Xilinx platforms. The developed algorithm does not require pre-labeled training models and can be used during the daytime to automatically collect the required footage. For real-time monitoring, the proposed algorithm increases the computation speed ten times compared with YOLO-v2-tiny. Additionally, it uses less than 1% of YOLO’s storage space. The proposed algorithm operates stably on the PYNQ-Z2 platform with existing surveillance cameras, without additional hardware setup. These advantages make the system more appropriate for smart traffic management than the existing framework. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

20 pages, 26851 KiB  
Article
Precise Position Estimation of Road Users by Extracting Object-Specific Key Points for Embedded Edge Cameras
by Gahyun Kim, Ju Hee Yoo, Ho Gi Jung and Jae Kyu Suhr
Electronics 2025, 14(7), 1291; https://doi.org/10.3390/electronics14071291 - 25 Mar 2025
Viewed by 572
Abstract
Detecting road users and estimating accurate positions are significant in intelligent transportation systems (ITS). Most monocular camera-based systems for this purpose use 2D bounding box detectors to obtain real-time operability. However, this approach has the drawback of causing large positioning errors due to [...] Read more.
Detecting road users and estimating accurate positions are significant in intelligent transportation systems (ITS). Most monocular camera-based systems for this purpose use 2D bounding box detectors to obtain real-time operability. However, this approach has the drawback of causing large positioning errors due to the use of upright rectangles for every type of object. To overcome this shortcoming, this paper proposes a method that improves the positioning accuracy of road users by modifying a conventional 2D bounding box detector to extract one or two additional object-specific key points. Since these key points are where the road users contact the ground plane, their accurate positions can be estimated based on the relation between the ground plane on the image and that on the map. The proposed method handles four types of road users: cars, pedestrians, cyclists (including motorcyclists), and e-scooter riders. This method is easy to implement by only adding extra heads to the conventional object detector and improves the positioning accuracy with a negligible amount of additional computational cost. In experiments, the proposed method was evaluated under various practical situations and showed a 66.5% improvement in road user position estimation. Furthermore, this method was simplified based on channel pruning and embedded on the edge camera with a Qualcomm QCS 610 System on Chip (SoC) to show its real-time capability. Full article
Show Figures

Figure 1

31 pages, 6157 KiB  
Article
A Self-Adaptive Traffic Signal System Integrating Real-Time Vehicle Detection and License Plate Recognition for Enhanced Traffic Management
by Manar Ashkanani, Alanoud AlAjmi, Aeshah Alhayyan, Zahraa Esmael, Mariam AlBedaiwi and Muhammad Nadeem
Inventions 2025, 10(1), 14; https://doi.org/10.3390/inventions10010014 - 5 Feb 2025
Cited by 4 | Viewed by 5232
Abstract
Traffic management systems play a crucial role in smart cities, especially because increasing urban populations lead to higher traffic volumes on roads. This results in increased congestion at intersections, causing delays and traffic violations. This paper proposes an adaptive traffic control and optimization [...] Read more.
Traffic management systems play a crucial role in smart cities, especially because increasing urban populations lead to higher traffic volumes on roads. This results in increased congestion at intersections, causing delays and traffic violations. This paper proposes an adaptive traffic control and optimization system that dynamically adjusts signal timings in response to real-time traffic situations and volumes by applying machine learning algorithms to images captured through video surveillance cameras. This system is also able to capture the details of vehicles violating signals, which would be helpful for enforcing traffic rules. Benefiting from advancements in computer vision techniques, we deployed a novel real-time object detection model called YOLOv11 in order to detect vehicles and adjust the duration of green signals. Our system used Tesseract OCR for extracting license plate information, thus ensuring robust traffic monitoring and enforcement. A web-based real-time digital twin complemented the system by visualizing traffic volume and signal timings for the monitoring and optimization of traffic flow. Experimental results demonstrated that YOLOv11 achieved a better overall accuracy, namely 95.1%, and efficiency compared to previous models. The proposed solution reduces congestion and improves traffic flow across intersections while offering a scalable and cost-effective approach for smart traffic and lowering greenhouse gas emissions at the same time. Full article
Show Figures

