Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = renal ASL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 1150 KB  
Interesting Images
Hyperperfusion Improvement: A Potential Therapeutic Marker in Neuromyelitis Optica Spectrum Disorder (NMOSD)
by Koichi Kimura, Koji Hayashi, Mamiko Sato, Yuka Nakaya, Asuka Suzuki, Naoko Takaku, Hiromi Hayashi, Kouji Hayashi, Toyoaki Miura and Yasutaka Kobayashi
Diagnostics 2025, 15(21), 2723; https://doi.org/10.3390/diagnostics15212723 - 27 Oct 2025
Viewed by 333
Abstract
A 70-year-old Japanese woman with longstanding hearing loss and asthma developed floating sensations, left finger numbness, and postural instability one day after influenza vaccination, leading to hospital admission. Neurological examinations showed hearing loss, hyperreflexia, left-predominant ataxia, bilateral mild bathyanesthesia, and inability to tandem [...] Read more.
A 70-year-old Japanese woman with longstanding hearing loss and asthma developed floating sensations, left finger numbness, and postural instability one day after influenza vaccination, leading to hospital admission. Neurological examinations showed hearing loss, hyperreflexia, left-predominant ataxia, bilateral mild bathyanesthesia, and inability to tandem gait. Cerebrospinal fluid (CSF) analysis showed no pleocytosis or malignant cells, but revealed positive oligoclonal bands and elevated myelin basic protein. Despite no contrast agent use due to asthma, brain magnetic resonance imaging (MRI) revealed pontine hyperintensities on diffusion-weighted imaging (DWI) and T2-fluid attenuated inversion recovery (T2-FLAIR) sequences, along with hyperperfusion on arterial spin labeling (ASL) imaging. Serum anti-aquaporin-4 antibodies (AQP4-Ab) were negative by ELISA. Given the temporal proximity to vaccination and elevated demyelination markers, brainstem-type acute disseminated encephalomyelitis (ADEM) was initially suspected. Symptoms nearly resolved after two cycles of methylprednisolone pulse therapy. Notably, hyperperfusion gradually improved on ASL imaging. Post-discharge, a cell-based assay confirmed the diagnosis of neuromyelitis optica spectrum disorder (NMOSD) by detecting positive anti-AQP4-Ab. She has been relapse-free for about a year without any immunosuppressants or biologics. Although contrast-enhanced MRI remains the gold standard modality for lesion evaluation due to its high sensitivity, hyperperfusion on ASL may provide a useful alternative in patients for whom contrast agents are contraindicated, such as those with asthma or impaired renal function. Full article
(This article belongs to the Special Issue Brain MRI: Current Development and Applications)
Show Figures

Figure 1

10 pages, 946 KB  
Communication
Optimization of Fair Arterial Spin Labeling Magnetic Resonance Imaging (ASL-MRI) for Renal Perfusion Quantification in Dogs: Pilot Study
by Amber Hillaert, Luis Carlos Sanmiguel Serpa, Yangfeng Xu, Myriam Hesta, Stephanie Bogaert, Katrien Vanderperren and Pim Pullens
Animals 2024, 14(12), 1810; https://doi.org/10.3390/ani14121810 - 17 Jun 2024
Viewed by 1924
Abstract
Arterial spin labeling (ASL) MRI allows non-invasive quantification of renal blood flow (RBF) and shows great potential for renal assessment. To our knowledge, renal ASL-MRI has not previously been performed in dogs. The aim of this pilot study was to determine parameters essential [...] Read more.
Arterial spin labeling (ASL) MRI allows non-invasive quantification of renal blood flow (RBF) and shows great potential for renal assessment. To our knowledge, renal ASL-MRI has not previously been performed in dogs. The aim of this pilot study was to determine parameters essential for ALS-MRI-based quantification of RBF in dogs: T1, blood (longitudinal relaxation time), λ (blood tissue partition coefficient) and TI (inversion time). A Beagle was scanned at 3T with a multi-TI ASL sequence, with TIs ranging from 250 to 2500 ms, to determine the optimal TI value. The T1 of blood for dogs was determined by scanning a blood sample with a 2D IR TSE sequence. The water content of the dog’s kidney was determined by analyzing kidney samples from four dogs with a moisture analyzer and was subsequently used to calculate λ. The optimal TI and the measured values for T1,blood, and λ were 2000 ms, 1463 ms and 0.91 mL/g, respectively. These optimized parameters for dogs resulted in lower RBF values than those obtained from inline generated RBF maps. In conclusion, this study determined preliminary parameters essential for ALS-MRI-based RBF quantification in dogs. Further research is needed to confirm these values, but it may help guide future research. Full article
(This article belongs to the Special Issue Imaging Techniques and Radiation Therapy in Veterinary Medicine)
Show Figures

