Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = repetitive mild TBI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5173 KiB  
Article
Repetitive Mild but Not Single Moderate Brain Trauma Is Associated with TAR DNA-Binding Protein 43 Mislocalization and Glial Activation in the Mouse Spinal Cord
by Tamara Janković, Jelena Rajič Bumber, Nika Gržeta Krpan, Petra Dolenec, Marc Jaeger, Jasna Kriz, Gordana Župan and Kristina Pilipović
Biomedicines 2025, 13(1), 218; https://doi.org/10.3390/biomedicines13010218 - 16 Jan 2025
Cited by 1 | Viewed by 1216
Abstract
Background/Objectives: Traumatic brain injury (TBI) occurs after a sudden mechanical force to the skull and represents a significant public health problem. Initial brain trauma triggers secondary pathophysiological processes that induce structural and functional impairment of the central nervous system, even in the [...] Read more.
Background/Objectives: Traumatic brain injury (TBI) occurs after a sudden mechanical force to the skull and represents a significant public health problem. Initial brain trauma triggers secondary pathophysiological processes that induce structural and functional impairment of the central nervous system, even in the regions distant to the lesion site. Later in life, these changes can be manifested as neurodegenerative sequalae that commonly involve proteinopathies, such as transactive DNA-binding protein 43 (TDP-43). The progression of pathophysiological changes to the spinal cord motor neurons has been detected after repetitive TBI, while such changes have been less investigated after single TBI. Methods: Single TBI was applied over the left parietal cortex of mice by using the lateral fluid percussion injury apparatus and a separate cohort of animals received repetitive mild TBI by weight drop apparatus, with two mild injuries daily, for five days in a row. Mice were sacrificed after single moderate or last mild TBI and their spinal cords were prepared for the analyses. For both types of injury, sham-injured mice were used as a control group. Results: Here, we found an early formation of toxic phosphorylated TDP-43 species on the 3rdday post-injury which, together with TDP-43 cytoplasmic translocation, remained present in the subacute period of 14 days after repetitive mild but not single moderate TBI. During the subacute period following a repetitive brain trauma, we found an increased choline acetyltransferase protein expression and significant microgliosis in the cervical part of the spinal cord, which was not detected after single TBI. Astrogliosis presented similarly after both experimental procedures. Conclusions: This study demonstrates the differences in the spinal cord TDP-43 pathology and inflammation, depending on the brain trauma type, and may contribute to the development of targeted therapeutic strategies. Full article
Show Figures

Figure 1

16 pages, 3114 KiB  
Review
Assessing Mild Traumatic Brain Injury-Associated Blood–Brain Barrier (BBB) Damage and Restoration Using Late-Phase Perfusion Analysis by 3D ASL MRI: Implications for Predicting Progressive Brain Injury in a Focused Review
by Charles R. Joseph
Int. J. Mol. Sci. 2024, 25(21), 11522; https://doi.org/10.3390/ijms252111522 - 26 Oct 2024
Cited by 2 | Viewed by 2021
Abstract
Mild traumatic brain injury (mTBI) is a common occurrence around the world, associated with a variety of blunt force and torsion injuries affecting all age groups. Most never reach medical attention, and the identification of acute injury and later clearance to return to [...] Read more.
Mild traumatic brain injury (mTBI) is a common occurrence around the world, associated with a variety of blunt force and torsion injuries affecting all age groups. Most never reach medical attention, and the identification of acute injury and later clearance to return to usual activities is relegated to clinical evaluation—particularly in sports injuries. Advanced structural imaging is rarely performed due to the usual absence of associated acute anatomic/hemorrhagic changes. This review targets physiologic imaging techniques available to identify subtle blood–brain barrier dysfunction and white matter tract shear injury and their association with chronic traumatic encephalopathy. These techniques provide needed objective measures to assure recovery from injury in those patients with persistent cognitive/emotional symptoms and in the face of repetitive mTBI. Full article
Show Figures