Figure 1

24 pages, 13165 KiB  
Article
Deep BiLSTM Attention Model for Spatial and Temporal Anomaly Detection in Video Surveillance
by Sarfaraz Natha, Fareed Ahmed, Mohammad Siraj, Mehwish Lagari, Majid Altamimi and Asghar Ali Chandio
Sensors 2025, 25(1), 251; https://doi.org/10.3390/s25010251 - 4 Jan 2025
Cited by 9 | Viewed by 2862
Abstract
Detection of anomalies in video surveillance plays a key role in ensuring the safety and security of public spaces. The number of surveillance cameras is growing, making it harder to monitor them manually. So, automated systems are needed. This change increases the demand [...] Read more.
Detection of anomalies in video surveillance plays a key role in ensuring the safety and security of public spaces. The number of surveillance cameras is growing, making it harder to monitor them manually. So, automated systems are needed. This change increases the demand for automated systems that detect abnormal events or anomalies, such as road accidents, fighting, snatching, car fires, and explosions in real-time. These systems improve detection accuracy, minimize human error, and make security operations more efficient. In this study, we proposed the Composite Recurrent Bi-Attention (CRBA) model for detecting anomalies in surveillance videos. The CRBA model combines DenseNet201 for robust spatial feature extraction with BiLSTM networks that capture temporal dependencies across video frames. A multi-attention mechanism was also incorporated to direct the model’s focus to critical spatiotemporal regions. This improves the system’s ability to distinguish between normal and abnormal behaviors. By integrating these methodologies, the CRBA model improves the detection and classification of anomalies in surveillance videos, effectively addressing both spatial and temporal challenges. Experimental assessments demonstrate that the CRBA model achieves high accuracy on both the University of Central Florida (UCF) and the newly developed Road Anomaly Dataset (RAD). This model enhances detection accuracy while also improving resource efficiency and minimizing response times in critical situations. These advantages make it an invaluable tool for public safety and security operations, where rapid and accurate responses are needed for maintaining safety. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

19 pages, 5032 KiB  
Article
Heuristic Optimal Scheduling for Road Traffic Incident Detection Under Computational Constraints
by Hao Wu, Jiahao Yang, Ming-Dong Yuan and Xin Li
Sensors 2024, 24(22), 7221; https://doi.org/10.3390/s24227221 - 12 Nov 2024
Cited by 2 | Viewed by 1050
Abstract
The intelligent monitoring of road surveillance videos is a crucial tool for detecting and predicting traffic anomalies, swiftly identifying road safety risks, rapidly addressing potential hazards, and preventing accidents or secondary incidents. With the vast number of surveillance cameras in operation, conducting traditional [...] Read more.
The intelligent monitoring of road surveillance videos is a crucial tool for detecting and predicting traffic anomalies, swiftly identifying road safety risks, rapidly addressing potential hazards, and preventing accidents or secondary incidents. With the vast number of surveillance cameras in operation, conducting traditional real-time video analysis across all cameras at once requires substantial computational resources. Alternatively, methods that employ periodic camera patrol analysis frequently overlook a significant number of anomalous traffic events, thereby hindering the effectiveness of traffic event detection. To overcome these challenges, this paper introduces a heuristic optimal scheduling approach designed to enhance traffic event detection efficiency while operating within limited computational resources. This method leverages historical data and prior knowledge to compute a weighted event feature value for each camera, providing a quantitative measure of its detection efficiency. To optimize resource allocation, a cyclic elimination mechanism is implemented to exclude low-performing cameras, enabling the dynamic reallocation of resources to higher-performing cameras, thereby enhancing overall detection performance. Finally, the effectiveness of the proposed method is validated through a case study conducted in a representative region of a major metropolitan city in China. The results revealed a substantial improvement in traffic event detection efficiency, with increases of 40%, 28%, 17%, and 28% across different time periods when compared to the pre-optimized state. Furthermore, the proposed method outperformed existing resource scheduling algorithms in terms of average load degree, load balance degree, and higher computational resource utilization. By avoiding the common issues of resource wastage and insufficiency often found in static allocation models, this approach offers greater flexibility and adaptability in computational resource scheduling, thereby effectively addressing the practical demands of traffic anomaly detection and early warning systems. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

