Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = redox non-innocent ligand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5237 KB  
Article
A Trinuclear Co(II) Complex Based on the Tris-Dioxolene Triphenylene Non-Innocent Bridge: Complementary Redox, Magnetic Behavior and Theoretical Calculations
by Aristide Colin, Yiting Wang, François Lambert, Nathalie Bridonneau, Nicolas Suaud, Régis Guillot, Eric Rivière, Zakaria Halime, Nathalie Guihéry, Shin-ichi Ohkoshi and Talal Mallah
Magnetochemistry 2024, 10(12), 102; https://doi.org/10.3390/magnetochemistry10120102 - 11 Dec 2024
Cited by 2 | Viewed by 1745
Abstract
A trinuclear Co(II)-containing complex was assembled using the non-innocent hexahydroxytriphenylene bridging ligand. Cyclovoltammetry and spectroelectrochemistry studies revealed that the central ligand sustained four reversible redox events, leading to different species with diverse optical behavior. Complementary analysis of the molecular structure confirmed by ab [...] Read more.
A trinuclear Co(II)-containing complex was assembled using the non-innocent hexahydroxytriphenylene bridging ligand. Cyclovoltammetry and spectroelectrochemistry studies revealed that the central ligand sustained four reversible redox events, leading to different species with diverse optical behavior. Complementary analysis of the molecular structure confirmed by ab initio theoretical calculations were consistent with the bridge in the tris-semiquinone (sq) state for the trinuclear complex. The exchange coupling among the electrons of the bridge resulted in a spin doublet (s = ½) localized close to one of the three Co2+ ions, as suggested by the experimental magnetic data. The central doublet underwent one large antiferromagnetic exchange coupling with one Co(II) and almost no coupling with the two other metal ions. Full article
Show Figures

Graphical abstract

14 pages, 6281 KB  
Review
Metal Complexes of Redox Non-Innocent Ligand N,N′-Bis(3,5-di-tertbutyl-2-hydroxy-phenyl)-1,2-phenylenediamine
by Ari Lehtonen
Molecules 2024, 29(5), 1088; https://doi.org/10.3390/molecules29051088 - 29 Feb 2024
Cited by 12 | Viewed by 3633
Abstract
Redox non-innocent ligands react with metal precursors to form complexes where the oxidation states of the ligand and thus the metal atom cannot be easily defined. A well-known example of such ligands is bis(o-aminophenol) N,N′-bis(3,5-di-tertbutyl-2-hydroxy-phenyl)-1,2-phenylenediamine, previously [...] Read more.
Redox non-innocent ligands react with metal precursors to form complexes where the oxidation states of the ligand and thus the metal atom cannot be easily defined. A well-known example of such ligands is bis(o-aminophenol) N,N′-bis(3,5-di-tertbutyl-2-hydroxy-phenyl)-1,2-phenylenediamine, previously developed by the Wieghardt group, which has a potentially tetradentate coordination mode and four distinct protonation states, whereas its electrochemical behavior allows for five distinct oxidation states. This rich redox chemistry, as well as the ability to coordinate to various transition metals, has been utilized in the syntheses of metal complexes with M2L, ML and ML2 stoichiometries, sometimes supported with other ligands. Different oxidation states of the ligand can adopt different coordination modes. For example, in the fully oxidized form, two N donors are sp2-hybridized, which makes the ligand planar, whereas in the fully reduced form, the sp3-hybridized N donors allow the formation of more flexible chelate structures. In general, the metal can be reduced during complexation, but redox processes of the isolated complexes typically occur on the ligand. Combination of this non-innocent ligand with redox-active transition metals may lead to complexes with interesting magnetic, electrochemical, photonic and catalytic properties. Full article
(This article belongs to the Special Issue Recent Advances in Coordination Chemistry of Metal Complexes)
Show Figures

