Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = reversed iontophoresis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1566 KiB  
Article
Effect of Urea on Drug Extraction Efficiency in Reverse Iontophoresis
by Rie Yamauchi, Shuji Ohno and Yasuko Obata
Pharmaceutics 2025, 17(5), 677; https://doi.org/10.3390/pharmaceutics17050677 - 21 May 2025
Viewed by 786
Abstract
Background/Objectives: Reverse iontophoresis (R-IP) is a technology that transdermally delivers components from inside the body to outside the body using electroosmotic flow (EOF) generated by applying a low electric current through the skin. It has attracted attention as a non-invasive sampling method [...] Read more.
Background/Objectives: Reverse iontophoresis (R-IP) is a technology that transdermally delivers components from inside the body to outside the body using electroosmotic flow (EOF) generated by applying a low electric current through the skin. It has attracted attention as a non-invasive sampling method for therapeutic drug monitoring (TDM). The purpose of this study was to determine whether urea and Tween 80 effectively enhance drug extraction from beneath the skin using R-IP. Methods: An in vitro drug extraction test using hairless mouse skin and R-IP was performed with a 3-chamber Franz cell and Ag|AgCl electrodes by applying a constant current (0.25 mA/cm2) for 6 h. Acetaminophen was chosen as the model drug, and its solution (30, 100, or 300 μg/mL) was placed in the subdermal compartment. The pH of both the electrode and subdermal compartment solutions was maintained at 7.4. Results: Acetaminophen was gradually extracted into the electrode compartment in a concentration-dependent manner and was more abundant in the cathode compartment than in the anode compartment. In addition, urea significantly promoted drug extraction, particularly on the cathode side, and a linear relationship was observed between the subdermal concentration and extracted amount. This effect is likely due to skin hydration caused by urea, which enhances EOF generation in the skin. Conversely, Tween 80 had no effect on drug extraction. Conclusions: R-IP combined with urea is expected to not only shorten the treatment time but also enable its application to drugs with low concentrations in blood. Full article
Show Figures

Figure 1

16 pages, 6568 KiB  
Article
Rapid Mental Stress Evaluation Based on Non-Invasive, Wearable Cortisol Detection with the Self-Assembly of Nanomagnetic Beads
by Junjie Li, Qian Chen, Weixia Li, Shuang Li, Cherie S. Tan, Shuai Ma, Shike Hou, Bin Fan and Zetao Chen
Biosensors 2025, 15(3), 140; https://doi.org/10.3390/bios15030140 - 23 Feb 2025
Viewed by 1314
Abstract
The rapid and timely evaluation of the mental health of emergency rescuers can effectively improve the quality of emergency rescues. However, biosensors for mental health evaluation are now facing challenges, such as the rapid and portable detection of multiple mental biomarkers. In this [...] Read more.
The rapid and timely evaluation of the mental health of emergency rescuers can effectively improve the quality of emergency rescues. However, biosensors for mental health evaluation are now facing challenges, such as the rapid and portable detection of multiple mental biomarkers. In this study, a non-invasive, flexible, wearable electrochemical biosensor was constructed based on the self-assembly of nanomagnetic beads for the rapid detection of cortisol in interstitial fluid (ISF) to assess the mental stress of emergency rescuers. Based on a one-step reduction, gold nanoparticles (AuNPs) were functionally modified on a screen-printed electrode to improve the detection of electrochemical properties. Afterwards, nanocomposites of MXene and multi-wall carbon nanotubes were coated onto the AuNPs layer through a physical deposition to enhance the electron transfer rate. The carboxylated nanomagnetic beads immobilized with a cortisol antibody were treated as sensing elements for the specific recognition of the mental stress marker, cortisol. With the rapid attraction of magnets to nanomagnetic beads, the sensing element can be rapidly replaced on the electrode uniformly, which can lead to extreme improvements in detection efficiency. The detected linear response to cortisol was 0–32 ng/mL. With the integrated reverse iontophoresis technique on a flexible printed circuit board, the ISF can be extracted non-invasively for wearable cortisol detection. The stimulating current was set to be under 1 mA for the extraction, which was within the safe and acceptable range for human bodies. Therefore, based on the positive correlation between cortisol concentration and mental stress, the mental stress of emergency rescuers can be evaluated, which will provide feedback on the psychological statuses of rescuers and effectively improve rescuer safety and rescue efficiency. Full article
Show Figures