Figure 1

17 pages, 2184 KB  
Article
Multimodal Classification Framework Based on Hypergraph Latent Relation for End-Stage Renal Disease Associated with Mild Cognitive Impairment
by Xidong Fu, Chaofan Song, Rupu Zhang, Haifeng Shi and Zhuqing Jiao
Bioengineering 2023, 10(8), 958; https://doi.org/10.3390/bioengineering10080958 - 12 Aug 2023
Cited by 3 | Viewed by 1812
Abstract
Combined arterial spin labeling (ASL) and functional magnetic resonance imaging (fMRI) can reveal more comprehensive properties of the spatiotemporal and quantitative properties of brain networks. Imaging markers of end-stage renal disease associated with mild cognitive impairment (ESRDaMCI) will be sought from these properties. [...] Read more.
Combined arterial spin labeling (ASL) and functional magnetic resonance imaging (fMRI) can reveal more comprehensive properties of the spatiotemporal and quantitative properties of brain networks. Imaging markers of end-stage renal disease associated with mild cognitive impairment (ESRDaMCI) will be sought from these properties. The current multimodal classification methods often neglect to collect high-order relationships of brain regions and remove noise from the feature matrix. A multimodal classification framework is proposed to address this issue using hypergraph latent relation (HLR). A brain functional network with hypergraph structural information is constructed by fMRI data. The feature matrix is obtained through graph theory (GT). The cerebral blood flow (CBF) from ASL is selected as the second modal feature matrix. Then, the adaptive similarity matrix is constructed by learning the latent relation between feature matrices. Latent relation adaptive similarity learning (LRAS) is introduced to multi-task feature learning to construct a multimodal feature selection method based on latent relation (LRMFS). The experimental results show that the best classification accuracy (ACC) reaches 88.67%, at least 2.84% better than the state-of-the-art methods. The proposed framework preserves more valuable information between brain regions and reduces noise among feature matrixes. It provides an essential reference value for ESRDaMCI recognition. Full article
(This article belongs to the Special Issue Machine-Learning-Driven Medical Image Analysis)
Show Figures