Graphical abstract

18 pages, 12159 KB  
Article
Use of the Asymmetrical Chelating N-Donor 2-Imino-Pyridine as a Redox [Fe4S4] Cubane Surrogate at a Di-Iron Site Related to [FeFe]-Hydrogenases
by Andrea Mele, Federica Arrigoni, Luca De Gioia, Catherine Elleouet, François Y. Pétillon, Philippe Schollhammer and Giuseppe Zampella
Inorganics 2023, 11(12), 463; https://doi.org/10.3390/inorganics11120463 - 29 Nov 2023
Cited by 1 | Viewed by 2486
Abstract
Two complexes, related to the active site of [FeFe]-hydrogenases, [Fe2(CO)4(κ2-pma)(µ-bdt)] (1) and [Fe2(CO)4(κ2-pma)(µ-pdt)] (2) (bdt = benzene-1,2-dithiolate, pdt = propane-1,2-dithiolate) featuring [...] Read more.
Two complexes, related to the active site of [FeFe]-hydrogenases, [Fe2(CO)4(κ2-pma)(µ-bdt)] (1) and [Fe2(CO)4(κ2-pma)(µ-pdt)] (2) (bdt = benzene-1,2-dithiolate, pdt = propane-1,2-dithiolate) featuring the diaza chelate ligand trans-N-(2-pyridylmethylene)aniline (pma) were prepared, in order to study the influence of such a redox ligand, potentially non-innocent, on their redox behaviours. Both complexes were synthesized by photolysis in moderate yields, and they were characterized by IR, 1H and 13C{1H} NMR spectroscopies, elemental analyses and X-ray diffraction. Their electrochemical study by cyclic voltammetry, in the presence and in the absence of protons, revealed different behaviours depending on the aliphatic or aromatic nature of the dithiolate bridge. Density functional theory (DFT) calculations showed the role of the pma ligand as an electron reservoir, allowing the rationalization of the proton reduction process of complex 1. Full article
(This article belongs to the Special Issue Binuclear Complexes II)
Show Figures

Graphical abstract

15 pages, 3824 KB  
Article
Redox Chemistry of Pt(II) Complex with Non-Innocent NHC Bis(Phenolate) Pincer Ligand: Electrochemical, Spectroscopic, and Computational Aspects
by Ilya K. Mikhailov, Zufar N. Gafurov, Alexey A. Kagilev, Vladimir I. Morozov, Artyom O. Kantyukov, Ekaterina M. Zueva, Gumar R. Ganeev, Ilyas F. Sakhapov, Asiya V. Toropchina, Igor A. Litvinov, Galina A. Gurina, Alexander A. Trifonov, Oleg G. Sinyashin and Dmitry G. Yakhvarov
Catalysts 2023, 13(9), 1291; https://doi.org/10.3390/catal13091291 - 11 Sep 2023
Cited by 7 | Viewed by 2769
Abstract
A Pt(II) complex bearing chelating tridentate bis-aryloxide tetrahydropyrimidinium-based N-heterocyclic carbene (NHC) was synthesized and characterized by using different techniques. Both cyclic voltammetry and differential pulse voltammetry were used to study the electrochemical properties of the complex, revealing two reversible one-electron oxidation processes. The [...] Read more.
A Pt(II) complex bearing chelating tridentate bis-aryloxide tetrahydropyrimidinium-based N-heterocyclic carbene (NHC) was synthesized and characterized by using different techniques. Both cyclic voltammetry and differential pulse voltammetry were used to study the electrochemical properties of the complex, revealing two reversible one-electron oxidation processes. The chemical generation and isolation of one-electron-oxidized species were performed oxidizing the initial complex by means of AgBF4. A combination of spectroscopic (UV-Vis/NIR- and EPR-) and theoretical (density functional theory (DFT)) studies suggests the formation of a Pt(II)-phenoxyl radical complex. The latter open-shell derivative was structurally characterized by means of X-ray diffraction analysis. Finally, the neutral platinum complex was tested as a mediator in the process of electrocatalytic oxidation of 2-(methylamino)ethanol (MEA). Full article
(This article belongs to the Special Issue Free Radicals in Catalysis, Organic Synthesis, and Material Science)
Show Figures