Figure 1

33 pages, 5357 KiB  
Review
Biochemical Sensors for Personalized Therapy in Parkinson’s Disease: Where We Stand
by Davide Ciarrocchi, Pasquale Maria Pecoraro, Alessandro Zompanti, Giorgio Pennazza, Marco Santonico and Lazzaro di Biase
J. Clin. Med. 2024, 13(23), 7458; https://doi.org/10.3390/jcm13237458 - 7 Dec 2024
Cited by 2 | Viewed by 1480
Abstract
Since its first introduction, levodopa has remained the cornerstone treatment for Parkinson’s disease. However, as the disease advances, the therapeutic window for levodopa narrows, leading to motor complications like fluctuations and dyskinesias. Clinicians face challenges in optimizing daily therapeutic regimens, particularly in advanced [...] Read more.
Since its first introduction, levodopa has remained the cornerstone treatment for Parkinson’s disease. However, as the disease advances, the therapeutic window for levodopa narrows, leading to motor complications like fluctuations and dyskinesias. Clinicians face challenges in optimizing daily therapeutic regimens, particularly in advanced stages, due to the lack of quantitative biomarkers for continuous motor monitoring. Biochemical sensing of levodopa offers a promising approach for real-time therapeutic feedback, potentially sustaining an optimal motor state throughout the day. These sensors vary in invasiveness, encompassing techniques like microdialysis, electrochemical non-enzymatic sensing, and enzymatic approaches. Electrochemical sensing, including wearable solutions that utilize reverse iontophoresis and microneedles, is notable for its potential in non-invasive or minimally invasive monitoring. Point-of-care devices and standard electrochemical cells demonstrate superior performance compared to wearable solutions; however, this comes at the cost of wearability. As a result, they are better suited for clinical use. The integration of nanomaterials such as carbon nanotubes, metal–organic frameworks, and graphene has significantly enhanced sensor sensitivity, selectivity, and detection performance. This framework paves the way for accurate, continuous monitoring of levodopa and its metabolites in biofluids such as sweat and interstitial fluid, aiding real-time motor performance assessment in Parkinson’s disease. This review highlights recent advancements in biochemical sensing for levodopa and catecholamine monitoring, exploring emerging technologies and their potential role in developing closed-loop therapy for Parkinson’s disease. Full article
(This article belongs to the Special Issue Clinical Management of Movement Disorders (Second Edition))
Show Figures

Figure 1

15 pages, 3580 KiB  
Article
Improving Electrical Stimulation Effectiveness and Versatility for Non-Invasive Transdermal Monitoring Applications via an Innovative Mixed-Signal Electronic Interface
by Alessandro Zompanti, Davide Ciarrocchi, Simone Grasso, Riccardo Olivieri, Giuseppe Ferri, Marco Santonico and Giorgio Pennazza
Sensors 2024, 24(23), 7626; https://doi.org/10.3390/s24237626 - 28 Nov 2024
Viewed by 1201
Abstract
Electrical stimulation can be used in several applications such as fatigue reduction, muscle rehabilitation, neurorehabilitation, neuro-prosthesis and pain relief. Moreover, electrical stimulation can be used for drug delivery applications or body fluids extraction (e.g., sweat and interstitial fluid) to successively monitor several parameters, [...] Read more.
Electrical stimulation can be used in several applications such as fatigue reduction, muscle rehabilitation, neurorehabilitation, neuro-prosthesis and pain relief. Moreover, electrical stimulation can be used for drug delivery applications or body fluids extraction (e.g., sweat and interstitial fluid) to successively monitor several parameters, such as glucose, lactate, etc. All these applications are performed using electrical stimulator devices capable of applying constant voltage pulses or constant current pulses via electrodes to human tissues. Usually, constant current stimulators are most widely used because of their safety, stability, and repeatability. Thus, the aim of this work was to design, realize and test a mixed-signal electronic interface capable of producing current pulses with custom amplitude, duration, frequency, polarity and symmetry with extended voltage compliance. To achieve this result, we developed a high-voltage current stimulator suitable for iontophoresis applications. Current stimuli can be applied setting the intensity, frequency and duty cycle of the stimulation patterns through a µC. A custom electronic interface was designed to allow the control of the injected current in real time and to prevent electrical injuries to the patient by avoiding potential unwanted short circuits. Moreover, the system was tested in a simulated environment demonstrating its effectiveness and applicability for transdermal monitoring applications. The obtained results show that the device is able to apply monophasic and biphasic pulses, ranging from 0.1 to 10 mA, with a maximum error of about 10% at the minimum intensity; in addition, current stimuli can be applied up to a maximum frequency of 100 kHz with a voltage compliance of 120 V. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