Figure 1

11 pages, 2974 KB  
Article
Feasibility of Renal Blood Flow Measurement Using 64Cu-ATSM PET/MRI: A Quantitative PET and MRI Study
by Yudai Nishikawa, Naoki Takahashi, Sho Nishikawa, Yuki Shimamoto, Kazuhisa Nishimori, Mamiko Kobayashi, Hideki Kimura, Tetsuya Tsujikawa, Kenji Kasuno, Tetsuya Mori, Yasushi Kiyono, Hidehiko Okazawa and Masayuki Iwano
Diagnostics 2023, 13(10), 1685; https://doi.org/10.3390/diagnostics13101685 - 10 May 2023
Cited by 3 | Viewed by 2188
Abstract
This study aimed to evaluate the renal blood flow (RBF) in patients with chronic kidney disease (CKD) using 64Cu(II)-diacetyl-bis(4-methylthiosemicarbazonate) (64Cu-ATSM) for positron emission tomography (PET)/magnetic resonance imaging (MRI). We included five healthy controls (HCs) and ten patients with CKD. The [...] Read more.
This study aimed to evaluate the renal blood flow (RBF) in patients with chronic kidney disease (CKD) using 64Cu(II)-diacetyl-bis(4-methylthiosemicarbazonate) (64Cu-ATSM) for positron emission tomography (PET)/magnetic resonance imaging (MRI). We included five healthy controls (HCs) and ten patients with CKD. The estimated glomerular filtration rate (eGFR) was calculated from the serum creatinine (cr) and cystatin C (cys) levels. The estimated RBF (eRBF) was calculated using the eGFR, hematocrit, and filtration fraction. A single dose of 64Cu-ATSM (300–400 MBq) was administered for RBF evaluation, and a 40 min dynamic PET scan was performed with simultaneous arterial spin labeling (ASL) imaging. PET-RBF images were obtained from the dynamic PET images at 3 min after injection using the image-derived input function method. The mean eRBF values calculated from various eGFR values differed significantly between the patients and HCs; both groups also differed significantly in terms of the RBF values (mL/min/100 g) measured using PET (151 ± 20 vs. 124 ± 22, p < 0.05) and ASL-MRI (172 ± 38 vs. 125 ± 30, p < 0.001). The ASL-MRI-RBF was positively correlated with the eRBFcr-cys (r = 0.858, p < 0.001). The PET-RBF was positively correlated with the eRBFcr-cys (r = 0.893, p < 0.001). The ASL-RBF was positively correlated with the PET-RBF (r = 0.849, p < 0.001). 64Cu-ATSM PET/MRI demonstrated the reliability of PET-RBF and ASL-RBF by comparing them with eRBF. This is the first study to demonstrate that 64Cu-ATSM-PET is useful for assessing the RBF and is well correlated with ASL-MRI. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Graphical abstract

17 pages, 2139 KB  
Article
Antioxidant, Immunostimulant, and Growth-Promoting Effects of Dietary Annona squamosa Leaf Extract on Nile Tilapia, Oreochromis niloticus, and Its Tolerance to Thermal Stress and Aeromonas sobria Infection
by Salem Hamad Almarri, Alshimaa A. Khalil, Abdallah Tageldein Mansour and Walaa El-Houseiny
Animals 2023, 13(4), 746; https://doi.org/10.3390/ani13040746 - 19 Feb 2023
Cited by 36 | Viewed by 5257
Abstract
Plant extracts are a phytochemically-rich alternative to antibiotic and synthetic feed additives, with high systemic bioactivity in animals. The present study aimed to evaluate the effect of a hydroalcoholic extract of custard apple (Annona squamosa) leaf (ASLE) on the growth, hematobiochemical [...] Read more.
Plant extracts are a phytochemically-rich alternative to antibiotic and synthetic feed additives, with high systemic bioactivity in animals. The present study aimed to evaluate the effect of a hydroalcoholic extract of custard apple (Annona squamosa) leaf (ASLE) on the growth, hematobiochemical parameters, digestive enzyme activities, redox status, nonspecific immune response, and cold and bacterial infection tolerance in Nile tilapia (Oreochromis niloticus). A total of 300 Nile tilapia fingerlings (11.87 ± 0.48 g) were fed ASLE-supplemented diets at increasing levels of 0, 5, 10, 15, and 20 g/kg for 60 days. At the end of the feeding period, the fish were experimentally challenged with cold water stress or Aeromonas sobria, and mortalities were recorded for 10 days. The results revealed that the growth performance and feed conversion ratio were significantly improved with an increasing level of ASLE supplementation. The hematologic profile and hepato-renal functions were retained within a healthy range in the various groups supplemented with an ASLE diet. Antioxidant status was significantly improved in the serum of fish fed ASLE-supplemented diets, in terms of superoxide dismutase (SOD), catalase (CAT) activities, reduced glutathione, and total antioxidant capacity. Meanwhile, the myeloperoxidase (MPO) and malondialdehyde (MDA) levels decreased significantly. Similarly, there was a noticeable improvement in the hepatic CAT and SOD activities and a reduction of hepatic MDA. Marked improvements in lysozyme activity, nitric oxide production, complement3 level, and phagocytic activity were recorded in groups fed ASLE-supplemented diets, which peaked with the 20 g ASLE/kg diet. Moreover, the serum glucose and cortisol levels significantly declined in groups fed ASLE at levels of 15–20 g/kg compared to the other groups. Supplementation with ASLE increased the activities of protease, lipase, and α-amylase. ASLE supplementation at a concentration of 10–20 g/kg diet enhanced the resistance of Nile tilapia to A. sobria infection. According to this study, ASLE supplementation enhanced the antioxidant balance, non-specific immune response, physiological status, resistance against infection, and growth performance of Nile tilapia at supplementation levels of 10–20 g/kg diet. Full article
(This article belongs to the Special Issue New Nutritional Strategies to Control Disease of Aquaculture)
Show Figures