Graphical abstract

18 pages, 2847 KB  
Article
Coordinatively Unsaturated Nickel Nitroxyl Complex: Structure, Physicochemical Properties, and Reactivity toward Dioxygen
by Kiyoshi Fujisawa, Taisei Kataoka, Kohei Terashima, Haruka Kurihara, Felipe de Santis Gonçalves and Nicolai Lehnert
Molecules 2023, 28(17), 6206; https://doi.org/10.3390/molecules28176206 - 23 Aug 2023
Cited by 4 | Viewed by 2694
Abstract
For its important roles in biology, nitrogen monoxide (·NO) has become one of the most studied and fascinating molecules in chemistry. ·NO itself acts as a “noninnocent” or “redox active” ligand to transition metal ions to give metal–NO (M–NO) complexes. Because of this [...] Read more.
For its important roles in biology, nitrogen monoxide (·NO) has become one of the most studied and fascinating molecules in chemistry. ·NO itself acts as a “noninnocent” or “redox active” ligand to transition metal ions to give metal–NO (M–NO) complexes. Because of this uncertainty due to redox chemistry, the real description of the electronic structure of the M–NO unit requires extensive spectroscopic and theoretical studies. We previously reported the Ni–NO complex with a hindered N3 type ligand [Ni(NO)(L3)] (L3 denotes hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate anion), which contains a high-spin (hs) nickel(II) center and a coordinated 3NO. This complex is very stable toward dioxygen due to steric protection of the nickel(II) center. Here, we report the dioxygen reactivity of a new Ni–NO complex, [Ni(NO)(I)(L1″)], with a less hindered N2 type bis(pyrazolyl)methane ligand, which creates a coordinatively unsaturated ligand environment about the nickel center. Here, L1″ denotes bis(3,5-diisopropyl-1-pyrazolyl)methane. This complex is also described as a hs-nickel(II) center with a bound 3NO, based on spectroscopic and theoretical studies. Unexpectedly, the reaction of [Ni(NO)(I)(L1″)] with O2 yielded [Ni(κ2-O2N)(L1″)2](I3), with the oxidation of both 3NO and the I ion to yield NO2 and I3. Both complexes were characterized by X-ray crystallography, IR, and UV–Vis spectroscopy and theoretical calculations. Full article
Show Figures

Graphical abstract

21 pages, 3045 KB  
Article
Iridium Complexes with BIAN-Type Ligands: Synthesis, Structure and Redox Chemistry
by Nikolai F. Romashev, Ivan V. Bakaev, Veronika I. Komlyagina, Pavel A. Abramov, Irina V. Mirzaeva, Vladimir A. Nadolinny, Alexander N. Lavrov, Nikolai B. Kompan’kov, Artem A. Mikhailov, Iakov S. Fomenko, Alexander S. Novikov, Maxim N. Sokolov and Artem L. Gushchin
Int. J. Mol. Sci. 2023, 24(13), 10457; https://doi.org/10.3390/ijms241310457 - 21 Jun 2023
Cited by 13 | Viewed by 3392
Abstract
A series of iridium complexes with bis(diisopropylphenyl)iminoacenaphtene (dpp-bian) ligands, [Ir(cod)(dpp-bian)Cl] (1), [Ir(cod)(NO)(dpp-bian)](BF4)2 (2) and [Ir(cod)(dpp-bian)](BF4) (3), were prepared and characterized by spectroscopic techniques, elemental analysis, X-ray diffraction analysis and cyclic voltammetry (CV). [...] Read more.
A series of iridium complexes with bis(diisopropylphenyl)iminoacenaphtene (dpp-bian) ligands, [Ir(cod)(dpp-bian)Cl] (1), [Ir(cod)(NO)(dpp-bian)](BF4)2 (2) and [Ir(cod)(dpp-bian)](BF4) (3), were prepared and characterized by spectroscopic techniques, elemental analysis, X-ray diffraction analysis and cyclic voltammetry (CV). The structures of 13 feature a square planar backbone consisting of two C = C π-bonds of 1,5-cyclooctadiene (cod) and two nitrogen atoms of dpp-bian supplemented with a chloride ion (for 1) or a NO group (for 2) to complete a square-pyramidal geometry. In the nitrosyl complex 2, the Ir-N-O group has a bent geometry (the angle is 125°). The CV data for 1 and 3 show two reversible waves between 0 and -1.6 V (vs. Ag/AgCl). Reversible oxidation was also found at E1/2 = 0.60 V for 1. Magnetochemical measurements for 2 in a range from 1.77 to 300 K revealed an increase in the magnetic moment with increasing temperature up to 1.2 μB (at 300 K). Nitrosyl complex 2 is unstable in solution and loses its NO group to yield [Ir(cod)(dpp-bian)](BF4) (3). A paramagnetic complex, [Ir(cod)(dpp-bian)](BF4)2 (4), was also detected in the solution of 2 as a result of its decomposition. The EPR spectrum of 4 in CH2Cl2 is described by the spin Hamiltonian Ĥ = gβHŜ with S = 1/2 and gxx = gyy = 2.393 and gzz = 1.88, which are characteristic of the low-spin 5d7-Ir(II) state. DFT calculations were carried out in order to rationalize the experimental results. Full article
Show Figures