15 pages, 2478 KiB  
Article
A Simple Reversed Iontophoresis-Based Sensor to Enable In Vivo Multiplexed Measurement of Plant Biomarkers Using Screen-Printed Electrodes
by Antonio Ruiz-Gonzalez, Harriet Kempson and Jim Haseloff
Sensors 2023, 23(2), 780; https://doi.org/10.3390/s23020780 - 10 Jan 2023
Cited by 6 | Viewed by 3248
Abstract
The direct quantification of plant biomarkers in sap is crucial to enhancing crop production. However, current approaches are inaccurate, involving the measurement of non-specific parameters such as colour intensity of leaves, or requiring highly invasive processes for the extraction of sap. In addition, [...] Read more.
The direct quantification of plant biomarkers in sap is crucial to enhancing crop production. However, current approaches are inaccurate, involving the measurement of non-specific parameters such as colour intensity of leaves, or requiring highly invasive processes for the extraction of sap. In addition, these methods rely on bulky and expensive equipment, and they are time-consuming. The present work reports for the first time a low-cost sensing device that can be used for the simultaneous determination of sap K+ and pH in living plants by means of reverse iontophoresis. A screen-printed electrode was modified by deposition of a K+-selective membrane, achieving a super-Nernstian sensitivity of 70 mV Log[K+]−1 and a limit of detection within the micromolar level. In addition, the cathode material of the reverse iontophoresis device was modified by electrodeposition of RuOx particles. This electrode could be used for the direct extraction of ions from plant leaves and the amperometric determination of pH within the physiological range (pH 3–8), triggered by the selective reaction of RuOx with H+. A portable and low-cost (<£60) microcontroller-based device was additionally designed to enable its use in low-resource settings. The applicability of this system was demonstrated by measuring the changes in concentration of K+ and pH in tomato plants before and after watering with deionised water. These results represent a step forward in the design of affordable and non-invasive devices for the monitoring of key biomarkers in plants, with a plethora of applications in smart farming and precision agriculture among others. Full article
(This article belongs to the Special Issue Screen-Printed Sensors)
Show Figures

Figure 1

15 pages, 3405 KiB  
Article
Reverse Iontophoretic Extraction of Skin Cancer-Related Biomarkers
by Maxim Morin, Sebastian Björklund, Skaidre Jankovskaja, Kieran Moore, Maria Begoña Delgado-Charro, Tautgirdas Ruzgas, Richard H. Guy and Johan Engblom
Pharmaceutics 2022, 14(1), 79; https://doi.org/10.3390/pharmaceutics14010079 - 29 Dec 2021
Cited by 6 | Viewed by 2641
Abstract
Non-invasive methods for early diagnosis of skin cancer are highly valued. One possible approach is to monitor relevant biomarkers such as tryptophan (Trp) and kynurenine (Kyn), on the skin surface. The primary aim of this in vitro investigation was, therefore, to examine whether [...] Read more.
Non-invasive methods for early diagnosis of skin cancer are highly valued. One possible approach is to monitor relevant biomarkers such as tryptophan (Trp) and kynurenine (Kyn), on the skin surface. The primary aim of this in vitro investigation was, therefore, to examine whether reverse iontophoresis (RI) can enhance the extraction of Trp and Kyn, and to demonstrate how the Trp/Kyn ratio acquired from the skin surface reflects that in the epidermal tissue. The study also explored whether the pH of the receiver medium impacted on extraction efficiency, and assessed the suitability of a bicontinuous cubic liquid crystal as an alternative to a simple buffer solution for this purpose. RI substantially enhanced the extraction of Trp and Kyn, in particular towards the cathode. The Trp/Kyn ratio obtained on the surface matched that in the viable skin. Increasing the receiver solution pH from 4 to 9 improved extraction of both analytes, but did not significantly change the Trp/Kyn ratio. RI extraction of Trp and Kyn into the cubic liquid crystal was comparable to that achieved with simple aqueous receiver solutions. We conclude that RI offers a potential for non-invasive sampling of low-molecular weight biomarkers and further investigations in vivo are therefore warranted. Full article
Show Figures