Figure 1

26 pages, 8072 KiB  
Article
The Immune Response in Two Models of Traumatic Injury of the Immature Brain
by Zahra F. Al-Khateeb, Siân M. Henson, Jordi L. Tremoleda and Adina T. Michael-Titus
Cells 2024, 13(19), 1612; https://doi.org/10.3390/cells13191612 - 26 Sep 2024
Viewed by 1494
Abstract
Traumatic brain injury (TBI) can cause major disability and increases the risk of neurodegeneration. Post-TBI, there is infiltration of peripheral myeloid and lymphoid cells; there is limited information on the peripheral immune response post-TBI in the immature brain—where injury may interfere with neurodevelopment. [...] Read more.
Traumatic brain injury (TBI) can cause major disability and increases the risk of neurodegeneration. Post-TBI, there is infiltration of peripheral myeloid and lymphoid cells; there is limited information on the peripheral immune response post-TBI in the immature brain—where injury may interfere with neurodevelopment. We carried out two injury types in juvenile mice: invasive TBI with a controlled cortical impact (CCI) and repetitive mild TBI (rmTBI) using weight drop injury and analysed the response at 5- and 35-days post-injury. In the two models, we detected the brain infiltration of immune cells (e.g., neutrophils, monocytes, dendritic cells, CD4+ T cells, and NK cells). There were increases in macrophages, neutrophils, and dendritic cells in the spleen, increases in dendritic cells in blood, and increases in CD8+ T cells and B cells in lymph nodes. These results indicate a complex peripheral immune response post-TBI in the immature brain, with differences between an invasive injury and a repetitive mild injury. Full article
Show Figures

Figure 1

23 pages, 9064 KiB  
Article
NHE1 Protein in Repetitive Mild TBI-Mediated Neuroinflammation and Neurological Function Impairment
by John P. Bielanin, Shamseldin A. H. Metwally, Helena C. M. Oft, Satya S. Paruchuri, Lin Lin, Okan Capuk, Nicholas D. Pennock, Shanshan Song and Dandan Sun
Antioxidants 2024, 13(7), 836; https://doi.org/10.3390/antiox13070836 - 13 Jul 2024
Viewed by 1997
Abstract
Mild traumatic brain injuries (mTBIs) are highly prevalent and can lead to chronic behavioral and cognitive deficits often associated with the development of neurodegenerative diseases. Oxidative stress and formation of reactive oxygen species (ROS) have been implicated in mTBI-mediated axonal injury and pathogenesis. [...] Read more.
Mild traumatic brain injuries (mTBIs) are highly prevalent and can lead to chronic behavioral and cognitive deficits often associated with the development of neurodegenerative diseases. Oxidative stress and formation of reactive oxygen species (ROS) have been implicated in mTBI-mediated axonal injury and pathogenesis. However, the underlying mechanisms and contributing factors are not completely understood. In this study, we explore these pathogenic mechanisms utilizing a murine model of repetitive mTBI (r-mTBI) involving five closed-skull concussions in young adult C57BL/6J mice. We observed a significant elevation of Na+/H+ exchanger protein (NHE1) expression in GFAP+ reactive astrocytes, IBA1+ microglia, and OLIG2+ oligodendrocytes across various brain regions (including the cerebral cortex, corpus callosum, and hippocampus) after r-mTBI. This elevation was accompanied by astrogliosis, microgliosis, and the accumulation of amyloid precursor protein (APP). Mice subjected to r-mTBI displayed impaired motor learning and spatial memory. However, post-r-mTBI administration of a potent NHE1 inhibitor, HOE642, attenuated locomotor and cognitive functional deficits as well as pathological signatures of gliosis, oxidative stress, axonal damage, and white matter damage. These findings indicate NHE1 upregulation plays a role in r-mTBI-induced oxidative stress, axonal damage, and gliosis, suggesting NHE1 may be a promising therapeutic target to alleviate mTBI-induced injuries and restore neurological function. Full article
(This article belongs to the Special Issue Oxidative Stress and the Central Nervous System)
Show Figures

