Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (170)

Search Parameters:
Keywords = road erosion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 20641 KiB  
Article
Mechanical Properties and Failure Mechanisms of Sandstone Under Combined Action of Cyclic Loading and Freeze–Thaw
by Taoying Liu, Huaheng Li, Longjun Dong and Ping Cao
Appl. Sci. 2025, 15(14), 7942; https://doi.org/10.3390/app15147942 - 16 Jul 2025
Viewed by 288
Abstract
In high-elevation mining areas, the roadbeds of certain surface ore haul roads are predominantly composed of sandstone. These sandstones are exposed to cold climatic conditions for long periods and are highly susceptible to erosion by the effects of freeze–thaw, which can degrade their [...] Read more.
In high-elevation mining areas, the roadbeds of certain surface ore haul roads are predominantly composed of sandstone. These sandstones are exposed to cold climatic conditions for long periods and are highly susceptible to erosion by the effects of freeze–thaw, which can degrade their support properties. This paper investigates the mechanism of strength deterioration of sandstone containing prefabricated cracks under cyclic loading and unloading after experiencing freeze–thaw. Sandstone specimens containing prefabricated cracks were prepared and subjected to 0, 20, 40, 60, and 80 freeze–thaw cycle tests. The strength changes were tested, and the crack extension process was analyzed using numerical simulation techniques. The study results show the following: 1. The wave propagation speed within the sandstone is more sensitive to changes in the number of freeze–thaw cycles. In contrast, mass damage shows significant changes only when more freeze–thaw cycles are experienced. 2. As the number of freeze–thaw cycles increases, the frequency of energy release from the numerical model accelerates. 3. The trend of the Cumulative Strain Difference (εc) reflects that the plastic strain difference between numerical simulation and actual measurement gradually decreases with increasing stress cycle level. 4. With the increase in freeze–thaw cycles, the damage morphology of the specimen undergoes a noticeable change, which is gradually transformed from monoclinic shear damage to X-shaped conjugate surface shear damage. 5. The number of tensile cracks dominated throughout the cyclic loading and unloading process, but with the increase in freeze–thaw cycles, the percentage of shear cracks increased. As the freeze–thaw cycles increase, sandstones are more inclined to undergo shear damage. These findings are important guidelines for road design and maintenance in alpine mining areas. Full article
Show Figures

Figure 1

26 pages, 35238 KiB  
Article
Sediment Connectivity in Human-Impacted vs. Natural Conditions: A Case Study in a Landslide-Affected Catchment
by Mohanad Ellaithy, Davide Notti, Daniele Giordan, Marco Baldo, Jad Ghantous, Vincenzo Di Pietra, Marco Cavalli and Stefano Crema
Geosciences 2025, 15(7), 259; https://doi.org/10.3390/geosciences15070259 - 5 Jul 2025
Viewed by 410
Abstract
This research aims to characterize sediment dynamics in the Rupinaro catchment, a uniquely terraced and human-shaped basin in Italy’s Liguria region, employing geomorphometric methods to unravel sediment connectivity in a landscape vulnerable to shallow landslides. Within a scenario-based approach, we utilized high-resolution LiDAR-derived [...] Read more.
This research aims to characterize sediment dynamics in the Rupinaro catchment, a uniquely terraced and human-shaped basin in Italy’s Liguria region, employing geomorphometric methods to unravel sediment connectivity in a landscape vulnerable to shallow landslides. Within a scenario-based approach, we utilized high-resolution LiDAR-derived digital terrain models (DTMs) to calculate the Connectivity Index, comparing sediment dynamics between the original terraced landscape and a virtual natural scenario. To reconstruct a pristine slope morphology, we applied a topographic roughness-based skeletonization algorithm that simplifies terraces into linear features to simulate natural hillslope conditions and remove anthropogenic structures. The analysis was carried out considering diverse targets (e.g., hydrographic networks, road networks) and the effect of land use. The results reveal significant differences in sediment connectivity between the anthropogenic and natural morphologies, with implications for erosion and landslide susceptibility. The findings reveal that sediment connectivity is moderately higher in the scenario without terraces, indicating that terraces function as effective barriers to sediment transfer. This highlights their potential role in mitigating landslide susceptibility on steep slopes. Additionally, the results show that roads exert a stronger influence on the Connectivity Index, significantly altering flow paths. These modifications appear to contribute to increased landslide susceptibility in adjacent areas, as reflected by the higher observed landslide density within the study region. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

