Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = right ventricular fibroblasts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 724 KiB  
Article
Fibroblast Growth Factor 23 Is a Strong Predictor of Adverse Events After Left Ventricular Assist Device Implantation
by Wissam Yared, Leyla Dogan, Ahsannullah Madad Fassli, Ajay Moza, Andreas Goetzenich, Christian Stoppe, Ahmed F. A. Mohammed, Sandra Kraemer, Lachmandath Tewarie, Ahmad Abugameh and Rachad Zayat
J. Cardiovasc. Dev. Dis. 2025, 12(8), 290; https://doi.org/10.3390/jcdd12080290 - 29 Jul 2025
Viewed by 118
Abstract
Heart failure (HF) and left ventricular hypertrophy (LVH) are linked to fibroblast growth factor 23 (FGF23). This study aims to analyze whether FGF23 can predict postoperative outcomes in unselected left ventricular assist device (LVAD) candidates. Methods: We conducted a prospective observational study that [...] Read more.
Heart failure (HF) and left ventricular hypertrophy (LVH) are linked to fibroblast growth factor 23 (FGF23). This study aims to analyze whether FGF23 can predict postoperative outcomes in unselected left ventricular assist device (LVAD) candidates. Methods: We conducted a prospective observational study that included 27 patients (25 HeartMate3 and 2 HeartMateII) with a median follow-up of 30 months. We measured preoperative FGF23 plasma levels and computed the HeartMateII risk score (HMRS), the HeartMate3 risk score (HM3RS) and the EuroSCOREII with respect to postoperative mortality, as well as the Michigan right heart failure risk score (MRHFS), the Euromacs RHF risk score (EURORHFS), the CRITT score with respect to RHF prediction and the kidney failure risk equation (KFRE) with respect to kidney failure. Multivariate logistic regression and receiver operating characteristic (ROC) analyses were performed. Results: In the multivariate logistic regression, preoperative FGF23 level was found to be a predictor of postoperative RHF (OR: 1.37, 95-CI: 0.78–2.38; p = 0.031), mortality (OR: 1.10, 95%-CI: 0.90–1.60; p = 0.025) and the need for postoperative dialysis (OR: 1.09, 95%-CI: 0.91–1.44; p = 0.032). In the ROC analysis, FGF23 as a predictor of post-LVAD RHF had an area under the curve (AUC) of 0.81. Conclusions: FGF23 improves the prediction of clinically significant patient outcomes—such as need for dialysis, RHF and mortality—after HM3 and HMII implantation, as adding FGF23 to established risk scores increased their predictive value. Full article
(This article belongs to the Section Cardiovascular Clinical Research)
Show Figures

Figure 1

26 pages, 1321 KiB  
Review
Vascular Remodeling: The Multicellular Mechanisms of Pulmonary Hypertension
by Jinjin Dai, Hongyang Chen, Jindong Fang, Shiguo Wu and Zhuangzhuang Jia
Int. J. Mol. Sci. 2025, 26(9), 4265; https://doi.org/10.3390/ijms26094265 - 30 Apr 2025
Cited by 1 | Viewed by 1528
Abstract
Pulmonary hypertension (PH) is a serious cardiovascular disease caused by a variety of pathogenic factors, which is characterized by increased pulmonary vascular resistance (PVR) and progressive elevation of mean pulmonary artery pressure (mPAP). This disease can lead to right ventricular hypertrophy and, in [...] Read more.
Pulmonary hypertension (PH) is a serious cardiovascular disease caused by a variety of pathogenic factors, which is characterized by increased pulmonary vascular resistance (PVR) and progressive elevation of mean pulmonary artery pressure (mPAP). This disease can lead to right ventricular hypertrophy and, in severe cases, right heart failure and even death. Vascular remodeling—a pathological modification involving aberrant vasoconstriction, cell proliferation, apoptosis resistance, and inflammation in the pulmonary vascular system—is a significant pathological hallmark of PH and a critical process in its progression. Recent studies have found that vascular remodeling involves the participation of a diversity of cellular pathological alterations, such as the dysfunction of pulmonary artery endothelial cells (PAECs), the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), the phenotypic differentiation of pulmonary artery fibroblasts, the inflammatory response of immune cells, and pericyte proliferation. This review focuses on the mechanisms and the intercellular crosstalk of these cells in the PH process, emphasizing recent advances in knowledge regarding cellular signaling pathways, inflammatory responses, apoptosis, and proliferation. To develop better treatments, a list of possible therapeutic approaches meant to slow down certain biological functions is provided, with the aim of providing new insights into the treatment of PH by simplifying the intricacies of these complex connections. In this review, comprehensive academic databases such as PubMed, Embase, Web of Science, and Google Scholar were systematically searched to discuss studies relevant to human and animal PH, with a focus on vascular remodeling in PH. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