Graphical abstract

14 pages, 2108 KB  
Article
Insights into Triazolylidene Ligands Behaviour at a Di-Iron Site Related to [FeFe]-Hydrogenases
by Andrea Mele, Federica Arrigoni, Catherine Elleouet, François Y. Pétillon, Philippe Schollhammer and Giuseppe Zampella
Molecules 2022, 27(15), 4700; https://doi.org/10.3390/molecules27154700 - 22 Jul 2022
Cited by 3 | Viewed by 2230
Abstract
The behaviour of triazolylidene ligands coordinated at a {Fe2(CO)5(µ-dithiolate)} core related to the active site of [FeFe]-hydrogenases have been considered to determine whether such carbenes may act as redox electron-reservoirs, with innocent or non-innocent properties. A novel complex featuring [...] Read more.
The behaviour of triazolylidene ligands coordinated at a {Fe2(CO)5(µ-dithiolate)} core related to the active site of [FeFe]-hydrogenases have been considered to determine whether such carbenes may act as redox electron-reservoirs, with innocent or non-innocent properties. A novel complex featuring a mesoionic carbene (MIC) [Fe2(CO)5(Pmpt)(µ-pdt)] (1; Pmpt = 1-phenyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene; pdt = propanedithiolate) was synthesized and characterized by IR, 1H, 13C{1H} NMR spectroscopies, elemental analyses, X-ray diffraction, and cyclic voltammetry. Comparison with the spectroscopic characteristics of its analogue [Fe2(CO)5(Pmbt)(µ-pdt)] (2; Pmbt = 1-phenyl-3-methyl-4-butyl-1,2,3-triazol-5-ylidene) showed the effect of the replacement of a n-butyl by a phenyl group in the 1,2,3-triazole heterocycle. A DFT study was performed to rationalize the electronic behaviour of 1, 2 upon the transfer of two electrons and showed that such carbenes do not behave as redox ligands. With highly perfluorinated carbenes, electronic communication between the di-iron site and the triazole cycle is still limited, suggesting low redox properties of MIC ligands used in this study. Finally, although the catalytic performances of 2 towards proton reduction are weak, the protonation process after a two-electron reduction of 2 was examined by DFT and revealed that the protonation process is favoured by S-protonation but the stabilized diprotonated intermediate featuring a {Fe-H⋯H-S} interaction does not facilitate the release of H2 and may explain low efficiency towards HER (Hydrogen Evolution Reaction). Full article
(This article belongs to the Special Issue Reactivity of Metal Complexes with Redox-Active Ligands)
Show Figures

Figure 1

5 pages, 991 KB  
Proceeding Paper
Potential Applications of Vanadium-Based Anticancer Drugs for Intratumoral Injections
by John Manganaro, Aviva Levina, Peter A. Lay and Debbie C. Crans
Med. Sci. Forum 2022, 11(1), 10; https://doi.org/10.3390/BiTaP-12783 - 29 Jun 2022
Cited by 4 | Viewed by 1924
Abstract
The administration of highly cytotoxic or immunomodulating drugs directly into a tumor is a method used in the clinic for late stages of cancers and in clinical trials for platinum-based drugs. A hydrophobic non-innocent Schiff base V(V) complex with a sterically hindered catecholate [...] Read more.
The administration of highly cytotoxic or immunomodulating drugs directly into a tumor is a method used in the clinic for late stages of cancers and in clinical trials for platinum-based drugs. A hydrophobic non-innocent Schiff base V(V) complex with a sterically hindered catecholate ligand was taken up rapidly into cancer cells and caused cell death as required for potential use as intratumoral agents. The synthesis was non-trivial on large scales and high purities. This class of complexes with sterically hindred catecholates is sufficiently stable to survive briefly under physiological conditions before hydrolysis and/or redox reactions. Degradation reactions occur very rapidly for complexes with less sterically hindered catacholates. Full article
(This article belongs to the Proceedings of Biosystems in Toxicology and Pharmacology—Current Challenges)
Show Figures