Figure 1

16 pages, 2022 KiB  
Article
Effects of Mild Closed-Head Injury and Subanesthetic Ketamine Infusion on Microglia, Axonal Injury, and Synaptic Density in Sprague–Dawley Rats
by Martin Boese, Rina Y. Berman, Jennifer Qiu, Haley F. Spencer, Kennett D. Radford and Kwang H. Choi
Int. J. Mol. Sci. 2024, 25(8), 4287; https://doi.org/10.3390/ijms25084287 - 12 Apr 2024
Viewed by 2057
Abstract
Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20–30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury [...] Read more.
Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20–30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma. Full article
(This article belongs to the Special Issue Molecular and Physiological Mechanisms of Traumatic Brain Injury)
Show Figures

Figure 1

25 pages, 4693 KiB  
Article
Long-Term Impact of Diffuse Traumatic Brain Injury on Neuroinflammation and Catecholaminergic Signaling: Potential Relevance for Parkinson’s Disease Risk
by Ing Chee Wee, Alina Arulsamy, Frances Corrigan and Lyndsey Collins-Praino
Molecules 2024, 29(7), 1470; https://doi.org/10.3390/molecules29071470 - 26 Mar 2024
Cited by 4 | Viewed by 2783
Abstract
Traumatic brain injury (TBI) is associated with an increased risk of developing Parkinson’s disease (PD), though the exact mechanisms remain unclear. TBI triggers acute neuroinflammation and catecholamine dysfunction post-injury, both implicated in PD pathophysiology. The long-term impact on these pathways following TBI, however, [...] Read more.
Traumatic brain injury (TBI) is associated with an increased risk of developing Parkinson’s disease (PD), though the exact mechanisms remain unclear. TBI triggers acute neuroinflammation and catecholamine dysfunction post-injury, both implicated in PD pathophysiology. The long-term impact on these pathways following TBI, however, remains uncertain. In this study, male Sprague-Dawley rats underwent sham surgery or Marmarou’s impact acceleration model to induce varying TBI severities: single mild TBI (mTBI), repetitive mild TBI (rmTBI), or moderate–severe TBI (msTBI). At 12 months post-injury, astrocyte reactivity (GFAP) and microglial levels (IBA1) were assessed in the striatum (STR), substantia nigra (SN), and prefrontal cortex (PFC) using immunohistochemistry. Key enzymes and receptors involved in catecholaminergic transmission were measured via Western blot within the same regions. Minimal changes in these markers were observed, regardless of initial injury severity. Following mTBI, elevated protein levels of dopamine D1 receptors (DRD1) were noted in the PFC, while msTBI resulted in increased alpha-2A adrenoceptors (ADRA2A) in the STR and decreased dopamine beta-hydroxylase (DβH) in the SN. Neuroinflammatory changes were subtle, with a reduced number of GFAP+ cells in the SN following msTBI. However, considering the potential for neurodegenerative outcomes to manifest decades after injury, longer post-injury intervals may be necessary to observe PD-relevant alterations within these systems. Full article
(This article belongs to the Special Issue Dopamine Receptors and Neurodegeneration)
Show Figures