14 pages, 2477 KiB  
Article
Comparative Assessment of Woody Species for Runoff and Soil Erosion Control on Forest Road Slopes in Harvested Sites of the Hyrcanian Forests, Northern Iran
by Pejman Dalir, Ramin Naghdi, Sanaz Jafari and Petros A. Tsioras
Forests 2025, 16(6), 1013; https://doi.org/10.3390/f16061013 - 17 Jun 2025
Viewed by 322
Abstract
Soil erosion and surface runoff on forest road slopes are major environmental concerns, especially in harvested areas, making effective mitigation strategies essential for sustainable forest management. The study compared the effectiveness of three selected woody species on forest road slopes as a possible [...] Read more.
Soil erosion and surface runoff on forest road slopes are major environmental concerns, especially in harvested areas, making effective mitigation strategies essential for sustainable forest management. The study compared the effectiveness of three selected woody species on forest road slopes as a possible mitigating action for runoff and soil erosion in harvested sites. Plots measuring 2 m × 3 m were set up with three species—alder (Alnus glutinosa (L.) Gaertn.), medlar (Mespilus germanica L.) and hawthorn (Crataegus monogyna Jacq.)—on the slopes of forest roads. Within each plot, root abundance, root density, canopy percentage, canopy height, herbaceous cover percentage, and selected soil characteristics were measured and analyzed. Root frequency and Root Area Ratio (the ratio between the area occupied by roots in a unit area of soil) measurements were conducted by excavating 50 × 50 cm soil profiles at a 10-cm distance from the base of each plant in the four cardinal directions. The highest root abundance and RAR values were found in hawthorn, followed by alder and medlar in both cases. The same order of magnitude was evidenced in runoff (255.42 mL m−2 in hawthorn followed by 176.81 mL m−2 in alder and 67.36 mL m−2 in medlar) and the reverse order in terms of soil erosion (8.23 g m−2 in hawthorn compared to 22.5 g m−2 in alder and 50.24 g m−2 in medlar). The results of the study confirm that using plant species with dense and deep roots, especially hawthorn, significantly reduces runoff and erosion, offering a nature-based solution for sustainable forest road management. These results highlight the need for further research under diverse ecological and soil conditions to optimize species selection and improve erosion mitigation strategies. Full article
(This article belongs to the Special Issue New Research Developments on Forest Road Planning and Design)
Show Figures

Figure 1

19 pages, 5313 KiB  
Article
Physical Model Research on the Impact of Bridge Piers on River Flow in Parallel Bridge Construction Projects
by Yu Zhang, Bo Chen, Shuo Wang and Xin Zhang
Appl. Sci. 2025, 15(12), 6581; https://doi.org/10.3390/app15126581 - 11 Jun 2025
Viewed by 552
Abstract
In response to the growing demand for improved operational efficiency in road and bridge networks, constructing parallel bridges in complex river sections has become a crucial strategy. This study focuses on a parallel bridge construction project in the Jinan section of the lower [...] Read more.
In response to the growing demand for improved operational efficiency in road and bridge networks, constructing parallel bridges in complex river sections has become a crucial strategy. This study focuses on a parallel bridge construction project in the Jinan section of the lower Yellow River, conducting physical model tests to investigate the unique aspects of the impacts of different pier shapes and spans on the flow characteristics of sediment-laden rivers under real-world engineering scenarios. The experimental results demonstrate that the hydraulic physical model of this river section that was constructed is reliable, with a relative error of <20% in sediment deposition, in the simulation of sediment erosion and deposition, flow velocity patterns, water levels, and riverbed morphological changes during parallel bridge construction in bridge-clustered river sections. The newly constructed bridges have a limited influence on the overall regime of this river section, with their impacts on both banks remaining within controllable limits, and the river flow remains largely stable. In areas with denser pier arrangements, the phenomenon of backwater upstream of the bridges is more pronounced, and under characteristic flood conditions, the newly built bridges amplify the water level differences between the upstream and downstream sections near the bridge sites. The ranges of influence of the water level drop downstream of the bridges increase, particularly in the main flow areas. Flow velocities generally increase in the main channel, while significant fluctuations are observed in the floodplain areas. Flood process experiments reveal that the slope at the junction between the main channel and the floodplain becomes gentler, with noticeable scouring occurring in the main channel. After flood events, the river tends to evolve toward a U-shaped channel, posing certain safety risks to the piers located at the junction of the floodplains and the main channel. This research methodology can serve as a reference for studying flow characteristics in similar parallel bridge construction projects in river sections, and the findings hold significant implications for practical engineering. Full article
Show Figures