20 pages, 5250 KiB  
Article
Defining Transcriptomic Heterogeneity between Left and Right Ventricle-Derived Cardiac Fibroblasts
by Michael Bradley Dewar, Fahad Ehsan, Aliya Izumi, Hangjun Zhang, Yu-Qing Zhou, Haisam Shah, Dylan Langburt, Hamsini Suresh, Tao Wang, Alison Hacker, Boris Hinz, Jesse Gillis, Mansoor Husain and Scott Patrick Heximer
Cells 2024, 13(4), 327; https://doi.org/10.3390/cells13040327 - 10 Feb 2024
Cited by 4 | Viewed by 3056
Abstract
Cardiac fibrosis is a key aspect of heart failure, leading to reduced ventricular compliance and impaired electrical conduction in the myocardium. Various pathophysiologic conditions can lead to fibrosis in the left ventricle (LV) and/or right ventricle (RV). Despite growing evidence to support the [...] Read more.
Cardiac fibrosis is a key aspect of heart failure, leading to reduced ventricular compliance and impaired electrical conduction in the myocardium. Various pathophysiologic conditions can lead to fibrosis in the left ventricle (LV) and/or right ventricle (RV). Despite growing evidence to support the transcriptomic heterogeneity of cardiac fibroblasts (CFs) in healthy and diseased states, there have been no direct comparisons of CFs in the LV and RV. Given the distinct natures of the ventricles, we hypothesized that LV- and RV-derived CFs would display baseline transcriptomic differences that influence their proliferation and differentiation following injury. Bulk RNA sequencing of CFs isolated from healthy murine left and right ventricles indicated that LV-derived CFs may be further along the myofibroblast transdifferentiation trajectory than cells isolated from the RV. Single-cell RNA-sequencing analysis of the two populations confirmed that Postn+ CFs were more enriched in the LV, whereas Igfbp3+ CFs were enriched in the RV at baseline. Notably, following pressure overload injury, the LV developed a larger subpopulation of pro-fibrotic Thbs4+/Cthrc1+ injury-induced CFs, while the RV showed a unique expansion of two less-well-characterized CF subpopulations (Igfbp3+ and Inmt+). These findings demonstrate that LV- and RV-derived CFs display baseline subpopulation differences that may dictate their diverging responses to pressure overload injury. Further study of these subpopulations will elucidate their role in the development of fibrosis and inform on whether LV and RV fibrosis require distinct treatments. Full article
(This article belongs to the Special Issue Cardiac Fibroblasts and Cardiac Remodeling)
Show Figures