Graphical abstract

19 pages, 5888 KiB  
Article
Iontosomes: Electroresponsive Liposomes for Topical Iontophoretic Delivery of Chemotherapeutics to the Buccal Mucosa
by Kiran Sonaje, Vasundhara Tyagi, Yong Chen and Yogeshvar N. Kalia
Pharmaceutics 2021, 13(1), 88; https://doi.org/10.3390/pharmaceutics13010088 - 11 Jan 2021
Cited by 16 | Viewed by 3022
Abstract
The targeted local delivery of anticancer therapeutics offers an alternative to systemic chemotherapy for oral cancers not amenable to surgical excision. However, epithelial barrier function can pose a challenge to their passive topical delivery. The charged, deformable liposomes—“iontosomes”—described here are able to overcome [...] Read more.
The targeted local delivery of anticancer therapeutics offers an alternative to systemic chemotherapy for oral cancers not amenable to surgical excision. However, epithelial barrier function can pose a challenge to their passive topical delivery. The charged, deformable liposomes—“iontosomes”—described here are able to overcome the buccal mucosal barrier via a combination of the electrical potential gradient imposed by iontophoresis and their shape-deforming characteristics. Two chemotherapeutic agents with very different physicochemical properties, cisplatin (CDDP) and docetaxel (DTX), were co-encapsulated in cationic iontosomes comprising 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and Lipoid-S75. The entrapment of CDDP was improved by formulating it in anionic reverse micelles of dipalmitoyl-sn-glycero-3-phospho-rac-glycerol sodium (DPPG) prior to loading in the iontosomes. Cryo-TEM imaging clearly demonstrated the iontosomes’ electroresponsive shape-deformable properties. The in vitro transport study using porcine mucosa indicated that iontosomes did not enter the mucosa without an external driving force. However, anodal iontophoresis resulted in significant amounts of co-encapsulated CDDP and DTX being deposited in the buccal mucosa; e.g., after current application for 10 min, the deposition of CDDP and DTX was 13.54 ± 1.78 and 10.75 ± 1.75 μg/cm2 cf. 0.20 ± 0.07 and 0.19 ± 0.09 μg/cm2 for the passive controls—i.e., 67.7- and 56.6-fold increases—without any noticeable increase in their transmucosal permeation. Confocal microscopy confirmed that the iontosomes penetrated the mucosa through the intercellular spaces and that the penetration depth could be controlled by varying the duration of current application. Overall, the results suggest that the combination of topical iontophoresis with a suitable nanocarrier system can be used to deliver multiple “physicochemically incompatible” chemotherapeutics selectively to oral cancers while decreasing the extent of systemic absorption and the associated risk of side effects. Full article
(This article belongs to the Special Issue New Formulations for Cancer Therapy)
Show Figures

Graphical abstract

32 pages, 5255 KiB  
Review
Non-Invasive Blood Glucose Monitoring Technology: A Review
by Liu Tang, Shwu Jen Chang, Ching-Jung Chen and Jen-Tsai Liu
Sensors 2020, 20(23), 6925; https://doi.org/10.3390/s20236925 - 4 Dec 2020
Cited by 347 | Viewed by 44542
Abstract
In recent years, with the rise of global diabetes, a growing number of subjects are suffering from pain and infections caused by the invasive nature of mainstream commercial glucose meters. Non-invasive blood glucose monitoring technology has become an international research topic and a [...] Read more.
In recent years, with the rise of global diabetes, a growing number of subjects are suffering from pain and infections caused by the invasive nature of mainstream commercial glucose meters. Non-invasive blood glucose monitoring technology has become an international research topic and a new method which could bring relief to a vast number of patients. This paper reviews the research progress and major challenges of non-invasive blood glucose detection technology in recent years, and divides it into three categories: optics, microwave and electrochemistry, based on the detection principle. The technology covers medical, materials, optics, electromagnetic wave, chemistry, biology, computational science and other related fields. The advantages and limitations of non-invasive and invasive technologies as well as electrochemistry and optics in non-invasives are compared horizontally in this paper. In addition, the current research achievements and limitations of non-invasive electrochemical glucose sensing systems in continuous monitoring, point-of-care and clinical settings are highlighted, so as to discuss the development tendency in future research. With the rapid development of wearable technology and transdermal biosensors, non-invasive blood glucose monitoring will become more efficient, affordable, robust, and more competitive on the market. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

