Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = riminophenazines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2212 KB  
Article
In Vitro Screening of an In-House Library of Structurally Distinct Chemotypes Towards the Identification of Novel SARS-CoV-2 Inhibitors
by Michele Tonelli, Anna Sparatore, Ivan Bassanini, Valeria Francesconi, Fabio Sparatore, Kevin K. Maina, Serena Delbue, Sarah D’Alessandro, Silvia Parapini and Nicoletta Basilico
Pharmaceuticals 2024, 17(12), 1668; https://doi.org/10.3390/ph17121668 - 11 Dec 2024
Viewed by 1606
Abstract
Background/Objectives: Four years after the COVID-19 pandemic, a very limited number of drugs has been marketed; thus, the search for new medications still represents a compelling need. In our previous work on antiviral, antiparasitic, and antiproliferative agents, we described several compounds (1 [...] Read more.
Background/Objectives: Four years after the COVID-19 pandemic, a very limited number of drugs has been marketed; thus, the search for new medications still represents a compelling need. In our previous work on antiviral, antiparasitic, and antiproliferative agents, we described several compounds (113 and 1620) structurally related to clofazimine, chloroquine, and benzimidazole derivatives. Thus, we deemed it worthwhile to test them against the replication of SARS-CoV-2, together with a few other compounds (14, 15 and 2125), which showed some analogy to miscellaneous anti-coronavirus agents. Methods: Twenty-five structurally assorted compounds were evaluated in vitro for cytotoxicity against Vero E6 and for their ability to inhibit SARS-CoV-2 replication. Results: Several compounds (2, 3, 10, 11, 1315, 1820) demonstrated antiviral activity (IC50 range 1.5–28 µM) and six of them exhibited an interesting selectivity index in the range 4.5–20. The chloroquine analogs 10 and 11 were more potent than the reference chloroquine itself and doubled its SI value (20 versus 11). Also, the benzimidazole ring emerged as a valuable scaffold, originating several compounds (1315 and 1820) endowed with anti-SARS-CoV-2 activity. Despite the modest activity, the cytisine and the arylamino enone derivatives 23 and 25, respectively, also deserve further consideration as model compounds. Conclusions: The investigated chemotypes may represent valuable hit compounds, deserving further in-depth biological studies to define their mechanisms of action. The derived information will guide the subsequent chemical optimization towards the development of more efficient anti-SARS-CoV-2 agents. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

25 pages, 2873 KB  
Review
Adapting Clofazimine for Treatment of Cutaneous Tuberculosis by Using Self-Double-Emulsifying Drug Delivery Systems
by Daniélle van Staden, Richard K. Haynes and Joe M. Viljoen
Antibiotics 2022, 11(6), 806; https://doi.org/10.3390/antibiotics11060806 - 15 Jun 2022
Cited by 14 | Viewed by 6559
Abstract
Although chemotherapeutic treatment regimens are currently available, and considerable effort has been lavished on the development of new drugs for the treatment of tuberculosis (TB), the disease remains deeply intractable and widespread. This is due not only to the nature of the life [...] Read more.
Although chemotherapeutic treatment regimens are currently available, and considerable effort has been lavished on the development of new drugs for the treatment of tuberculosis (TB), the disease remains deeply intractable and widespread. This is due not only to the nature of the life cycle and extraordinarily disseminated habitat of the causative pathogen, principally Mycobacterium tuberculosis (Mtb), in humans and the multi-drug resistance of Mtb to current drugs, but especially also to the difficulty of enabling universal treatment of individuals, immunocompromised or otherwise, in widely differing socio-economic environments. For the purpose of globally eliminating TB by 2035, the World Health Organization (WHO) introduced the “End-TB” initiative by employing interventions focusing on high impact, integrated and patient-centered approaches, such as individualized therapy. However, the extraordinary shortfall in stipulated aims, for example in actual treatment and in TB preventative treatments during the period 2018–2022, latterly and greatly exacerbated by the COVID-19 pandemic, means that even greater pressure is now placed on enhancing our scientific understanding of the disease, repurposing or repositioning old drugs and developing new drugs as well as evolving innovative treatment methods. In the specific context of multidrug resistant Mtb, it is furthermore noted that the incidence of extra-pulmonary TB (EPTB) has significantly increased. This review focusses on the potential of utilizing self-double-emulsifying drug delivery systems (SDEDDSs) as topical drug delivery systems for the dermal route of administration to aid in treatment of cutaneous TB (CTB) and other mycobacterial infections as a prelude to evaluating related systems for more effective treatment of CTB and other mycobacterial infections at large. As a starting point, we consider here the possibility of adapting the highly lipophilic riminophenazine clofazimine, with its potential for treatment of multi-drug resistant TB, for this purpose. Additionally, recently reported synergism achieved by adding clofazimine to first-line TB regimens signifies the need to consider clofazimine. Thus, the biological effects and pharmacology of clofazimine are reviewed. The potential of plant-based oils acting as emulsifiers, skin penetration enhancers as well as these materials behaving as anti-microbial components for transporting the incorporated drug are also discussed. Full article
(This article belongs to the Special Issue Antibacterial Topical Treatment - New Perspectives)
Show Figures