46 pages, 3164 KiB  
Review
Evaluation of Green Strategies for Prolonging the Lifespan of Linear Wireless Sensor Networks
by Valery Nkemeni, Fabien Mieyeville, Godlove Suila Kuaban, Piotr Czekalski, Krzysztof Tokarz, Wirnkar Basil Nsanyuy, Eric Michel Deussom Djomadji, Musong L. Katche, Pierre Tsafack and Bartłomiej Zieliński
Sensors 2024, 24(21), 7024; https://doi.org/10.3390/s24217024 - 31 Oct 2024
Cited by 6 | Viewed by 1550
Abstract
Battery-powered sensor nodes encounter substantial energy constraints, especially in linear wireless sensor network (LWSN) applications like border surveillance and road, bridge, railway, powerline, and pipeline monitoring, where inaccessible locations exacerbate battery replacement challenges. Addressing these issues is crucial for extending a network’s lifetime [...] Read more.
Battery-powered sensor nodes encounter substantial energy constraints, especially in linear wireless sensor network (LWSN) applications like border surveillance and road, bridge, railway, powerline, and pipeline monitoring, where inaccessible locations exacerbate battery replacement challenges. Addressing these issues is crucial for extending a network’s lifetime and reducing operational costs. This paper presents a comprehensive analysis of the factors affecting WSN energy consumption at the node and network levels, alongside effective energy management strategies for prolonging the WSN’s lifetime. By categorizing existing strategies into node energy reduction, network energy balancing, and energy replenishment, this study assesses their effectiveness when implemented in LWSN applications, providing valuable insights to assist engineers during the design of green and energy-efficient LWSN monitoring systems. Full article
(This article belongs to the Special Issue Energy Harvesting in Environmental Wireless Sensor Networks)
Show Figures

Figure 1

16 pages, 3506 KiB  
Article
HADNet: A Novel Lightweight Approach for Abnormal Sound Detection on Highway Based on 1D Convolutional Neural Network and Multi-Head Self-Attention Mechanism
by Cong Liang, Qian Chen, Qiran Li, Qingnan Wang, Kang Zhao, Jihui Tu and Ammar Jafaripournimchahi
Electronics 2024, 13(21), 4229; https://doi.org/10.3390/electronics13214229 - 28 Oct 2024
Cited by 1 | Viewed by 1377
Abstract
Video surveillance is an effective tool for traffic management and safety, but it may face challenges in extreme weather, low visibility, areas outside the monitoring field of view, or during nighttime conditions. Therefore, abnormal sound detection is used in traffic management and safety [...] Read more.
Video surveillance is an effective tool for traffic management and safety, but it may face challenges in extreme weather, low visibility, areas outside the monitoring field of view, or during nighttime conditions. Therefore, abnormal sound detection is used in traffic management and safety as an auxiliary tool to complement video surveillance. In this paper, a novel lightweight method for abnormal sound detection based on 1D CNN and Multi-Head Self-Attention Mechanism on the embedded system is proposed, which is named HADNet. First, 1D CNN is employed for local feature extraction, which minimizes information loss from the audio signal during time-frequency conversion and reduces computational complexity. Second, the proposed block based on Multi-Head Self-Attention Mechanism not only effectively mitigates the issue of disappearing gradients, but also enhances detection accuracy. Finally, the joint loss function is employed to detect abnormal audio. This choice helps address issues related to unbalanced training data and class overlap, thereby improving model performance on imbalanced datasets. The proposed HADNet method was evaluated on the MIVIA Road Events and UrbanSound8K datasets. The results demonstrate that the proposed method for abnormal audio detection on embedded systems achieves high accuracy of 99.6% and an efficient detection time of 0.06 s. This approach proves to be robust and suitable for practical applications in traffic management and safety. By addressing the challenges posed by traditional video surveillance methods, HADNet offers a valuable and complementary solution for enhancing safety measures in diverse traffic conditions. Full article
(This article belongs to the Special Issue Fault Detection Technology Based on Deep Learning)
Show Figures