36 pages, 11738 KiB  
Review
Current Advancements in Transdermal Biosensing and Targeted Drug Delivery
by Prem C. Pandey, Shubhangi Shukla, Shelby A. Skoog, Ryan D. Boehm and Roger J. Narayan
Sensors 2019, 19(5), 1028; https://doi.org/10.3390/s19051028 - 28 Feb 2019
Cited by 69 | Viewed by 10215
Abstract
In this manuscript, recent advancements in the area of minimally-invasive transdermal biosensing and drug delivery are reviewed. The administration of therapeutic entities through the skin is complicated by the stratum corneum layer, which serves as a barrier to entry and retards bioavailability. A [...] Read more.
In this manuscript, recent advancements in the area of minimally-invasive transdermal biosensing and drug delivery are reviewed. The administration of therapeutic entities through the skin is complicated by the stratum corneum layer, which serves as a barrier to entry and retards bioavailability. A variety of strategies have been adopted for the enhancement of transdermal permeation for drug delivery and biosensing of various substances. Physical techniques such as iontophoresis, reverse iontophoresis, electroporation, and microneedles offer (a) electrical amplification for transdermal sensing of biomolecules and (b) transport of amphiphilic drug molecules to the targeted site in a minimally invasive manner. Iontophoretic delivery involves the application of low currents to the skin as well as the migration of polarized and neutral molecules across it. Transdermal biosensing via microneedles has emerged as a novel approach to replace hypodermic needles. In addition, microneedles have facilitated minimally invasive detection of analytes in body fluids. This review considers recent innovations in the structure and performance of transdermal systems. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

12 pages, 3793 KiB  
Article
A Flexible Interdigital Electrode Used in Skin Penetration Promotion and Evaluation with Electroporation and Reverse Iontophoresis Synergistically
by Rongjian Zhao, Chenshuo Wang, Fei Lu, Lidong Du, Zhen Fang, Xiuhua Guo, Jen-Tsai Liu, Ching-Jung Chen and Zhan Zhao
Sensors 2018, 18(5), 1431; https://doi.org/10.3390/s18051431 - 4 May 2018
Cited by 13 | Viewed by 7108
Abstract
Skin penetration is related to efficiencies of drug delivery or ISF extraction. Normally, the macro-electrode is employed in skin permeability promotion and evaluation, which has the disadvantages of easily causing skin damage when using electroporation or reverse iontophoresis by alone; furthermore, it has [...] Read more.
Skin penetration is related to efficiencies of drug delivery or ISF extraction. Normally, the macro-electrode is employed in skin permeability promotion and evaluation, which has the disadvantages of easily causing skin damage when using electroporation or reverse iontophoresis by alone; furthermore, it has large measurement error, low sensitivity, and difficulty in integration. To resolve these issues, this paper presents a flexible interdigital microelectrode for evaluating skin penetration by sensing impedance and a method of synergistical combination of electroporation and reverse iontophoresis to promote skin penetration. First, a flexible interdigital microelectrode was designed with a minimal configuration circuit of electroporation and reverse iontophoresis for future wearable application. Due to the variation of the skin impedance correlated with many factors, relative changes of it were recorded at the end of supply, different voltage, or constant current, times, and duration. It is found that the better results can be obtained by using electroporation for 5 min then reverse iontophoresis for 12 min. By synergistically using electroporation and reverse iontophoresis, the penetration of skin is promoted. The results tested in vivo suggest that the developed microelectrode can be applied to evaluate and promote the skin penetration and the designed method promises to leave the skin without damage. The electrode and the method may be beneficial for designing noninvasive glucose sensors. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

28 pages, 329 KiB  
Review
Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System
by Vinod DHOTE, Punit BHATNAGAR, Pradyumna K. MISHRA, Suresh C. MAHAJAN and Dinesh K. MISHRA
Sci. Pharm. 2012, 80(1), 1-28; https://doi.org/10.3797/scipharm.1108-20 - 13 Dec 2011
Cited by 141 | Viewed by 5488
Abstract
The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems [...] Read more.
The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application. Full article
Back to TopTop