Figure 1

14 pages, 1373 KB  
Article
Riminophenazine Derivatives as Potential Antituberculosis Agents: Synthesis, Biological, and Electrochemical Evaluations
by Mpelegeng Victoria Bvumbi, Chris van der Westhuyzen, Edwin M. Mmutlane and Andile Ngwane
Molecules 2021, 26(14), 4200; https://doi.org/10.3390/molecules26144200 - 10 Jul 2021
Cited by 4 | Viewed by 3261
Abstract
A series of novel riminophenazine derivatives, having ionizable alkyl substituents at N-5 and a variety of substituents on the C-3 imino nitrogen, at C-8 and on the pendant aryl group, have been designed and synthesized. Preliminary investigations into the relationship between lipophilicity, redox [...] Read more.
A series of novel riminophenazine derivatives, having ionizable alkyl substituents at N-5 and a variety of substituents on the C-3 imino nitrogen, at C-8 and on the pendant aryl group, have been designed and synthesized. Preliminary investigations into the relationship between lipophilicity, redox potential, and antimycobacterial activity were conducted, using the in vitro activity against Mycobacterium tuberculosis H37Rv, mammalian cytotoxicity, and the redox potential of the compounds determined by cyclic voltammetry as measures. Results revealed an activity “cliff” associated with C-8 substitution (10l and 10m) that, along with defined redox activity, point to a new class of riminophenazines as potential anti-tuberculosis agents having reasonable activity (MIC99 ~1 µM). Full article
(This article belongs to the Special Issue Antitubercular Drug Discovery: Implication and Challenges)
Show Figures

Figure 1

18 pages, 400 KB  
Review
Clofazimine as a Treatment for Multidrug-Resistant Tuberculosis: A Review
by Rhea Veda Nugraha, Vycke Yunivita, Prayudi Santoso, Rob E. Aarnoutse and Rovina Ruslami
Sci. Pharm. 2021, 89(2), 19; https://doi.org/10.3390/scipharm89020019 - 18 May 2021
Cited by 19 | Viewed by 14354
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is an infectious disease caused by Mycobacterium tuberculosis which is resistant to at least isoniazid and rifampicin. This disease is a worldwide threat and complicates the control of tuberculosis (TB). Long treatment duration, a combination of several drugs, and the [...] Read more.
Multidrug-resistant tuberculosis (MDR-TB) is an infectious disease caused by Mycobacterium tuberculosis which is resistant to at least isoniazid and rifampicin. This disease is a worldwide threat and complicates the control of tuberculosis (TB). Long treatment duration, a combination of several drugs, and the adverse effects of these drugs are the factors that play a role in the poor outcomes of MDR-TB patients. There have been many studies with repurposed drugs to improve MDR-TB outcomes, including clofazimine. Clofazimine recently moved from group 5 to group B of drugs that are used to treat MDR-TB. This drug belongs to the riminophenazine class, which has lipophilic characteristics and was previously discovered to treat TB and approved for leprosy. This review discusses the role of clofazimine as a treatment component in patients with MDR-TB, and the drug’s properties. In addition, we discuss the efficacy, safety, and tolerability of clofazimine for treating MDR-TB. This study concludes that the clofazimine-containing regimen has better efficacy compared with the standard one and is also well-tolerated. Clofazimine has the potential to shorten the duration of MDR-TB treatment. Full article
Show Figures