Figure 1

25 pages, 7030 KB  
Article
A “Pretender” Croconate-Bridged Macrocyclic Tetraruthenium Complex: Sizable Redox Potential Splittings despite Electronically Insulated Divinylphenylene Diruthenium Entities
by Nils Rotthowe, Michael Linseis, Lars Vogelsang, Nicole Orth, Ivana Ivanović-Burmazović and Rainer F. Winter
Molecules 2021, 26(17), 5232; https://doi.org/10.3390/molecules26175232 - 29 Aug 2021
Cited by 4 | Viewed by 3874
Abstract
Careful optimization of the reaction conditions provided access to the particularly small tetraruthenium macrocycle 2Ru2Ph-Croc, which is composed out of two redox-active divinylphenylene-bridged diruthenium entities {Ru}-1,4-CH=CH-C6H4-CH=CH-{Ru} (Ru2Ph; {Ru} = Ru(CO)Cl(PiPr3 [...] Read more.
Careful optimization of the reaction conditions provided access to the particularly small tetraruthenium macrocycle 2Ru2Ph-Croc, which is composed out of two redox-active divinylphenylene-bridged diruthenium entities {Ru}-1,4-CH=CH-C6H4-CH=CH-{Ru} (Ru2Ph; {Ru} = Ru(CO)Cl(PiPr3)2) and two likewise redox-active and potentially non-innocent croconate linkers. According to single X-ray diffraction analysis, the central cavity of 2Ru2Ph-Croc is shielded by the bulky PiPr3 ligands, which come into close contact. Cyclic voltammetry revealed two pairs of split anodic waves in the weakly ion pairing CH2Cl2/NBu4BArF24 (BArF24 = [B{C6H3(CF3)2-3,5}4] electrolyte, while the third and fourth waves fall together in CH2Cl2/NBu4PF6. The various oxidized forms were electrogenerated and scrutinized by IR and UV/Vis/NIR spectroscopy. This allowed us to assign the individual oxidations to the metal-organic Ru2Ph entities within 2Ru2Ph-Croc, while the croconate ligands remain largely uninvolved. The lack of specific NIR bands that could be assigned to intervalence charge transfer (IVCT) in the mono- and trications indicates that these mixed-valent species are strictly charge-localized. 2Ru2Ph-Croc is hence an exemplary case, where stepwise IR band shifts and quite sizable redox splittings between consecutive one-electron oxidations would, on first sight, point to electronic coupling, but are exclusively due to electrostatic and inductive effects. This makes 2Ru2Ph-Croc a true “pretender”. Full article
(This article belongs to the Special Issue Recent Advances in Supramolecular Organometallic Chemistry)
Show Figures

Graphical abstract

13 pages, 2273 KB  
Article
Detailing the Self-Discharge of a Cathode Based on a Prussian Blue Analogue
by Elisa Musella, Angelo Mullaliu, Thomas Ruf, Paula Huth, Domenica Tonelli, Giuliana Aquilanti, Reinhard Denecke and Marco Giorgetti
Energies 2020, 13(15), 4027; https://doi.org/10.3390/en13154027 - 4 Aug 2020
Cited by 9 | Viewed by 5592
Abstract
Prussian Blue analogues (PBAs) are a promising class of electrode active materials for batteries. Among them, copper nitroprusside, Cu[Fe(CN)5NO], has recently been investigated for its peculiar redox system, which also involves the nitrosyl ligand as a non-innocent ligand, in addition to [...] Read more.
Prussian Blue analogues (PBAs) are a promising class of electrode active materials for batteries. Among them, copper nitroprusside, Cu[Fe(CN)5NO], has recently been investigated for its peculiar redox system, which also involves the nitrosyl ligand as a non-innocent ligand, in addition to the electroactivity of the metal sites, Cu and Fe. This paper studies the dynamics of the electrode, employing surface sensitive X-ray Photoelectron spectroscopy (XPS) and bulk sensitive X-ray absorption spectroscopy (XAS) techniques. XPS provided chemical information on the layers formed on electrode surfaces following the self-discharge process of the cathode material in the presence of the electrolyte. These layers consist mainly of electrolyte degradation products, such as LiF, LixPOyFz and LixPFy. Moreover, as evidenced by XAS and XPS, reduction at both metal sites takes place in the bulk and in the surface of the material, clearly evidencing that a self-discharge process is occurring. We observed faster processes and higher amounts of reduced species and decomposition products in the case of samples with a higher amount of coordination water. Full article
Show Figures