Figure 1

20 pages, 2309 KiB  
Article
Climate Change Impacts on Agricultural Infrastructure and Resources: Insights from Communal Land Farming Systems
by Bonginkosi E. Mthembu, Thobani Cele and Xolile Mkhize
Land 2025, 14(6), 1150; https://doi.org/10.3390/land14061150 - 26 May 2025
Cited by 1 | Viewed by 699
Abstract
Climate change significantly impacts agricultural infrastructure, particularly in communal land farming systems, where socio-economic vulnerabilities intersect with environmental stressors. This study examined the effects of extreme weather events (floods, droughts, strong winds, frost, and hail) on various agricultural infrastructures—including bridges, arable land, soil [...] Read more.
Climate change significantly impacts agricultural infrastructure, particularly in communal land farming systems, where socio-economic vulnerabilities intersect with environmental stressors. This study examined the effects of extreme weather events (floods, droughts, strong winds, frost, and hail) on various agricultural infrastructures—including bridges, arable land, soil erosion control structures, dipping tanks, roads, and fences—using an ordered probit model. A survey was conducted using structured questionnaires between August and September 2023, collecting data from communal farmers (n = 60) in oKhahlamba Municipality, Bergville. Key results from respondents showed that roads (87%), bridges (85%), and both arable land and erosion structures were reported as highly affected by extreme weather events, especially flooding and frost. Gender, the type of farmer, access to climate information, and exposure to extreme weather significantly influenced perceived impact severity. The ordered probit regression model results reveal that drought (p = 0.05), floods (p = 0.1), strong winds (p = 0.05), and frost (p = 0.1) significantly influence the perceived impacts on infrastructure. Extreme weather events, including flooding (p = 0.012) and frost (p = 0.018), are critical drivers of infrastructure damage, particularly for smallholder farmers. Cumulative impacts—such as repeated infrastructure failure, access disruptions, and increased repair burdens—compound over time, further weakening resilience. The results underscore the urgent need for investments in flood-resilient roads and bridges, improved erosion control systems, and livestock water infrastructure. Support should also include gender-sensitive adaptation strategies, education on climate risk, and dedicated financial mechanisms for smallholder farmers. These findings contribute to global policy discourses on climate adaptation, aligning with SDGs 2 (Zero Hunger), 9 (Industry, Innovation, and Infrastructure), and 13 (Climate Action), and offer actionable insights for building infrastructure resilience in vulnerable rural contexts. Full article
Show Figures