Figure 1

15 pages, 3476 KiB  
Article
Video-Based Analysis of a Smart Lighting Warning System for Pedestrian Safety at Crosswalks
by Margherita Pazzini, Leonardo Cameli, Valeria Vignali, Andrea Simone and Claudio Lantieri
Smart Cities 2024, 7(5), 2925-2939; https://doi.org/10.3390/smartcities7050114 - 10 Oct 2024
Cited by 1 | Viewed by 2737
Abstract
This study analyses five months of continuous monitoring of different lighting warning systems at a pedestrian crosswalk through video surveillance cameras during nighttime. Three different light signalling systems were installed near a pedestrian crossing to improve the visibility and safety of vulnerable road [...] Read more.
This study analyses five months of continuous monitoring of different lighting warning systems at a pedestrian crosswalk through video surveillance cameras during nighttime. Three different light signalling systems were installed near a pedestrian crossing to improve the visibility and safety of vulnerable road users: in-curb LED strips, orange flashing beacons, and asymmetric enhanced LED lighting. Seven different lighting configurations of the three systems were studied and compared with standard street lighting. The speed of vehicles for each pedestrian–driver interaction was also evaluated. This was then compared to the speed that vehicles should maintain in order to stop in time and allow pedestrians to cross the road safely. In all of the conditions studied, speeds were lower than those maintained in the five-month presence of standard street lighting (42.96 km/h). The results show that in conditions with dedicated flashing LED lighting, in-curb LED strips, and orange flashing beacons, most drivers (72%) drove at a speed that allowed the vehicle to stop safely compared to standard street lighting (10%). In addition, with this lighting configuration, the majority of vehicles (85%) stopped at pedestrian crossings, while in standard street lighting conditions only 26% of the users stopped to give way to pedestrians. Full article
Show Figures

Figure 1

20 pages, 6767 KiB  
Article
Highly Accurate Deep Learning Models for Estimating Traffic Characteristics from Video Data
by Bowen Cai, Yuxiang Feng, Xuesong Wang and Mohammed Quddus
Appl. Sci. 2024, 14(19), 8664; https://doi.org/10.3390/app14198664 - 26 Sep 2024
Cited by 3 | Viewed by 1845
Abstract
Traditionally, traffic characteristics such as speed, volume, and travel time are obtained from a range of sensors and systems such as inductive loop detectors (ILDs), automatic number plate recognition cameras (ANPR), and GPS-equipped floating cars. However, many issues associated with these data have [...] Read more.
Traditionally, traffic characteristics such as speed, volume, and travel time are obtained from a range of sensors and systems such as inductive loop detectors (ILDs), automatic number plate recognition cameras (ANPR), and GPS-equipped floating cars. However, many issues associated with these data have been identified in the existing literature. Although roadside surveillance cameras cover most road segments, especially on freeways, existing techniques to extract traffic data (e.g., speed measurements of individual vehicles) from video are not accurate enough to be employed in a proactive traffic management system. Therefore, this paper aims to develop a technique for estimating traffic data from video captured by surveillance cameras. This paper then develops a deep learning-based video processing algorithm for detecting, tracking, and predicting highly disaggregated vehicle-based data, such as trajectories and speed, and transforms such data into aggregated traffic characteristics such as speed variance, average speed, and flow. By taking traffic observations from a high-quality LiDAR sensor as ‘ground truth’, the results indicate that the developed technique estimates lane-based traffic volume with an accuracy of 97%. With the application of the deep learning model, the computer vision technique can estimate individual vehicle-based speed calculations with an accuracy of 90–95% for different angles when the objects are within 50 m of the camera. The developed algorithm was then utilised to obtain dynamic traffic characteristics from a freeway in southern China and employed in a statistical model to predict monthly crashes. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Transportation Engineering)
Show Figures