Figure 1

19 pages, 810 KiB  
Review
HER2-Targeted Therapy—From Pathophysiology to Clinical Manifestation: A Narrative Review
by Svetoslava Elefterova Slavcheva and Atanas Angelov
J. Cardiovasc. Dev. Dis. 2023, 10(12), 489; https://doi.org/10.3390/jcdd10120489 - 6 Dec 2023
Cited by 5 | Viewed by 3688
Abstract
Trastuzumab is the primary treatment for all stages of HER2-overexpressing breast cancer in patients. Though discovered over 20 years ago, trastuzumab-induced cardiotoxicity (TIC) remains a research topic in cardio-oncology. This review explores the pathophysiological basis of TIC and its clinical manifestations. Their understanding [...] Read more.
Trastuzumab is the primary treatment for all stages of HER2-overexpressing breast cancer in patients. Though discovered over 20 years ago, trastuzumab-induced cardiotoxicity (TIC) remains a research topic in cardio-oncology. This review explores the pathophysiological basis of TIC and its clinical manifestations. Their understanding is paramount for early detection and cardioprotective treatment. Trastuzumab renders cardiomyocytes susceptible by inhibiting the cardioprotective NRG-1/HER2/HER4 signaling pathway. The drug acts on HER2-receptor-expressing cardiomyocytes, endothelium, and cardiac progenitor cells (see the Graphical Abstract). The activation of immune cells, fibroblasts, inflammation, and neurohormonal systems all contribute to the evolution of TIC. A substantial amount of research demonstrates that trastuzumab induces overt and subclinical left ventricular (LV) systolic failure. Data suggest the development of right ventricular damage, LV diastolic dysfunction, and heart failure with preserved ejection fraction. Further research is needed to define a chronological sequence of cardiac impairments to guide the proper timing of cardioprotection implementation. Full article
Show Figures

Figure 1

23 pages, 2419 KiB  
Review
Endothelial Dysfunction in Pulmonary Hypertension: Cause or Consequence?
by Kondababu Kurakula, Valérie F. E. D. Smolders, Olga Tura-Ceide, J. Wouter Jukema, Paul H. A. Quax and Marie-José Goumans
Biomedicines 2021, 9(1), 57; https://doi.org/10.3390/biomedicines9010057 - 9 Jan 2021
Cited by 95 | Viewed by 12795
Abstract
Pulmonary arterial hypertension (PAH) is a rare, complex, and progressive disease that is characterized by the abnormal remodeling of the pulmonary arteries that leads to right ventricular failure and death. Although our understanding of the causes for abnormal vascular remodeling in PAH is [...] Read more.
Pulmonary arterial hypertension (PAH) is a rare, complex, and progressive disease that is characterized by the abnormal remodeling of the pulmonary arteries that leads to right ventricular failure and death. Although our understanding of the causes for abnormal vascular remodeling in PAH is limited, accumulating evidence indicates that endothelial cell (EC) dysfunction is one of the first triggers initiating this process. EC dysfunction leads to the activation of several cellular signalling pathways in the endothelium, resulting in the uncontrolled proliferation of ECs, pulmonary artery smooth muscle cells, and fibroblasts, and eventually leads to vascular remodelling and the occlusion of the pulmonary blood vessels. Other factors that are related to EC dysfunction in PAH are an increase in endothelial to mesenchymal transition, inflammation, apoptosis, and thrombus formation. In this review, we outline the latest advances on the role of EC dysfunction in PAH and other forms of pulmonary hypertension. We also elaborate on the molecular signals that orchestrate EC dysfunction in PAH. Understanding the role and mechanisms of EC dysfunction will unravel the therapeutic potential of targeting this process in PAH. Full article
Show Figures