Figure 1

20 pages, 4688 KiB  
Article
Integrative Analysis of Cytokine and Lipidomics Datasets Following Mild Traumatic Brain Injury in Rats
by Alexis N. Pulliam, Alyssa F. Pybus, David A. Gaul, Samuel G. Moore, Levi B. Wood, Facundo M. Fernández and Michelle C. LaPlaca
Metabolites 2024, 14(3), 133; https://doi.org/10.3390/metabo14030133 - 21 Feb 2024
Cited by 4 | Viewed by 2892
Abstract
Traumatic brain injury (TBI) is a significant source of disability in the United States and around the world and may lead to long-lasting cognitive deficits and a decreased quality of life for patients across injury severities. Following the primary injury phase, TBI is [...] Read more.
Traumatic brain injury (TBI) is a significant source of disability in the United States and around the world and may lead to long-lasting cognitive deficits and a decreased quality of life for patients across injury severities. Following the primary injury phase, TBI is characterized by complex secondary cascades that involve altered homeostasis and metabolism, faulty signaling, neuroinflammation, and lipid dysfunction. The objectives of the present study were to (1) assess potential correlations between lipidome and cytokine changes after closed-head mild TBI (mTBI), and (2) examine the reproducibility of our acute lipidomic profiles following TBI. Cortices from 54 Sprague Dawley male and female rats were analyzed by ultra-high-performance liquid chromatography mass spectrometry (LC-MS) in both positive and negative ionization modes and multiplex cytokine analysis after single (smTBI) or repetitive (rmTBI) closed-head impacts, or sham conditions. Tissue age was a variable, given that two cohorts (n = 26 and n = 28) were initially run a year-and-a-half apart, creating inter-batch variations. We annotated the lipidome datasets using an in-house data dictionary based on exact masses of precursor and fragment ions and removed features with statistically significant differences between sham control batches. Our results indicate that lipids with high-fold change between injury groups moderately correlate with the cytokines eotaxin, IP-10, and TNF-α. Additionally, we show a significant decrease in the pro-inflammatory markers IL-1β and IP-10, TNF-α, and RANTES in the rmTBI samples relative to the sham control. We discuss the major challenges in correlating high dimensional lipidomic data with functional cytokine profiles and the implications for understanding the biological significance of two related but disparate analysis modes in the study of TBI, an inherently heterogeneous neurological disorder. Full article
Show Figures

Graphical abstract

20 pages, 1927 KiB  
Article
Long Noncoding RNA VLDLR-AS1 Levels in Serum Correlate with Combat-Related Chronic Mild Traumatic Brain Injury and Depression Symptoms in US Veterans
by Rekha S. Patel, Meredith Krause-Hauch, Kimbra Kenney, Shannon Miles, Risa Nakase-Richardson and Niketa A. Patel
Int. J. Mol. Sci. 2024, 25(3), 1473; https://doi.org/10.3390/ijms25031473 - 25 Jan 2024
Cited by 8 | Viewed by 2270
Abstract
More than 75% of traumatic brain injuries (TBIs) are mild (mTBI) and military service members often experience repeated combat-related mTBI. The chronic comorbidities concomitant with repetitive mTBI (rmTBI) include depression, post-traumatic stress disorder or neurological dysfunction. This study sought to determine a long [...] Read more.
More than 75% of traumatic brain injuries (TBIs) are mild (mTBI) and military service members often experience repeated combat-related mTBI. The chronic comorbidities concomitant with repetitive mTBI (rmTBI) include depression, post-traumatic stress disorder or neurological dysfunction. This study sought to determine a long noncoding RNA (lncRNA) expression signature in serum samples that correlated with rmTBI years after the incidences. Serum samples were obtained from Long-Term Impact of Military-Relevant Brain-Injury Consortium Chronic Effects of Neurotrauma Consortium (LIMBIC CENC) repository, from participants unexposed to TBI or who had rmTBI. Four lncRNAs were identified as consistently present in all samples, as detected via droplet digital PCR and packaged in exosomes enriched for CNS origin. The results, using qPCR, demonstrated that the lncRNA VLDLR-AS1 levels were significantly lower among individuals with rmTBI compared to those with no lifetime TBI. ROC analysis determined an AUC of 0.74 (95% CI: 0.6124 to 0.8741; p = 0.0012). The optimal cutoff for VLDLR-AS1 was ≤153.8 ng. A secondary analysis of clinical data from LIMBIC CENC was conducted to evaluate the psychological symptom burden, and the results show that lncRNAs VLDLR-AS1 and MALAT1 are correlated with symptoms of depression. In conclusion, lncRNA VLDLR-AS1 may serve as a blood biomarker for identifying chronic rmTBI and depression in patients. Full article
Show Figures