Figure 1

17 pages, 11844 KB  
Review
Pseudocontinuous Arterial Spin Labeling: Clinical Applications and Usefulness in Head and Neck Entities
by Fumine Tanaka, Maki Umino, Masayuki Maeda, Ryohei Nakayama, Katsuhiro Inoue, Ryota Kogue, Makoto Obara and Hajime Sakuma
Cancers 2022, 14(16), 3872; https://doi.org/10.3390/cancers14163872 - 11 Aug 2022
Cited by 13 | Viewed by 3363
Abstract
As functional magnetic resonance imaging, arterial spin labeling (ASL) techniques have been developed to provide quantitative tissue blood flow measurements, which can improve the performance of lesion diagnosis. ASL does not require contrast agents, thus, it can be applied to a variety of [...] Read more.
As functional magnetic resonance imaging, arterial spin labeling (ASL) techniques have been developed to provide quantitative tissue blood flow measurements, which can improve the performance of lesion diagnosis. ASL does not require contrast agents, thus, it can be applied to a variety of patients regardless of renal impairments and contrast agent allergic reactions. The clinical implementation of head and neck lesions is limited, although, in recent years, ASL has been increasingly utilized in brain lesions. Here, we review the development of the ASL techniques, including pseudocontinuous ASL (pCASL). We compare readout methods between three-dimensional (3D) turbo spin-echo and 2D echo planar pCASL for the clinical applications of pCASL to head and neck lesions. We demonstrate the clinical usefulness of 3D pCASL for diagnosing various entities, including inflammatory lesions, hypervascular lesions, and neoplasms; for evaluating squamous cell carcinoma (SCC) treatment responses, and for predicting SCC prognosis. Full article
(This article belongs to the Special Issue Emerging Technologies in Cancer Diagnostics and Therapeutics)
Show Figures