Figure 1

24 pages, 5406 KiB  
Article
Risk Assessment of Yellow Muddy Water in High-Construction-Intensity Cities Based on the GIS Analytic Hierarchy Process Method: A Case Study of Guangzhou City
by Xichun Jia, Xuebing Jiang, Jun Huang, Le Li, Bingjun Liu and Shunchao Yu
Land 2025, 14(4), 779; https://doi.org/10.3390/land14040779 - 4 Apr 2025
Viewed by 443
Abstract
During urbanisation, extensive production and construction activities encroach on ecological spaces, leading to changes in environmental structures and soil erosion. The issue of yellow muddy water caused by rainfall in cities with high construction intensity has garnered significant attention. Taking Guangzhou City as [...] Read more.
During urbanisation, extensive production and construction activities encroach on ecological spaces, leading to changes in environmental structures and soil erosion. The issue of yellow muddy water caused by rainfall in cities with high construction intensity has garnered significant attention. Taking Guangzhou City as the research area, this study is the first to propose a risk assessment model for yellow muddy water in cities with high construction intensity, and the influence of construction sites on yellow muddy water was fully considered. Rainfall and construction sites were used as indicators to assess the hazards of yellow muddy water. Elevation, slope, normalised difference vegetation index (NDVI), soil erosion modulus, stream power index (SPI), surface permeability, and roads represent the exposure evaluation indicators. Population number and GDP (Gross Domestic Product) were used as vulnerability evaluation indicators. Based on the analytic hierarchy process (AHP) method, the weights of each evaluation indicator were determined, and a risk assessment system for yellow muddy water was established. By overlaying the weighted layers of different evaluation indicators on the geographic information system (GIS) platform, a risk degree distribution map of yellow muddy water disasters was generated. The evaluation results demonstrated that the disaster risk levels within the study area exhibited spatial differentiation, with areas of higher risk accounting for 14.76% of the total. The evaluation results were compared with historical yellow muddy water event information from Guangzhou, and the effectiveness of the model was verified by the receiver operating characteristic (ROC) curve. The validation results indicate that this model provides high accuracy in assessing the degree of risk of yellow muddy water in high-construction-intensity cities, offering effective technical support for precise disaster prevention and mitigation. Full article
(This article belongs to the Special Issue Applications of GIS-Based Methods in Land Change Science)
Show Figures

Figure 1

19 pages, 61927 KiB  
Article
Sustainability by Using IoT-PWS Data and Remote Sensing and Geographic Information Systems Technology in Erasmus+ Supported Project: The Case of Antalya/Aksu
by Ercument Aksoy, Gulsen Topcu, Irfan Topcu, Ayse Demirci, Onder Kabas and Mirela Nicoleta Dınca
Sustainability 2025, 17(7), 3194; https://doi.org/10.3390/su17073194 - 3 Apr 2025
Viewed by 788
Abstract
Due to climate change, situations that threaten humanity, such as temperature increases, drought, forest fires, sea level rise, erosion, floods, and migrations, are gradually increasing. Understanding climate change has gained more importance day by day due to the negative effects of disasters. Quantitative [...] Read more.
Due to climate change, situations that threaten humanity, such as temperature increases, drought, forest fires, sea level rise, erosion, floods, and migrations, are gradually increasing. Understanding climate change has gained more importance day by day due to the negative effects of disasters. Quantitative spatial analyses were carried out with the help of Remote Sensing (RS) and Earth Observation (EO) technology using Geographic Information Systems (GIS) by establishing an Internet of Things (IoT) Meteorological Station (IoT-PWS) with Erasmus+ support. The dataset consists of Road, Meteorological Station, Climate (Temperature, Wind Speed), Land Use—Land Cover (Copernicus LULC), and Population data. As a result of the findings of the research, it was determined that IoT-PWS has a positive contribution to many areas such as agriculture, traffic, scientific studies, local administration, and local public information in the region, and the positive contribution will continue as the station data flow continues. The study is designed as a guide to the use of GIS, RS, and EO technology for educators working on curriculum renewal and project implementation in the field of Environment and Combating Climate Change, one of the four key priorities of Erasmus+. The study contributes indirectly to all indicators in the Sustainable Development Goals as well as directly contributes to Goal 11, Goal 13, and Goal 15. Full article
Show Figures

