Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = reuse of forestry residues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6544 KiB  
Article
Super-Resolution Reconstruction of Particleboard Images Based on Improved SRGAN
by Wei Yu, Haiyan Zhou, Ying Liu, Yutu Yang and Yinxi Shen
Forests 2023, 14(9), 1842; https://doi.org/10.3390/f14091842 - 10 Sep 2023
Cited by 7 | Viewed by 1615
Abstract
As an important forest product, particleboard can greatly save forestry resources and promote low-carbon development by reusing wood processing residues. The size of the entire particleboard is large, and there are problems with less image feature information and blurred defect outlines when obtaining [...] Read more.
As an important forest product, particleboard can greatly save forestry resources and promote low-carbon development by reusing wood processing residues. The size of the entire particleboard is large, and there are problems with less image feature information and blurred defect outlines when obtaining the particleboard images. The super-resolution reconstruction technology can improve the quality of the particleboard surface images, making the defects clearer. In this study, the super-resolution dense attention generative adversarial network (SRDAGAN) model was improved to solve the problem that the super-resolution generative adversarial network (SRGAN) reconstructed image would produce artifacts and its performance needed to be improved. The Batch Normalization (BN) layer was removed, the convolutional block attention module (CBAM) was optimized to construct the dense block, and the dense blocks were constructed via a densely skip connection. Then, the corresponding 52,400 image blocks with high resolution and low resolution were trained, verified, and tested according to the ratio of 3:1:1. The model was comprehensively evaluated from the effect of image reconstruction and the three indexes of PSNR, SSIM, and LPIPS. It was found that compared with BICUBIC, SRGAN, and SWINIR, the PSNR index of SRDAGAN increased by 4.88 dB, 3.25 dB, and 2.68 dB, respectively; SSIM increased by 0.0507, 0.1122, and 0.0648, respectively; and LPIPS improved by 0.1948, 0.1065, and 0.0639, respectively. The reconstructed images not only had a clearer texture, but also had a more realistic expression of various features, and the performance of the model had been greatly improved. At the same time, this study also emphatically discussed the image reconstruction effect with defects. The result showed that the SRDAGAN proposed in this study can complete the super-resolution reconstruction of the particleboard images with high quality. In the future, it can also be further combined with defect detection for the actual production to improve the quality of forestry products and increase economic benefits. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

17 pages, 3901 KiB  
Article
Biochar Application: A Viable and Pyrolysis Temperature Dependent Option for Enhancing Leaf Secondary Metabolites of Cyclocarya paliurus
by Wenhao Li, Ye Tian, Chengyu Liu, Rui Yang, Yuanyuan Jin and Tong Li
Forests 2023, 14(7), 1298; https://doi.org/10.3390/f14071298 - 24 Jun 2023
Cited by 3 | Viewed by 2443
Abstract
While numerous studies have suggested that pyrolysis of the forestry residues to produce biochar and return it back for forestry use is an effective way for the utilization of forestry wastes, there have been few reports addressing the effect of pyrolysis temperature on [...] Read more.
While numerous studies have suggested that pyrolysis of the forestry residues to produce biochar and return it back for forestry use is an effective way for the utilization of forestry wastes, there have been few reports addressing the effect of pyrolysis temperature on its agronomic functions, especially the secondary metabolism of the medicinal tree. In this study, two kinds of biochar were pyrolyzed using poplar sawdust at 350 °C (C350) and 600 °C (C600), respectively, then applied as auxiliary substrate material for the cultivation of Cyclocarya paliurus seedlings in a greenhouse to study their effects on soil properties, seedling growth and the accumulation of main secondary metabolites in C. paliurus leaves. The results showed that biochar application definitely ameliorated most of the soil properties, and this improvement was further enhanced as the pyrolysis temperature of the biochar increased. Compared with the basic substrate (CK), the growth of C. paliurus seedlings increased under C600 and decreased under C350, but the application of two biochars had no significant effect on the content of the main secondary metabolites in the leaves. In contrast, the seedling growth with the direct application of poplar sawdust (C0) was significantly inhibited, while the content of secondary metabolites in the leaves increased significantly. In terms of the yield of leaf secondary metabolites, the application of biochar with high pyrolysis temperature (C600) had the highest yield, while the direct application of poplar sawdust had the lowest yield. In addition, the contents of several metabolite monomers were higher under C0 than these of the other three treatments. The results indicated a certain trade-off between the primary growth and the synthesis of leaf secondary metabolites in C. paliurus affected by different biochars and poplar sawdust application, while the accumulation of leaf secondary metabolites was generally dependent on leaf biomass. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