Figure 1

12 pages, 3119 KB  
Article
Synthetic Arterial Spin Labeling MRI of the Kidneys for Evaluation of Data Processing Pipeline
by Irène Brumer, Dominik F. Bauer, Lothar R. Schad and Frank G. Zöllner
Diagnostics 2022, 12(8), 1854; https://doi.org/10.3390/diagnostics12081854 - 31 Jul 2022
Cited by 6 | Viewed by 2627
Abstract
Accurate quantification of perfusion is crucial for diagnosis and monitoring of kidney function. Arterial spin labeling (ASL), a completely non-invasive magnetic resonance imaging technique, is a promising method for this application. However, differences in acquisition (e.g., ASL parameters, readout) and processing (e.g., registration, [...] Read more.
Accurate quantification of perfusion is crucial for diagnosis and monitoring of kidney function. Arterial spin labeling (ASL), a completely non-invasive magnetic resonance imaging technique, is a promising method for this application. However, differences in acquisition (e.g., ASL parameters, readout) and processing (e.g., registration, segmentation) between studies impede the comparison of results. To alleviate challenges arising solely from differences in processing pipelines, synthetic data are of great value. In this work, synthetic renal ASL data were generated using body models from the XCAT phantom and perfusion was added using the general kinetic model. Our in-house developed processing pipeline was then evaluated in terms of registration, quantification, and segmentation using the synthetic data. Registration performance was evaluated qualitatively with line profiles and quantitatively with mean structural similarity index measures (MSSIMs). Perfusion values obtained from the pipeline were compared to the values assumed when generating the synthetic data. Segmentation masks obtained by semi-automated procedure of the processing pipeline were compared to the original XCAT organ masks using the Dice index. Overall, the pipeline evaluation yielded good results. After registration, line profiles were smoother and, on average, MSSIMs increased by 25%. Mean perfusion values for cortex and medulla were close to the assumed perfusion of 250 mL/100 g/min and 50 mL/100 g/min, respectively. Dice indices ranged 0.80–0.93, 0.78–0.89, and 0.64–0.84 for whole kidney, cortex, and medulla, respectively. The generation of synthetic ASL data allows flexible choice of parameters and the generated data are well suited for evaluation of processing pipelines. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

13 pages, 2774 KB  
Article
Hyperpolarized 129Xe Time-of-Flight MR Imaging of Perfusion and Brain Function
by Yurii Shepelytskyi, Francis T. Hane, Vira Grynko, Tao Li, Ayman Hassan and Mitchell S. Albert
Diagnostics 2020, 10(9), 630; https://doi.org/10.3390/diagnostics10090630 - 25 Aug 2020
Cited by 21 | Viewed by 4116
Abstract
Perfusion measurements can provide vital information about the homeostasis of an organ and can therefore be used as biomarkers to diagnose a variety of cardiovascular, renal, and neurological diseases. Currently, the most common techniques to measure perfusion are 15O positron emission tomography [...] Read more.
Perfusion measurements can provide vital information about the homeostasis of an organ and can therefore be used as biomarkers to diagnose a variety of cardiovascular, renal, and neurological diseases. Currently, the most common techniques to measure perfusion are 15O positron emission tomography (PET), xenon-enhanced computed tomography (CT), single photon emission computed tomography (SPECT), dynamic contrast enhanced (DCE) MRI, and arterial spin labeling (ASL) MRI. Here, we show how regional perfusion can be quantitively measured with magnetic resonance imaging (MRI) using time-resolved depolarization of hyperpolarized (HP) xenon-129 (129Xe), and the application of this approach to detect changes in cerebral blood flow (CBF) due to a hemodynamic response in response to brain stimuli. The investigated HP 129Xe Time-of-Flight (TOF) technique produced perfusion images with an average signal-to-noise ratio (SNR) of 10.35. Furthermore, to our knowledge, the first hemodynamic response (HDR) map was acquired in healthy volunteers using the HP 129Xe TOF imaging. Responses to visual and motor stimuli were observed. The acquired HP TOF HDR maps correlated well with traditional proton blood oxygenation level-dependent functional MRI. Overall, this study expands the field of HP MRI with a novel dynamic imaging technique suitable for rapid and quantitative perfusion imaging. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