Figure 1

15 pages, 5821 KiB  
Article
Investigation of Seepage Behavior and Settlement Deformation Mechanisms in Loess Embankment Foundation Systems in Eastern Gansu Province
by Wei Wang, Wei Li, Pengxiang Zhang and Lulu Liu
Appl. Sci. 2025, 15(7), 3789; https://doi.org/10.3390/app15073789 - 30 Mar 2025
Viewed by 369
Abstract
The northwestern region of China is characterized by loess soil and seasonal permafrost. Due to the combined effects of its unique climate and precipitation patterns, local roads frequently suffer from issues such as foundation settlement, erosion, and collapse, which pose significant risks to [...] Read more.
The northwestern region of China is characterized by loess soil and seasonal permafrost. Due to the combined effects of its unique climate and precipitation patterns, local roads frequently suffer from issues such as foundation settlement, erosion, and collapse, which pose significant risks to both road construction and safe operation. This study examines a typical high subgrade in Northwest China, where a scaled laboratory model experiment was conducted. The research investigates the impact of water infiltration at the slope foot, under the dual influences of extreme cold and precipitation, on changes in the internal moisture field and settlement deformation characteristics of both the foundation and subgrade. The results indicate that the variation in moisture content across the section follows an arc-shaped diffusion pattern. Settlement is influenced by both the amount of infiltrated water and cold air, with a noticeable lag effect. A settlement of 0.1 cm is considered the threshold for significant impact, with the minimum observed lag period approaching 4 days. The settlement is concentrated in the slope region, exhibiting a bending failure pattern. Numerical simulations reveal that the cross-sectional settlement distribution forms an inverted “S” shape, and the cumulative moisture content at each monitoring point exhibits a quadratic relationship with the cumulative settlement. The findings of this study provide scientific guidance and technical references for road construction and safe operation in the seasonal permafrost regions of Northwest China. Full article
Show Figures

Figure 1

31 pages, 11489 KiB  
Article
Cultural Heritage Risk Assessment Based on Explainable Machine Learning Models: A Case Study of the Ancient Tea Horse Road in China
by Hao Zhang, Bo Shu, Yang Liu, Yang Wei and Huizhen Zhang
Land 2025, 14(4), 734; https://doi.org/10.3390/land14040734 - 29 Mar 2025
Cited by 1 | Viewed by 733
Abstract
As the core carrier of historical and cultural identity, cultural heritage is facing multiple threats such as natural disasters, human activities and its own vulnerability. There is an increasing number of studies on cultural heritage risk assessment around the world, but the risk [...] Read more.
As the core carrier of historical and cultural identity, cultural heritage is facing multiple threats such as natural disasters, human activities and its own vulnerability. There is an increasing number of studies on cultural heritage risk assessment around the world, but the risk assessment of cultural heritage in China has not been fully explored. In this paper, the LightGBM model was used to quantitatively analyze the main influencing factors of cultural heritage risk along the Ancient Tea Horse Road in Sichuan, and spatial analysis was carried out by combining geographic information system (GIS) technology. In order to improve the interpretability of the assessment results, the SHAP method was introduced to systematically evaluate the contribution of each influencing factor to the risk of cultural heritage. This study identified seven major risk factors, including landslides, collapses, debris flows, earthquakes, soil erosion, urban road networks, and cultural heritage vulnerability, and constructed a risk assessment framework that comprehensively considers the vulnerability to natural and synthetic factors and the heritage itself. The results of the assessment divided the risk of cultural heritage sites into five levels: very low, low, medium, high and very high, and the results showed that 52.36% of the cultural heritage was classified as at medium and high risk and above, revealing the severe security situation faced by cultural heritage in the region and indicating the urgent need to take effective protective and management measures to deal with multiple risks and challenges. Full article
Show Figures

Figure 1

20 pages, 10657 KiB  
Article
The Integrity of Short-Span Bridges in the Case of Coastal Floods: Monitoring Strategies and an Example
by Mario Lucio Puppio, Alessandro Pucci and Mauro Sassu
Infrastructures 2025, 10(4), 74; https://doi.org/10.3390/infrastructures10040074 - 24 Mar 2025
Viewed by 450
Abstract
This paper examines short-span bridge (SSB) integrity against floods. They represent the majority of road infrastructures and are often affected by hydraulic erosion and overlap during rainfalls. A method to classify and identify a set of SSBs in an assigned territory is illustrated. [...] Read more.
This paper examines short-span bridge (SSB) integrity against floods. They represent the majority of road infrastructures and are often affected by hydraulic erosion and overlap during rainfalls. A method to classify and identify a set of SSBs in an assigned territory is illustrated. An analytical approach to evaluate the severity condition and priority of intervention is then presented, furnishing formulas for designing SSBs or evaluating the safety of existing ones. An emblematic case study, located on Sardinia Island (Italy), is described, applying the proposed approach in terms of hydraulic and structural loads to be considered. Finally, a discussion of the main obtained results is carried out, taking into account experiences due to recent floods and related collapses, with conclusions presented. Full article
Show Figures