Figure 1

19 pages, 7973 KiB  
Article
Determining Thresholds for Optimal Adaptive Discrete Cosine Transformation
by Alexander Khanov, Anastasija Shulzhenko, Anzhelika Voroshilova, Alexander Zubarev, Timur Karimov and Shakeeb Fahmi
Algorithms 2024, 17(8), 366; https://doi.org/10.3390/a17080366 - 21 Aug 2024
Viewed by 1193
Abstract
The discrete cosine transform (DCT) is widely used for image and video compression. Lossy algorithms such as JPEG, WebP, BPG and many others are based on it. Multiple modifications of DCT have been developed to improve its performance. One of them is adaptive [...] Read more.
The discrete cosine transform (DCT) is widely used for image and video compression. Lossy algorithms such as JPEG, WebP, BPG and many others are based on it. Multiple modifications of DCT have been developed to improve its performance. One of them is adaptive DCT (ADCT) designed to deal with heterogeneous image structure and it may be found, for example, in the HEVC video codec. Adaptivity means that the image is divided into an uneven grid of squares: smaller ones retain information about details better, while larger squares are efficient for homogeneous backgrounds. The practical use of adaptive DCT algorithms is complicated by the lack of optimal threshold search algorithms for image partitioning procedures. In this paper, we propose a novel method for optimal threshold search in ADCT using a metric based on tonal distribution. We define two thresholds: pm, the threshold defining solid mean coloring, and ps, defining the quadtree fragment splitting. In our algorithm, the values of these thresholds are calculated via polynomial functions of the tonal distribution of a particular image or fragment. The polynomial coefficients are determined using the dedicated optimization procedure on the dataset containing images from the specific domain, urban road scenes in our case. In the experimental part of the study, we show that ADCT allows a higher compression ratio compared to non-adaptive DCT at the same level of quality loss, up to 66% for acceptable quality. The proposed algorithm may be used directly for image compression, or as a core of video compression framework in traffic-demanding applications, such as urban video surveillance systems. Full article
(This article belongs to the Special Issue Algorithms for Image Processing and Machine Vision)
Show Figures

Figure 1

16 pages, 7364 KiB  
Article
Enhanced Estimation of Traffic Noise Levels Using Minute-Level Traffic Flow Data through Convolutional Neural Network
by Wencheng Yu, Ji-Cheng Jang, Yun Zhu, Jianxin Peng, Wenwei Yang and Kunjie Li
Sustainability 2024, 16(14), 6088; https://doi.org/10.3390/su16146088 - 17 Jul 2024
Cited by 1 | Viewed by 1890
Abstract
The advent of high-resolution minute-level traffic flow data from video surveillance on roads has opened up new opportunities for enhancing the estimation of traffic noise levels. In this study, we propose an innovative method that utilizes time series traffic flow data (TSTFD) to [...] Read more.
The advent of high-resolution minute-level traffic flow data from video surveillance on roads has opened up new opportunities for enhancing the estimation of traffic noise levels. In this study, we propose an innovative method that utilizes time series traffic flow data (TSTFD) to estimate traffic noise levels using a deep learning Convolutional Neural Network (CNN). Unlike traditional traffic flow data, TSTFD offer a unique structure and composition suitable for multidimensional data analysis. Our method was evaluated in a pilot study conducted in Foshan City, China, utilizing traffic flow information obtained from roadside video surveillance systems. Our results indicated that the CNN-based model surpassed traditional data-driven statistical models in estimating traffic noise levels, achieving a reduction in mean squared error (MSE) by 10.16%, mean absolute error (MAE) by 4.48%, and an improvement in the coefficient of determination (R²) by 1.73%. The model demonstrated robust generalization capabilities throughout the test period, exhibiting mean errors ranging from 0.790 to 1.007 dBA. However, the model’s applicability is constrained by the acoustic propagation environment, demonstrating effectiveness on roads with similar surroundings while showing limited applicability to those with different surroundings. Overall, this method is cost-effective and offers enhanced accuracy for the estimation of traffic noise level. Full article
(This article belongs to the Special Issue Influence of Traffic Noise on Residential Environment)
Show Figures