Figure 1

12 pages, 1399 KiB  
Review
Exploring the Potential of Exosomal Biomarkers in Mild Traumatic Brain Injury and Post-Concussion Syndrome: A Systematic Review
by Ioannis Mavroudis, Sidra Jabeen, Ioana Miruna Balmus, Alin Ciobica, Vasile Burlui, Laura Romila and Alin Iordache
J. Pers. Med. 2024, 14(1), 35; https://doi.org/10.3390/jpm14010035 - 27 Dec 2023
Cited by 2 | Viewed by 2368
Abstract
Background: Alongside their long-term effects, post-concussion syndrome (PCS) and mild traumatic brain injuries (mTBI) are significant public health concerns. Currently, there is a lack of reliable biomarkers for diagnosing and monitoring mTBI and PCS. Exosomes are small extracellular vesicles secreted by cells that [...] Read more.
Background: Alongside their long-term effects, post-concussion syndrome (PCS) and mild traumatic brain injuries (mTBI) are significant public health concerns. Currently, there is a lack of reliable biomarkers for diagnosing and monitoring mTBI and PCS. Exosomes are small extracellular vesicles secreted by cells that have recently emerged as a potential source of biomarkers for mTBI and PCS due to their ability to cross the blood–brain barrier and reflect the pathophysiology of brain injury. In this study, we aimed to investigate the role of salivary exosomal biomarkers in mTBI and PCS. Methods: A systematic review using the PRISMA guidelines was conducted, and studies were selected based on their relevance to the topic. Results: The analyzed studies have shown that exosomal tau, phosphorylated tau (p-tau), amyloid beta (Aβ), and microRNAs (miRNAs) are potential biomarkers for mTBI and PCS. Specifically, elevated levels of exosomal tau and p-tau have been associated with mTBI and PCS as well as repetitive mTBI. Dysregulated exosomal miRNAs have also been observed in individuals with mTBI and PCS. Additionally, exosomal Prion cellular protein (PRPc), coagulation factor XIII (XIIIa), synaptogyrin-3, IL-6, and aquaporins have been identified as promising biomarkers for mTBI and PCS. Conclusion: Salivary exosomal biomarkers have the potential to serve as non-invasive and easily accessible diagnostic and prognostic tools for mTBI and PCS. Further studies are needed to validate these biomarkers and develop standardized protocols for their use in clinical settings. Salivary exosomal biomarkers can improve the diagnosis, monitoring, and treatment of mTBI and PCS, leading to improved patient outcomes. Full article
(This article belongs to the Section Disease Biomarker)
Show Figures

Figure 1

24 pages, 13158 KiB  
Article
Repetitive, but Not Single, Mild Blast TBI Causes Persistent Neurological Impairments and Selective Cortical Neuronal Loss in Rats
by Rita Campos-Pires, Bee Eng Ong, Mariia Koziakova, Eszter Ujvari, Isobel Fuller, Charlotte Boyles, Valerie Sun, Andy Ko, Daniel Pap, Matthew Lee, Lauren Gomes, Kate Gallagher, Peter F. Mahoney and Robert Dickinson
Brain Sci. 2023, 13(9), 1298; https://doi.org/10.3390/brainsci13091298 - 8 Sep 2023
Cited by 6 | Viewed by 3182
Abstract
Exposure to repeated mild blast traumatic brain injury (mbTBI) is common in combat soldiers and the training of Special Forces. Evidence suggests that repeated exposure to a mild or subthreshold blast can cause serious and long-lasting impairments, but the mechanisms causing these symptoms [...] Read more.
Exposure to repeated mild blast traumatic brain injury (mbTBI) is common in combat soldiers and the training of Special Forces. Evidence suggests that repeated exposure to a mild or subthreshold blast can cause serious and long-lasting impairments, but the mechanisms causing these symptoms are unclear. In this study, we characterise the effects of single and tightly coupled repeated mbTBI in Sprague–Dawley rats exposed to shockwaves generated using a shock tube. The primary outcomes are functional neurologic function (unconsciousness, neuroscore, weight loss, and RotaRod performance) and neuronal density in brain regions associated with sensorimotor function. Exposure to a single shockwave does not result in functional impairments or histologic injury, which is consistent with a mild or subthreshold injury. In contrast, exposure to three tightly coupled shockwaves results in unconsciousness, along with persistent neurologic impairments. Significant neuronal loss following repeated blast was observed in the motor cortex, somatosensory cortex, auditory cortex, and amygdala. Neuronal loss was not accompanied by changes in astrocyte reactivity. Our study identifies specific brain regions particularly sensitive to repeated mbTBI. The reasons for this sensitivity may include exposure to less attenuated shockwaves or proximity to tissue density transitions, and this merits further investigation. Our novel model will be useful in elucidating the mechanisms of sensitisation to injury, the temporal window of sensitivity and the evaluation of new treatments. Full article
(This article belongs to the Special Issue Animal Models of Neurological Disorders)
Show Figures