Figure 1

31 pages, 3248 KiB  
Article
Assessment of Heavy Metal Contamination of Seawater and Sediments Along the Romanian Black Sea Coast: Spatial Distribution and Environmental Implications
by Elena Ristea, Oana Cristina Pârvulescu, Vasile Lavric and Andra Oros
Sustainability 2025, 17(6), 2586; https://doi.org/10.3390/su17062586 - 14 Mar 2025
Cited by 4 | Viewed by 1617
Abstract
This study assesses the spatial distribution and contamination levels of some heavy metals (HMs), i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and lead (Pb), in seawater and surface sediments along the Romanian Black Sea coast (RBSC). Sampling was conducted at 40 [...] Read more.
This study assesses the spatial distribution and contamination levels of some heavy metals (HMs), i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and lead (Pb), in seawater and surface sediments along the Romanian Black Sea coast (RBSC). Sampling was conducted at 40 stations across 12 transects during May–June 2021, and the measured levels of HM concentrations were compared with Environmental Quality Standards (EQS), i.e., maximum allowable concentration (MAC) values, for seawater and effects range-low (ERL) thresholds for sediments. HM concentrations were measured using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). In seawater, the levels of Cd, Cu, and Pb concentrations exceeded the MAC values at three stations located in areas influenced by the Danube River or anthropogenic activities. In sediments, exceedances of ERL thresholds were found for Ni at 11 stations, for Cu at three stations, and for Pb at one station. HM contamination of sediment samples collected from these stations can be caused by both natural and anthropogenic sources, e.g., the Danube River, rock/soil weathering and erosion, agricultural runoff, port and construction activities, maritime and road transport, coastal tourism, petrochemical industry, wastewater discharges, offshore oil and gas extraction. Principal Component Analysis (PCA) provided valuable information about the relationships between relevant variables, including water depth and HM concentrations in seawater and sediments, and potential sources of contamination. The results highlight the influence of fluvial inputs and localized human activities on HM contamination. While the overall chemical status of Romanian Black Sea waters and sediments remains favorable, targeted management strategies are needed to address localized pollution hotspots and mitigate potential ecological risks. These findings provide valuable insights for environmental monitoring and sustainable coastal management. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

23 pages, 21866 KiB  
Article
The May 2023 Rainstorm-Induced Landslides in the Emilia-Romagna Region (Northern Italy): Considerations from UAV Investigations Under Emergency Conditions
by Luca Schilirò, Alessandro Bosman, Grazia Maria Caielli, Angelo Corazza, Stefano Crema, Cristina Di Salvo, Iolanda Gaudiosi, Marco Mancini, Gianluca Norini, Edoardo Peronace, Federica Polpetta, Maurizio Simionato, Francesco Stigliano, Chiara Varone and Paolo Tommasi
Geosciences 2025, 15(3), 101; https://doi.org/10.3390/geosciences15030101 - 13 Mar 2025
Cited by 1 | Viewed by 1054
Abstract
Rainstorm-induced landslides are a widespread geomorphological hazard that can lead to major emergencies, causing severe damage to life and property. Due to the extent of the areas usually affected by these phenomena (up to thousands of km2) and/or their typical high [...] Read more.
Rainstorm-induced landslides are a widespread geomorphological hazard that can lead to major emergencies, causing severe damage to life and property. Due to the extent of the areas usually affected by these phenomena (up to thousands of km2) and/or their typical high areal density, in the early stages of the emergency it can be useful to reconstruct a comprehensive, albeit preliminary, overview of the landslides. With this aim, in this work we provide an outline of the landslides that occurred in the eastern part of the Emilia-Romagna region (northern Italy) after two severe rainstorms in May 2023. By combining information collected during the emergency through direct field inspections and UAV (unmanned aerial vehicle) surveys with preliminary analyses of historical rainfall/landslide data, we inferred the main characteristics of the landslides (e.g., movement type, involved materials, triggering mechanisms) and the relation with antecedent landslide phenomena, rainfall exceptionality, and anthropogenic activities. The latter were found to have likely contributed to landslides triggering by increasing water discharge and, in turn, infiltration and runoff erosion (i.e., inadequate drainage devices) and steepening slope gradients (e.g., road cuts). The vastness of the territory hit by the May 2023 landslides and their exceptional areal density can be explained not only with the extreme rainfall intensity (>500 years at several rainfall stations), but also with the widespread occurrence of slope materials which are very sensitive to sudden changes in hydraulic conditions. The high landslide susceptibility of the area is confirmed by the fact that many of the May 2023 landslides occurred at or close to previously identified and mapped landslide sites. Full article
(This article belongs to the Special Issue Remote Sensing Monitoring of Geomorphological Hazards)
Show Figures