Figure 1

15 pages, 276 KB  
Article
Synthesis and Biological Evaluation of Novel 2-Methoxypyridylamino-Substituted Riminophenazine Derivatives as Antituberculosis Agents
by Dongfeng Zhang, Yang Liu, Chunlin Zhang, Hao Zhang, Bin Wang, Jian Xu, Lei Fu, Dali Yin, Christopher B. Cooper, Zhenkun Ma, Yu Lu and Haihong Huang
Molecules 2014, 19(4), 4380-4394; https://doi.org/10.3390/molecules19044380 - 9 Apr 2014
Cited by 43 | Viewed by 8954
Abstract
Clofazimine, a member of the riminophenazine class, is one of the few antibiotics that are still active against multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis). However, the clinical utility of this agent is limited by its undesirable physicochemical properties and skin pigmentation potential. [...] Read more.
Clofazimine, a member of the riminophenazine class, is one of the few antibiotics that are still active against multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis). However, the clinical utility of this agent is limited by its undesirable physicochemical properties and skin pigmentation potential. With the goal of maintaining potent antituberculosis activity while improving physicochemical properties and lowering skin pigmentation potential, a series of novel riminophenazine derivatives containing a 2-methoxypyridylamino substituent at the C-2 position of the phenazine nucleus were designed and synthesized. These compounds were evaluated for antituberculosis activity against M. tuberculosis H37Rv and screened for cytotoxicity. Riminophenazines bearing a 3-halogen- or 3,4-dihalogen-substituted phenyl group at the N-5 position exhibited potent antituberculosis activity, with MICs ranging from 0.25~0.01 μg/mL. The 3,4-dihalogen- substituted compounds displayed low cytotoxicity, with IC50 values greater than 64 μg/mL. Among these riminophenazines, compound 15 exhibited equivalent in vivo efficacy against M. tuberculosis infection and reduced skin discoloration potential in an experimental mouse infection model as compared to clofazimine. Compound 15, as compared to clofazimine, also demonstrated improved physicochemical properties and pharmacokinetic profiles with a short half-life and less drug tissue accumulation. This compound is being evaluated as a potential drug candidate for the treatment of multidrug resistant tuberculosis. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

15 pages, 321 KB  
Article
Systematic Evaluation of Structure-Activity Relationships of the Riminophenazine Class and Discovery of a C2 Pyridylamino Series for the Treatment of Multidrug-Resistant Tuberculosis
by Binna Liu, Kai Liu, Yu Lu, Dongfeng Zhang, Tianming Yang, Xuan Li, Chen Ma, Meiqin Zheng, Bin Wang, Gang Zhang, Fei Wang, Zhenkun Ma, Chun Li, Haihong Huang and Dali Yin
Molecules 2012, 17(4), 4545-4559; https://doi.org/10.3390/molecules17044545 - 17 Apr 2012
Cited by 26 | Viewed by 11368
Abstract
Clofazimine, a member of the riminophenazine class of drugs, is the cornerstone agent for the treatment of leprosy. This agent is currently being studied in clinical trials for the treatment of multidrug-resistant tuberculosis to address the urgent need for new drugs that can [...] Read more.
Clofazimine, a member of the riminophenazine class of drugs, is the cornerstone agent for the treatment of leprosy. This agent is currently being studied in clinical trials for the treatment of multidrug-resistant tuberculosis to address the urgent need for new drugs that can overcome existing and emerging drug resistance. However, the use of clofazimine in tuberculosis treatment is hampered by its high lipophilicity and skin pigmentation side effects. To identify a new generation of riminophenazines that is less lipophilic and skin staining, while maintaining efficacy, we have performed a systematic structure-activity relationship (SAR) investigation by synthesizing a variety of analogs of clofazimine and evaluating their anti-tuberculosis activity. The study reveals that the central tricyclic phenazine system and the pendant aromatic rings are important for anti-tuberculosis activity. However, the phenyl groups attached to the C2 and N5 position of clofazimine can be replaced by a pyridyl group to provide analogs with improved physicochemical properties and pharmacokinetic characteristics. Replacement of the phenyl group attached to the C2 position by a pyridyl group has led to a promising new series of compounds with improved physicochemical properties, improved anti-tuberculosis potency, and reduced pigmentation potential. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

7 pages, 477 KB  
Article
Synthesis of New Riminophenazines with Pyrimidine and Pyrazine Substitution at the 2-N Position
by Gang Zhang, Hao Zhang, Xiaojian Wang, Chun Li, Haihong Huang and Dali Yin
Molecules 2011, 16(8), 6985-6991; https://doi.org/10.3390/molecules16086985 - 16 Aug 2011
Cited by 6 | Viewed by 6882
Abstract
New riminophenazines with pyrimidine and pyrazine substituents at the 2-position were successfully synthesized. The key step is the 2-N-arylation of riminophenazines with pyrimidine and pyrazine. The optimized reaction conditions involve the use of a Pd2(dba)3/DPPF/Cs2CO3/toluene combination. Full article
Show Figures

Figure 1

Back to TopTop