Figure 1

10 pages, 1563 KiB  
Communication
Reliability of a Smooth Pursuit Eye-Tracking System (EyeGuide Focus) in Healthy Adolescents and Adults
by Alan J. Pearce, Ed Daly, Lisa Ryan and Doug King
J. Funct. Morphol. Kinesiol. 2023, 8(2), 83; https://doi.org/10.3390/jfmk8020083 - 16 Jun 2023
Cited by 6 | Viewed by 2499
Abstract
Mild traumatic brain injury (mTBI) is the most common brain injury, seen in sports, fall, vehicle, or workplace injuries. Concussion is the most common type of mTBI. Assessment of impairments from concussion is evolving, with oculomotor testing suggested as a key component in [...] Read more.
Mild traumatic brain injury (mTBI) is the most common brain injury, seen in sports, fall, vehicle, or workplace injuries. Concussion is the most common type of mTBI. Assessment of impairments from concussion is evolving, with oculomotor testing suggested as a key component in a multimodality diagnostic protocol. The aim of this study was to evaluate the reliability of one eye-tracking system, the EyeGuide Focus. A group of 75 healthy adolescent and adult participants (adolescents: n = 28; female = 11, male = 17, mean age 16.5 ± 1.4 years; adults n = 47; female = 22; male = 25, mean age 26.7 ± 7.0 years) completed three repetitions of the EyeGuide Focus within one session. Intraclass correlation coefficient (ICC) analysis showed the EyeGuide Focus had overall good reliability (ICC 0.79, 95%CI: 0.70, 0.86). However, a familiarization effect showing improvements in subsequent trials 2 (9.7%) and 3 (8.1%) was noticeable in both cohorts (p < 0.001) with adolescent participants showing greater familiarization effects than adults (21.7% vs. 13.1%). No differences were observed between sexes (p = 0.69). Overall, this is the first study to address the concern regarding a lack of published reliability studies for the EyeGuide Focus. Results showed good reliability, suggesting that oculomotor pursuits should be part of a multimodality assessment protocol, but the observation of familiarization effects suggests that smooth-pursuit testing using this device has the potential to provide a biologically-based interpretation of the maturation of the oculomotor system, as well as its relationship to multiple brain regions in both health and injury. Full article
(This article belongs to the Special Issue Movement Analysis 4.0)
Show Figures

Figure 1

10 pages, 1140 KiB  
Article
Repeated Low-Level Blast Exposure Alters Urinary and Serum Metabolites
by Austin Sigler, Jiandong Wu, Annalise Pfaff, Olajide Adetunji, Paul Nam, Donald James, Casey Burton and Honglan Shi
Metabolites 2023, 13(5), 638; https://doi.org/10.3390/metabo13050638 - 8 May 2023
Viewed by 1948
Abstract
Repeated exposure to low-level blast overpressures can produce biological changes and clinical sequelae that resemble mild traumatic brain injury (TBI). While recent efforts have revealed several protein biomarkers for axonal injury during repetitive blast exposure, this study aims to explore potential small molecule [...] Read more.
Repeated exposure to low-level blast overpressures can produce biological changes and clinical sequelae that resemble mild traumatic brain injury (TBI). While recent efforts have revealed several protein biomarkers for axonal injury during repetitive blast exposure, this study aims to explore potential small molecule biomarkers of brain injury during repeated blast exposure. This study evaluated a panel of ten small molecule metabolites involved in neurotransmission, oxidative stress, and energy metabolism in the urine and serum of military personnel (n = 27) conducting breacher training with repeated exposure to low-level blasts. The metabolites were analyzed using HPLC—tandem mass spectrometry, and the Wilcoxon signed-rank test was used for statistical analysis to compare the levels of pre-blast and post-blast exposures. Urinary levels of homovanillic acid (p < 0.0001), linoleic acid (p = 0.0030), glutamate (p = 0.0027), and serum N-acetylaspartic acid (p = 0.0006) were found to be significantly altered following repeated blast exposure. Homovanillic acid concentration decreased continuously with subsequent repeat exposure. These results suggest that repeated low-level blast exposures can produce measurable changes in urine and serum metabolites that may aid in identifying individuals at increased risk of sustaining a TBI. Larger clinical studies are needed to extend the generalizability of these findings. Full article
(This article belongs to the Special Issue Urinary Metabolomics: A New Journey for Biomarker Discovery)
Show Figures