Graphical abstract

17 pages, 2991 KB  
Article
Series of Near-IR-Absorbing Transition Metal Complexes with Redox Active Ligands
by Esko Salojärvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari and Ari Lehtonen
Molecules 2020, 25(11), 2531; https://doi.org/10.3390/molecules25112531 - 29 May 2020
Cited by 16 | Viewed by 5141
Abstract
New soluble and intensely near-IR-absorbing transition metal (Ti, Zr, V, Ni) complexes were synthesized using a redox non-innocent N,N’-bis(3,5-di-tertbutyl-2-hydroxy-phenyl) -1,2-phenylenediamine (H4L) as a ligand precursor. In all the complexes, ([Ti(Lox)2, [Zr(Lox)2 [...] Read more.
New soluble and intensely near-IR-absorbing transition metal (Ti, Zr, V, Ni) complexes were synthesized using a redox non-innocent N,N’-bis(3,5-di-tertbutyl-2-hydroxy-phenyl) -1,2-phenylenediamine (H4L) as a ligand precursor. In all the complexes, ([Ti(Lox)2, [Zr(Lox)2], [V(Lsq1)(HLox)] and [Ni(HLox)2], two organic molecules coordinate to the metal center as tri- or tetradentate ligands. The solid-state structures of the complexes were determined using single crystal XRD, and the compounds were further characterized with Electrospray Ionisation Mass Spectrometry (ESI-MS). Thermoanalytical measurements indicated the thermal stabilities of the complexes. All compounds absorb strongly in the near-IR region and show very interesting magnetic and electrochemical properties. Moreover, it was shown that the V and Ni complexes can also convert absorbed near-IR photons to (un)paired electrons, which indicates great promise in photovoltaic applications. Full article
Show Figures

Graphical abstract

22 pages, 4253 KB  
Review
Metal Complexes Containing Redox-Active Ligands in Oxidation of Hydrocarbons and Alcohols: A Review
by Georgiy B. Shul’pin, Yuriy N. Kozlov and Lidia S. Shul’pina
Catalysts 2019, 9(12), 1046; https://doi.org/10.3390/catal9121046 - 9 Dec 2019
Cited by 45 | Viewed by 8735
Abstract
Ligands are innocent when they allow oxidation states of the central atoms to be defined. A noninnocent (or redox) ligand is a ligand in a metal complex where the oxidation state is not clear. Dioxygen can be a noninnocent species, since it exists [...] Read more.
Ligands are innocent when they allow oxidation states of the central atoms to be defined. A noninnocent (or redox) ligand is a ligand in a metal complex where the oxidation state is not clear. Dioxygen can be a noninnocent species, since it exists in two oxidation states, i.e., superoxide (O2) and peroxide (O22−). This review is devoted to oxidations of C–H compounds (saturated and aromatic hydrocarbons) and alcohols with peroxides (hydrogen peroxide, tert-butyl hydroperoxide) catalyzed by complexes of transition and nontransition metals containing innocent and noninnocent ligands. In many cases, the oxidation is induced by hydroxyl radicals. The mechanisms of the formation of hydroxyl radicals from H2O2 under the action of transition (iron, copper, vanadium, rhenium, etc.) and nontransition (aluminum, gallium, bismuth, etc.) metal ions are discussed. It has been demonstrated that the participation of the second hydrogen peroxide molecule leads to the rapture of O–O bond, and, as a result, to the facilitation of hydroxyl radical generation. The oxidation of alkanes induced by hydroxyl radicals leads to the formation of relatively unstable alkyl hydroperoxides. The data on regioselectivity in alkane oxidation allowed us to identify an oxidizing species generated in the decomposition of hydrogen peroxide: (hydroxyl radical or another species). The values of the ratio-of-rate constants of the interaction between an oxidizing species and solvent acetonitrile or alkane gives either the kinetic support for the nature of the oxidizing species or establishes the mechanism of the induction of oxidation catalyzed by a concrete compound. In the case of a bulky catalyst molecule, the ratio of hydroxyl radical attack rates upon the acetonitrile molecule and alkane becomes higher. This can be expanded if we assume that the reactions of hydroxyl radicals occur in a cavity inside a voluminous catalyst molecule, where the ratio of the local concentrations of acetonitrile and alkane is higher than in the whole reaction volume. The works of the authors of this review in this field are described in more detail herein. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