10 pages, 796 KiB  
Article
Characterization of Various Biomass Feedstock Suitable for Small-Scale Energy Plants as Preliminary Activity of Biocheaper Project
by Gianluca Cavalaglio, Franco Cotana, Andrea Nicolini, Valentina Coccia, Alessandro Petrozzi, Alessandro Formica and Alessandro Bertini
Sustainability 2020, 12(16), 6678; https://doi.org/10.3390/su12166678 - 18 Aug 2020
Cited by 55 | Viewed by 4534
Abstract
The PRIN (Research Project with Relevant National Interest) project “Biocheaper—biomasses circular holistic economy approach to energy equipments” started in September 2019 and involves several universities: Palermo as the university coordinator, Perugia, Cassino, Enna, Pavia and Bolzano. The main goal of the project is [...] Read more.
The PRIN (Research Project with Relevant National Interest) project “Biocheaper—biomasses circular holistic economy approach to energy equipments” started in September 2019 and involves several universities: Palermo as the university coordinator, Perugia, Cassino, Enna, Pavia and Bolzano. The main goal of the project is to increase the energy efficiency and reduce the pollutants emissions in small-scale biomass plant for energy (heat and power) production. The project focuses on residual lignocellulosic feedstocks from the agriculture and forestry sector, from energy crops in marginal lands and residues from rivers maintenance. Starting from the selection and characterization of potential feedstocks, the project aims at developing some prototypes for retrofit applications in existing biomass boilers, like a mini-cyclone for the reduction of particulate emissions and an exhaust air-water condensing system for the recovery of water and the reuse in agriculture. This work presents the first results of the project, in particular regarding the selection and the chemical–physical characterization of different biomass, available in different zones of Italy; in particular the authors investigated cardoon chips, carthamus chips, olive and wine pruning, residues from rivers maintenance. Each biomass sample was characterized in terms of moisture content, ashes content, volatile substances, fixed carbon, low and high heating value, content of carbon, nitrogen, hydrogen and main metals. Full article
Show Figures

Figure 1

13 pages, 6504 KiB  
Article
Best Practices for Recovering Rural Abandoned Towers through the Installation of Small-Scale Biogas Plants
by Mattia Manni, Valentina Coccia, Gianluca Cavalaglio, Andrea Nicolini and Alessandro Petrozzi
Energies 2017, 10(8), 1224; https://doi.org/10.3390/en10081224 - 17 Aug 2017
Cited by 8 | Viewed by 4453
Abstract
The massive and continuous development of renewable energy systems is making it possible to achieve the European goals regarding environment and sustainability. On the other hand, it leads to the progression of significant problems such as low renewable energy density (i), social acceptability [...] Read more.
The massive and continuous development of renewable energy systems is making it possible to achieve the European goals regarding environment and sustainability. On the other hand, it leads to the progression of significant problems such as low renewable energy density (i), social acceptability (ii), and non-programmability of renewable energy sources (iii). The rural architecture, which is largely present in the countryside of central Italy, is generally equipped with several annexes such as dovecotes (i), grain stores (ii), and tobacco drying kilns (iii). Nowadays, those towers appear in decay because of the decline of agricultural activities, although they are classed as Environmental and Historical Heritage sites. The present work aims to propose a methodology for improving the energy grid in the countryside, while reusing abandoned buildings by modifying their function and maintaining their aspect as much as possible. The proposed workflow was applied to a rural silo, which has fallen into disuse, in Sant’Apollinare (Marsciano, Perugia) by converting it into a mini-biogas plant. The function of the annex which was chosen as the case study changes from agricultural use to energy production: it becomes an on-site renewable energy-based electric grid that can produce clean energy from agricultural and forestry residues. The project turns out to be sustainable not only in terms of energy and the environment, but also from an economic point of view as a result of the recent regulations and incentives for renewable energy production. Full article
Show Figures

Figure 1

Back to TopTop