Figure 1

21 pages, 3509 KiB  
Article
An Efficient Real-Time Vehicle Classification from a Complex Image Dataset Using eXtreme Gradient Boosting and the Multi-Objective Genetic Algorithm
by Pemila Mani, Pongiannan Rakkiya Goundar Komarasamy, Narayanamoorthi Rajamanickam, Roobaea Alroobaea, Majed Alsafyani and Abdulkareem Afandi
Processes 2024, 12(6), 1251; https://doi.org/10.3390/pr12061251 - 18 Jun 2024
Cited by 4 | Viewed by 1533
Abstract
Recent advancements in image processing and machine-learning technologies have significantly improved vehicle monitoring and identification in road transportation systems. Vehicle classification (VC) is essential for effective monitoring and identification within large datasets. Detecting and classifying vehicles from surveillance videos into various categories is [...] Read more.
Recent advancements in image processing and machine-learning technologies have significantly improved vehicle monitoring and identification in road transportation systems. Vehicle classification (VC) is essential for effective monitoring and identification within large datasets. Detecting and classifying vehicles from surveillance videos into various categories is a complex challenge in current information acquisition and self-processing technology. In this paper, we implement a dual-phase procedure for vehicle selection by merging eXtreme Gradient Boosting (XGBoost) and the Multi-Objective Optimization Genetic Algorithm (Mob-GA) for VC in vehicle image datasets. In the initial phase, vehicle images are aligned using XGBoost to effectively eliminate insignificant images. In the final phase, the hybrid form of XGBoost and Mob-GA provides optimal vehicle classification with a pioneering attribute-selection technique applied by a prominent classifier on 10 publicly accessible vehicle datasets. Extensive experiments on publicly available large vehicle datasets have been conducted to demonstrate and compare the proposed approach. The experimental analysis was carried out using a myRIO FPGA board and HUSKY Lens for real-time measurements, achieving a faster execution time of 0.16 ns. The investigation results show that this hybrid algorithm offers improved evaluation measures compared to using XGBoost and Mob-GA individually for vehicle classification. Full article
Show Figures

Figure 1

22 pages, 30026 KiB  
Article
Multi-Camera Multi-Vehicle Tracking Guided by Highway Overlapping FoVs
by Hongkai Zhang, Ruidi Fang, Suqiang Li, Qiqi Miao, Xinggang Fan, Jie Hu and Sixian Chan
Mathematics 2024, 12(10), 1467; https://doi.org/10.3390/math12101467 - 9 May 2024
Cited by 4 | Viewed by 3334
Abstract
Multi-Camera Multi-Vehicle Tracking (MCMVT) is a critical task in Intelligent Transportation Systems (ITS). Differently to in urban environments, challenges in highway tunnel MCMVT arise from the changing target scales as vehicles traverse the narrow tunnels, intense light exposure within the tunnels, high similarity [...] Read more.
Multi-Camera Multi-Vehicle Tracking (MCMVT) is a critical task in Intelligent Transportation Systems (ITS). Differently to in urban environments, challenges in highway tunnel MCMVT arise from the changing target scales as vehicles traverse the narrow tunnels, intense light exposure within the tunnels, high similarity in vehicle appearances, and overlapping camera fields of view, making highway MCMVT more challenging. This paper presents an MCMVT system tailored for highway tunnel roads incorporating road topology structures and the overlapping camera fields of view. The system integrates a Cascade Multi-Level Multi-Target Tracking strategy (CMLM), a trajectory refinement method (HTCF) based on road topology structures, and a spatio-temporal constraint module (HSTC) considering highway entry–exit flow in overlapping fields of view. The CMLM strategy exploits phased vehicle movements within the camera’s fields of view, addressing such challenges as those presented by fast-moving vehicles and appearance variations in long tunnels. The HTCF method filters static traffic signs in the tunnel, compensating for detector imperfections and mitigating the strong lighting effects caused by the tunnel lighting. The HSTC module incorporates spatio-temporal constraints designed for accurate inter-camera trajectory matching within overlapping fields of view. Experiments on the proposed Highway Surveillance Traffic (HST) dataset and CityFlow dataset validate the system’s effectiveness and robustness, achieving an IDF1 score of 81.20% for the HST dataset. Full article
(This article belongs to the Special Issue Advances in Computer Vision and Machine Learning, 2nd Edition)
Show Figures

Figure 1

Back to TopTop