Figure 1

10 pages, 1557 KiB  
Communication
Development of an Animal Model for Traumatic Brain Injury Augmentation of Heterotopic Ossification in Response to Local Injury
by Chandrasekhar Kesavan, Gustavo A. Gomez, Sheila Pourteymoor and Subburaman Mohan
Biomedicines 2023, 11(3), 943; https://doi.org/10.3390/biomedicines11030943 - 18 Mar 2023
Cited by 4 | Viewed by 2406
Abstract
Heterotopic ossification (HO) is the abnormal growth of bone in soft connective tissues that occurs as a frequent complication in individuals with traumatic brain injury (TBI) and in rare genetic disorders. Therefore, understanding the mechanisms behind ectopic bone formation in response to TBI [...] Read more.
Heterotopic ossification (HO) is the abnormal growth of bone in soft connective tissues that occurs as a frequent complication in individuals with traumatic brain injury (TBI) and in rare genetic disorders. Therefore, understanding the mechanisms behind ectopic bone formation in response to TBI is likely to have a significant impact on identification of novel therapeutic targets for HO treatment. In this study, we induced repetitive mild TBI (mTBI) using a weight drop model in mice and then stimulated HO formation via a local injury to the Achilles tendon or fibula. The amount of ectopic bone, as evaluated by micro-CT analyses, was increased by four-fold in the injured leg of mTBI mice compared to control mice. However, there was no evidence of HO formation in the uninjured leg of mTBI mice. Since tissue injury leads to the activation of hypoxia signaling, which is known to promote endochondral ossification, we evaluated the effect of IOX2, a chemical inhibitor of PHD2 and a known inducer of hypoxia signaling on HO development in response to fibular injury. IOX2 treatment increased HO volume by five-fold compared to vehicle. Since pericytes located in the endothelium of microvascular capillaries are known to function as multipotent tissue-resident progenitors, we determined if activation of hypoxia signaling promotes pericyte recruitment at the injury site. We found that markers of pericytes, NG2 and PDGFRβ, were abundantly expressed at the site of injury in IOX2 treated mice. Treatment of pericytes with IOX2 for 72 h stimulated expression of targets of hypoxia signaling (Vegf and Epo), as well as markers of chondrocyte differentiation (Col2α1 and Col10α1). Furthermore, serum collected from TBI mice was more effective in promoting the proliferation and differentiation of pericytes than control mouse serum. In conclusion, our data show that the hypoxic state at the injury site in soft tissues of TBI mice provides an environment leading to increased accumulation and activation of pericytes to form endochondral bone. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Bone and Cartilage Diseases)
Show Figures