Figure 1

21 pages, 5143 KiB  
Article
Transforming Growth Factor Beta3 is Required for Cardiovascular Development
by Mrinmay Chakrabarti, Nadia Al-Sammarraie, Mengistu G. Gebere, Aniket Bhattacharya, Sunita Chopra, John Johnson, Edsel A. Peña, John F. Eberth, Robert E. Poelmann, Adriana C. Gittenberger-de Groot and Mohamad Azhar
J. Cardiovasc. Dev. Dis. 2020, 7(2), 19; https://doi.org/10.3390/jcdd7020019 - 24 May 2020
Cited by 25 | Viewed by 5642
Abstract
Transforming growth factor beta3 (TGFB3) gene mutations in patients of arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD1) and Loeys-Dietz syndrome-5 (LDS5)/Rienhoff syndrome are associated with cardiomyopathy, cardiac arrhythmia, cardiac fibrosis, cleft palate, aortic aneurysms, and valvular heart disease. Although the developing heart of [...] Read more.
Transforming growth factor beta3 (TGFB3) gene mutations in patients of arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD1) and Loeys-Dietz syndrome-5 (LDS5)/Rienhoff syndrome are associated with cardiomyopathy, cardiac arrhythmia, cardiac fibrosis, cleft palate, aortic aneurysms, and valvular heart disease. Although the developing heart of embryos express Tgfb3, its overarching role remains unclear in cardiovascular development and disease. We used histological, immunohistochemical, and molecular analyses of Tgfb3−/− fetuses and compared them to wildtype littermate controls. The cardiovascular phenotypes were diverse with approximately two thirds of the Tgfb3−/− fetuses having one or more cardiovascular malformations, including abnormal ventricular myocardium (particularly of the right ventricle), outflow tract septal and alignment defects, abnormal aortic and pulmonary trunk walls, and thickening of semilunar and/or atrioventricular valves. Ventricular septal defects (VSD) including the perimembranous VSDs were observed in Tgfb3−/− fetuses with myocardial defects often accompanied by the muscular type VSD. In vitro studies using TGFβ3-deficient fibroblasts in 3-D collagen lattice formation assays indicated that TGFβ3 was required for collagen matrix reorganization. Biochemical studies indicated the ‘paradoxically’ increased activation of canonical (SMAD-dependent) and noncanonical (MAP kinase-dependent) pathways. TGFβ3 is required for cardiovascular development to maintain a balance of canonical and noncanonical TGFβ signaling pathways. Full article
Show Figures

Graphical abstract

16 pages, 5840 KiB  
Article
Periostin Mediates Right Ventricular Failure through Induction of Inducible Nitric Oxide Synthase Expression in Right Ventricular Fibroblasts from Monocrotaline-Induced Pulmonary Arterial Hypertensive Rats
by Keisuke Imoto, Muneyoshi Okada and Hideyuki Yamawaki
Int. J. Mol. Sci. 2019, 20(1), 62; https://doi.org/10.3390/ijms20010062 - 24 Dec 2018
Cited by 16 | Viewed by 5099
Abstract
Pulmonary arterial hypertension (PAH) leads to lethal right ventricular failure (RVF). Periostin (POSTN) mRNA expression is increased in right ventricles (RVs) of monocrotaline (MCT)-induced PAH model rats. However, the pathophysiological role of POSTN in RVF has not been clarified. We investigated [...] Read more.
Pulmonary arterial hypertension (PAH) leads to lethal right ventricular failure (RVF). Periostin (POSTN) mRNA expression is increased in right ventricles (RVs) of monocrotaline (MCT)-induced PAH model rats. However, the pathophysiological role of POSTN in RVF has not been clarified. We investigated the effects of POSTN on inducible nitric oxide (NO) synthase (iNOS) expression and NO production, which causes cardiac dysfunction, in right ventricular fibroblasts (RVFbs). Male Wistar rats were intraperitoneally injected with MCT (60 mg/kg) or saline. Three weeks after injection, RVFbs were isolated from RVs of MCT- or saline-injected rats (MCT-RVFb or CONT-RVFb). In MCT-RVFb, iNOS expression and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) were higher than those in CONT-RVFb. Recombinant POSTN increased iNOS expression and NO production, which were prevented by a pharmacological inhibition of ERK1/2, JNK or NF-κB in RVFbs isolated from normal rats. Culture medium of POSTN-stimulated RVFbs suppressed Ca2+ inflow through l-type Ca2+ channel (LTCC) in H9c2 cardiomyoblasts. We demonstrated that POSTN enhances iNOS expression and subsequent NO production via ERK1/2, JNK, and NF-κB signaling pathways in RVFbs. POSTN might mediate RVF through the suppression of LTCC activity of cardiomyocytes by producing NO from RVFbs in PAH model rats. Full article
Show Figures

Graphical abstract

Back to TopTop