Figure 1

27 pages, 45437 KiB  
Article
Integrated Coastal Vulnerability Index (ICVI) Assessment of Protaras Coast in Cyprus: Balancing Tourism and Coastal Risks
by Christos Theocharidis, Maria Prodromou, Marina Doukanari, Eleftheria Kalogirou, Marinos Eliades, Charalampos Kontoes, Diofantos Hadjimitsis and Kyriacos Neocleous
Geographies 2025, 5(1), 12; https://doi.org/10.3390/geographies5010012 - 10 Mar 2025
Cited by 1 | Viewed by 1276
Abstract
Coastal areas are highly dynamic environments, vulnerable to natural processes and human interventions. This study presents the first application of the Integrated Coastal Vulnerability Index (ICVI) in Cyprus, focusing on two major tourism-dependent beaches, Fig Tree Bay and Vrysi Beach, located along the [...] Read more.
Coastal areas are highly dynamic environments, vulnerable to natural processes and human interventions. This study presents the first application of the Integrated Coastal Vulnerability Index (ICVI) in Cyprus, focusing on two major tourism-dependent beaches, Fig Tree Bay and Vrysi Beach, located along the Protaras coastline. Despite their economic significance, these coastal areas face increasing vulnerability due to intensive tourism-driven modifications and natural coastal dynamics, necessitating a structured assessment framework. This research addresses this gap by integrating the ICVI with geographical information system (GIS) and analytic hierarchy process (AHP) methodologies to evaluate the coastal risks in this tourism-dependent environment, providing a replicable approach for similar Mediterranean coastal settings. Ten key parameters were analysed, including coastal slope, rate of coastline erosion, geomorphology, elevation, tidal range, wave height, relative sea level rise, land cover, population density, and road network. The results revealed spatial variations in vulnerability, with 16% of the coastline classified as having very high vulnerability and another 16% as having high vulnerability. Fig Tree Bay, which is part of this coastline, emerged as a critical hotspot due to its geomorphological instability, low elevation, and intensive human interventions, including seasonal beach modifications and infrastructure development. This study underscores the need for sustainable coastal management practices, including dune preservation, controlled development, and the integration of the ICVI into planning frameworks to balance economic growth and environmental conservation. Full article
Show Figures