Figure 1

16 pages, 2925 KiB  
Article
Traumatic Brain Injury Induces Microglial and Caspase3 Activation in the Retina
by Tamás Kovács-Öller, Renáta Zempléni, Boglárka Balogh, Gergely Szarka, Bálint Fazekas, Ádám J. Tengölics, Krisztina Amrein, Endre Czeiter, István Hernádi, András Büki and Béla Völgyi
Int. J. Mol. Sci. 2023, 24(5), 4451; https://doi.org/10.3390/ijms24054451 - 23 Feb 2023
Cited by 7 | Viewed by 3604
Abstract
Traumatic brain injury (TBI) is among the main causes of sudden death after head trauma. These injuries can result in severe degeneration and neuronal cell death in the CNS, including the retina, which is a crucial part of the brain responsible for perceiving [...] Read more.
Traumatic brain injury (TBI) is among the main causes of sudden death after head trauma. These injuries can result in severe degeneration and neuronal cell death in the CNS, including the retina, which is a crucial part of the brain responsible for perceiving and transmitting visual information. The long-term effects of mild–repetitive TBI (rmTBI) are far less studied thus far, even though damage induced by repetitive injuries occurring in the brain is more common, especially amongst athletes. rmTBI can also have a detrimental effect on the retina and the pathophysiology of these injuries is likely to differ from severe TBI (sTBI) retinal injury. Here, we show how rmTBI and sTBI can differentially affect the retina. Our results indicate an increase in the number of activated microglial cells and Caspase3-positive cells in the retina in both traumatic models, suggesting a rise in the level of inflammation and cell death after TBI. The pattern of microglial activation appears distributed and widespread but differs amongst the various retinal layers. sTBI induced microglial activation in both the superficial and deep retinal layers. In contrast to sTBI, no significant change occurred following the repetitive mild injury in the superficial layer, only the deep layer (spanning from the inner nuclear layer to the outer plexiform layer) shows microglial activation. This difference suggests that alternate response mechanisms play a role in the case of the different TBI incidents. The Caspase3 activation pattern showed a uniform increase in both the superficial and deep layers of the retina. This suggests a different action in the course of the disease in sTBI and rmTBI models and points to the need for new diagnostic procedures. Our present results suggest that the retina might serve as such a model of head injuries since the retinal tissue reacts to both forms of TBI and is the most accessible part of the human brain. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Retinal Degeneration and How to Avoid It)
Show Figures

Figure 1

33 pages, 8371 KiB  
Review
A Systematic Review of Treatments of Post-Concussion Symptoms
by Camille Heslot, Philippe Azouvi, Valérie Perdrieau, Aurélie Granger, Clémence Lefèvre-Dognin and Mélanie Cogné
J. Clin. Med. 2022, 11(20), 6224; https://doi.org/10.3390/jcm11206224 - 21 Oct 2022
Cited by 32 | Viewed by 10329
Abstract
Approximately 10–20% of patients who have sustained a mild Traumatic Brain Injury (mTBI) show persistent post-concussion symptoms (PCS). This review aims to summarize the level of evidence concerning interventions for PCS. Following the PRISMA guidelines, we conducted a systematic review regarding interventions for [...] Read more.
Approximately 10–20% of patients who have sustained a mild Traumatic Brain Injury (mTBI) show persistent post-concussion symptoms (PCS). This review aims to summarize the level of evidence concerning interventions for PCS. Following the PRISMA guidelines, we conducted a systematic review regarding interventions for PCS post-mTBI until August 2021 using the Medline, Cochrane, and Embase databases. Inclusion criteria were the following: (1) intervention focusing on PCS after mTBI, (2) presence of a control group, and (3) adult patients (≥18 y.o). Quality assessment was determined using the Incog recommendation level, and the risk of bias was assessed using the revised Cochrane risk-of-bias tool. We first selected 104 full-text articles. Finally, 55 studies were retained, including 35 that obtained the highest level of evidence. The risk of bias was high in 22 out of 55 studies. Cognitive training, psycho-education, cognitive behavioral therapy, and graded return to physical activity demonstrated some effectiveness on persistent PCS. However, there is limited evidence of the beneficial effect of Methylphenidate. Oculomotor rehabilitation, light therapy, and headache management using repetitive transcranial magnetic stimulation seem effective regarding somatic complaints and sleep disorders. The preventive effect of early (<3 months) interventions remains up for debate. Despite its limitations, the results of the present review should encourage clinicians to propose a tailored treatment to patients according to the type and severity of PCS and could encourage further research with larger groups. Full article
(This article belongs to the Special Issue Traumatic Brain Injury (TBI): Recent Trends and Future Perspectives)
Show Figures

Figure 1

Back to TopTop