10 pages, 2057 KB  
Article
Evaluation of 2D Imaging Schemes for Pulsed Arterial Spin Labeling of the Human Kidney Cortex
by Charlotte E. Buchanan, Eleanor F. Cox and Susan T. Francis
Diagnostics 2018, 8(3), 43; https://doi.org/10.3390/diagnostics8030043 - 28 Jun 2018
Cited by 14 | Viewed by 5988
Abstract
A number of imaging readout schemes are proposed for renal arterial spin labeling (ASL) to quantify kidney cortex perfusion, including gradient echo-based methods of balanced fast field echo (bFFE) and gradient-echo echo-planar imaging (GE-EPI), or spin echo-based schemes of spin-echo echo-planar imaging (SE-EPI) [...] Read more.
A number of imaging readout schemes are proposed for renal arterial spin labeling (ASL) to quantify kidney cortex perfusion, including gradient echo-based methods of balanced fast field echo (bFFE) and gradient-echo echo-planar imaging (GE-EPI), or spin echo-based schemes of spin-echo echo-planar imaging (SE-EPI) and turbo spin-echo (TSE). Here, we compare these two-dimensional (2D) imaging schemes to evaluate the optimal imaging scheme for pulsed ASL (PASL) assessment of human kidney cortex perfusion at 3 T. Ten healthy volunteers with normal renal function were scanned using each 2D multi-slice imaging scheme, in combination with a respiratory triggered flow-sensitive alternating inversion recovery (FAIR) ASL scheme on a 3 T Philips Achieva scanner. All volunteers returned for a second identical scan session within two weeks of the first scan session. Comparisons were made between the imaging schemes in terms of perfusion-weighted image (PWI) signal-to-noise ratio (SNR) and perfusion quantification, temporal SNR (tSNR), spatial coverage, and repeatability. For each imaging scheme, the renal cortex perfusion was calculated (bFFE: 276 ± 29 mL/100g/min, GE-EPI: 222 ± 18 mL/100g/min, SE-EPI: 201 ± 36 mL/100g/min, and TSE: 200 ± 20 mL/100g/min). Perfusion was found to be higher for GE-based readouts when compared with SE-based readouts, with significantly higher measured perfusion for the bFFE readout when compared with all other schemes (p < 0.05), attributed to the greater vascular signal present. Despite the PWI-SNR being significantly lower for SE-EPI when compared with all other schemes (p < 0.05), the SE-EPI readout gave the highest tSNR, and was found to be the most reproducible scheme for the assessment of kidney cortex, with a coefficient of variation (CoV) of 17.2%, whilst minimizing variability of the perfusion-weighted signal across slices for whole-kidney perfusion assessment. For the assessment of kidney cortex perfusion using 2D readout schemes, SE-EPI provides optimal tSNR, minimal variability across slices, and repeatable data acquired in a short scan time with low specific absorption rate. Full article
(This article belongs to the Special Issue Functional and Molecular Imaging of Kidney and Urogenital Disease)
Show Figures

Figure 1

15 pages, 1260 KB  
Review
Non-Invasive Renal Perfusion Imaging Using Arterial Spin Labeling MRI: Challenges and Opportunities
by Fabio Nery, Isky Gordon and David L. Thomas
Diagnostics 2018, 8(1), 2; https://doi.org/10.3390/diagnostics8010002 - 5 Jan 2018
Cited by 45 | Viewed by 10629
Abstract
Tissue perfusion allows for delivery of oxygen and nutrients to tissues, and in the kidneys is also a key determinant of glomerular filtration. Quantification of regional renal perfusion provides a potential window into renal (patho) physiology. However, non-invasive, practical, and robust methods to [...] Read more.
Tissue perfusion allows for delivery of oxygen and nutrients to tissues, and in the kidneys is also a key determinant of glomerular filtration. Quantification of regional renal perfusion provides a potential window into renal (patho) physiology. However, non-invasive, practical, and robust methods to measure renal perfusion remain elusive, particularly in the clinic. Arterial spin labeling (ASL), a magnetic resonance imaging (MRI) technique, is arguably the only available method with potential to meet all these needs. Recent developments suggest its viability for clinical application. This review addresses several of these developments and discusses remaining challenges with the emphasis on renal imaging in human subjects. Full article
(This article belongs to the Special Issue Functional and Molecular Imaging of Kidney and Urogenital Disease)
Show Figures

Figure 1

Back to TopTop