Figure 1

24 pages, 13219 KiB  
Article
Deformation Mechanisms and Rainfall Lag Effects of Deep-Seated Ancient Landslides in High-Mountain Regions: A Case Study of the Zhongxinrong Landslide, Upper Jinsha River
by Xue Li, Changbao Guo, Wenkai Chen, Peng Wei, Feng Jin, Yiqiu Yan and Gui Liu
Remote Sens. 2025, 17(4), 687; https://doi.org/10.3390/rs17040687 - 18 Feb 2025
Viewed by 885
Abstract
In high-mountain canyon regions, many settlements are located on large, deep-seated ancient landslides. The deformation characteristics, triggering mechanisms, and long-term developmental trends of these landslides significantly impact the safety and stability of these communities. However, the deformation mechanism under the influence of human [...] Read more.
In high-mountain canyon regions, many settlements are located on large, deep-seated ancient landslides. The deformation characteristics, triggering mechanisms, and long-term developmental trends of these landslides significantly impact the safety and stability of these communities. However, the deformation mechanism under the influence of human engineering activities remains unclear. SBAS-InSAR (Small Baseline Subset-Interferometric Synthetic Aperture Radar) technology, UAV LiDAR, and field surveys were utilized in this study to identify a large ancient landslide in the upper Jinsha River Basin: the Zhongxinrong landslide. It extends approximately 1220 m in length, with a vertical displacement of around 552 m. The average thickness of the landslide mass ranges from 15.0 to 35.0 m, and the total volume is estimated to be between 1.48 × 107 m3 and 3.46 × 107 m3. The deformation of the Zhongxinrong landslide is primarily driven by a combination of natural and anthropogenic factors, leading to the formation of two distinct accumulation bodies, each exhibiting unique deformation characteristics. Accumulation Body II-1 is predominantly influenced by rainfall and road operation, resulting in significant deformation in the upper part of the landslide. In contrast, II-2 is mainly affected by rainfall and river erosion at the front edge, causing creeping tensile deformation at the toe. Detailed analysis reveals a marked acceleration in deformation following rainfall events when the cumulative rainfall over a 15-day period exceeds 120 mm. The lag time between peak rainfall and landslide displacement ranges from 2 to 28 days. Furthermore, deformation in the high-elevation accumulation area consistently exhibits a slower lag response compared to the tensile deformation area at lower zones. These findings highlight the importance of both natural and anthropogenic factors in landslide risk assessment and provide valuable insights for landslide prevention strategies, particularly in regions with similar geological and socio-environmental conditions. Full article
Show Figures

Graphical abstract

23 pages, 11219 KiB  
Article
New Paradigms for Geomorphological Mapping: A Multi-Source Approach for Landscape Characterization
by Martina Cignetti, Danilo Godone, Daniele Ferrari Trecate and Marco Baldo
Remote Sens. 2025, 17(4), 581; https://doi.org/10.3390/rs17040581 - 8 Feb 2025
Cited by 3 | Viewed by 2004
Abstract
The advent of geomatic techniques and novel sensors has opened the road to new approaches in mapping, including morphological ones. The evolution of a land portion and its graphical representation constitutes a fundamental aspect for scientific and land planning purposes. In this context, [...] Read more.
The advent of geomatic techniques and novel sensors has opened the road to new approaches in mapping, including morphological ones. The evolution of a land portion and its graphical representation constitutes a fundamental aspect for scientific and land planning purposes. In this context, new paradigms for geomorphological mapping, which are useful for modernizing traditional, geomorphological mapping, become necessary for the creation of scalable digital representation of processes and landforms. A fully remote mapping approach, based on multi-source and multi-sensor applications, was implemented for the recognition of landforms and processes. This methodology was applied to a study site located in central Italy, characterized by the presence of ‘calanchi’ (i.e., badlands). Considering primarily the increasing availability of regional LiDAR products, an automated landform classification, i.e., Geomorphons, was adopted to map landforms at the slope scale. Simultaneously, by collecting and digitizing a time-series of historical orthoimages, a multi-temporal analysis was performed. Finally, surveying the area with an unmanned aerial vehicle, exploiting the high-resolution digital terrain model and orthoimage, a local-scale geomorphological map was produced. The proposed approach has proven to be well capable of identifying the variety of processes acting on the pilot area, identifying various genetic types of geomorphic processes with a nested hierarchy, where runoff-associated landforms coexist with gravitational ones. Large ancient mass movement characterizes the upper part of the basin, forming deep-seated gravity deformation, highly remodeled by a set of widespread runoff features forming rills, gullies, and secondary shallow landslides. The extended badlands areas imposed on Plio-Pleistocene clays are typically affected by sheet wash and rill and gully erosion causing high potential of sediment loss and the occurrence of earth- and mudflows, often interfering and affecting agricultural areas and anthropic elements. This approach guarantees a multi-scale and multi-temporal cartographic model for a full-coverage representation of landforms, representing a useful tool for land planning purposes. Full article
Show Figures

Figure 1

Back to TopTop