22 pages, 4491 KB  
Article
Reduction of 2,2′-Bipyridine by Quasi-Linear 3d-Metal(I) Silylamides—A Structural and Spectroscopic Study
by Igor Müller, Christian Schneider, Clemens Pietzonka, Florian Kraus and C. Gunnar Werncke
Inorganics 2019, 7(10), 117; https://doi.org/10.3390/inorganics7100117 - 25 Sep 2019
Cited by 26 | Viewed by 6694
Abstract
Quasi-linear anionic 3d-metal(I) silylamides are a new and promising class of molecules. Due to their highly negative reduction potential we wanted to test their capability to reduce substrates under coordination of their monoanionic radicaloid form. In a proof of principle study, we present [...] Read more.
Quasi-linear anionic 3d-metal(I) silylamides are a new and promising class of molecules. Due to their highly negative reduction potential we wanted to test their capability to reduce substrates under coordination of their monoanionic radicaloid form. In a proof of principle study, we present the results of the reaction of metal(I) silylamides of chromium to cobalt with 2,2′-bipyridine (bipy), the redox non-innocence and reducibility of which was already established. In the course of these studies complexes of the type K{18-crown-6}[M(hmds)2(bipy)] (hmds = –N(SiMe3)2) were obtained. These compounds were isolated and thoroughly characterized to confirm the electron transfer onto the bipyridine ligand, which now acts as a radical monoanion. For comparison of the structural changes of the bipyridine ligand, the analogous zinc complexes were also synthesized. Overall our results indicate that anionic metal(I) silylamides are capable of reducing and ligate substrates, even when the electrochemical reduction potential of the latter is by up to 1 V higher. Full article
(This article belongs to the Special Issue First-Row Transition Metal Complexes)
Show Figures

Graphical abstract

12 pages, 2633 KB  
Article
Reactive Heterobimetallic Complex Combining Divalent Ytterbium and Dimethyl Nickel Fragments
by Ding Wang, Jules Moutet, Maxime Tricoire, Marie Cordier and Grégory Nocton
Inorganics 2019, 7(5), 58; https://doi.org/10.3390/inorganics7050058 - 26 Apr 2019
Cited by 18 | Viewed by 5529
Abstract
This article presented the synthesis and characterization of original heterobimetallic species combining a divalent lanthanide fragment and a divalent nickel center bridged by the bipyrimidine ligand, a redox-active ligand. X-ray crystal structures were obtained for the Ni monomer (bipym)NiMe2, 1, [...] Read more.
This article presented the synthesis and characterization of original heterobimetallic species combining a divalent lanthanide fragment and a divalent nickel center bridged by the bipyrimidine ligand, a redox-active ligand. X-ray crystal structures were obtained for the Ni monomer (bipym)NiMe2, 1, as well as the heterobimetallic dimer compounds, Cp*2Yb(bipym)NiMe2, 2, along with 1H solution NMR, solid-state magnetic data, and DFT calculations only for 1. The reactivity with CO was investigated on both compounds and the stoichiometric acetone formation is discussed based on kinetic and mechanistic studies. The key role of the lanthanide fragment was demonstrated by the relatively slow CO migratory insertion step, which indicated the stability of the intermediate. Full article
(This article belongs to the Special Issue Binuclear Complexes)
Show Figures

Graphical abstract

11 pages, 2599 KB  
Article
Synthesis and Characterization of (pyNO)2GaCl: A Redox-Active Gallium Complex
by Jacob M. Kirsh, Audra J. Woodside, Brian C. Manor, Patrick J. Carroll, Paul R. Rablen and Christopher R. Graves
Inorganics 2018, 6(2), 50; https://doi.org/10.3390/inorganics6020050 - 21 May 2018
Cited by 4 | Viewed by 4402
Abstract
We report the synthesis of a gallium complex incorporating redox-active pyridyl nitroxide ligands. The (pyNO)2GaCl complex was prepared in 85% yield via a salt metathesis route and was characterized by 1H and 13C NMR spectroscopies, X-ray diffraction, [...] Read more.
We report the synthesis of a gallium complex incorporating redox-active pyridyl nitroxide ligands. The (pyNO)2GaCl complex was prepared in 85% yield via a salt metathesis route and was characterized by 1H and 13C NMR spectroscopies, X-ray diffraction, and theory. UV–Vis absorption spectroscopy and electrochemistry were used to access the optical and electrochemical properties of the complex, respectively. Our discussion focuses primarily on a comparison of the gallium complex to the corresponding aluminum derivative and shows that although the complexes are very similar, small differences in the electronic structure of the complexes can be correlated to the identity of the metal. Full article
(This article belongs to the Special Issue Redox-Active Ligand in Coordination Chemistry)
Show Figures

Graphical abstract

Back to TopTop