Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = recycled tyre waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7199 KiB  
Article
Investigation of Fresh, Mechanical, and Durability Properties of Rubberized Fibre-Reinforced Concrete Containing Macro-Synthetic Fibres and Tyre Waste Rubber
by Nusrat Jahan Mim, Mizan Ahmed, Xihong Zhang, Faiz Shaikh, Ahmed Hamoda, Vipulkumar Ishvarbhai Patel and Aref A. Abadel
Buildings 2025, 15(15), 2778; https://doi.org/10.3390/buildings15152778 - 6 Aug 2025
Abstract
The growing disposal of used tyres and plastic waste in landfills poses a significant environmental challenge. This study investigates the potential of utilizing used tyre rubber and macro-synthetic fibres (MSFs) made from recycled plastics in fibre-reinforced rubberized concrete (RuFRC). Various percentages of tyre [...] Read more.
The growing disposal of used tyres and plastic waste in landfills poses a significant environmental challenge. This study investigates the potential of utilizing used tyre rubber and macro-synthetic fibres (MSFs) made from recycled plastics in fibre-reinforced rubberized concrete (RuFRC). Various percentages of tyre rubber shreds were used to replace coarse aggregates, calculated as 10%, 20%, and 30% of the volume of fine aggregates; fibre dosages (0%, 0.25%, 0.5%, 0.75%, and 1% by volume) were incorporated into the mix, and a series of physical, mechanical, and durability properties were evaluated. The results show that, as the fibre and rubber content increased, the slump of RuFRC decreased, with the lowest value obtained for concrete with 1% fibre and 30% rubber. The density of RuFRC decreases as the rubber percentage increases due to air voids and increased porosity caused by the rubber. The strength properties of RuFRC were found to decline with the increase in the rubber content, with mixes containing 30% rubber exhibiting reductions of about 60% in compressive strength, 27% in tensile strength, and 13% in flexural strength compared to the control specimen. Durability testing revealed that an increased rubber content led to higher water absorption, water penetration, and chloride ion permeability, with 30% rubber showing the highest values. However, lower rubber content (10%) and higher fibre dosages improved the durability characteristics, with water absorption reduced by up to 5% and shrinkage strains lowered by about 7%, indicating better compaction and bonding. These results indicate that RuFRC with moderate rubber and higher fibre content offers a promising balance between sustainability and performance. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Viewed by 208
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

19 pages, 5708 KiB  
Article
An Investigation of the Mechanical Properties and Thermal Insulation of Foamed Rubberised Polypropylene Fibre Concrete That Incorporates a High Quantity of Crumb Rubber Granules
by Zhi Heng Lim, Foo Wei Lee, Kim Hung Mo, Ren Jie Chin, Kim Ho Yeap and Ming Kun Yew
Polymers 2025, 17(7), 967; https://doi.org/10.3390/polym17070967 - 2 Apr 2025
Cited by 1 | Viewed by 637
Abstract
Disposing of waste tyres in landfills poses significant environmental hazards, making recycling a crucial alternative. Rubberised concrete has been found to exhibit lower density and better thermal insulation performance than conventional concrete. In order to maximise the potential of thermal insulation of rubberised [...] Read more.
Disposing of waste tyres in landfills poses significant environmental hazards, making recycling a crucial alternative. Rubberised concrete has been found to exhibit lower density and better thermal insulation performance than conventional concrete. In order to maximise the potential of thermal insulation of rubberised concrete, this study investigates the mechanical and thermal properties of foamed rubberised polypropylene fibre concrete (FRPFC). FRPFC was produced using a mix of crumb rubber (CR) granules, polypropylene fibres, and foam, targeting a density of 800 kg/m3, with CR substituting sand at varying levels. Compressive strength, flexural strength, splitting tensile strength, and thermal conductivity of FRPFC were evaluated. The results demonstrate that increasing CR granule content enhances compressive strength due to reduced porosity from lower foam usage. For instance, compressive strength improved by 55% (2.64 to 4.10 MPa) as CR granule content increased from 0% to 80%. Similarly, flexural strength and splitting tensile strength increased by 55% (1.61 MPa to 2.49 MPa) and 39% (0.41 MPa to 0.57 MPa), respectively, when CR content rose from 0% to 100% at a water-to-cement ratio of 0.50. Furthermore, thermal conductivity decreased by 34% (0.3608 W/mK to 0.2376 W/mK) when sand was fully replaced with CR granules, showcasing improved thermal insulation. Statistical analysis using ANOVA confirmed that the crumb rubber content significantly influences the mechanical and thermal properties of FRPFC, with higher CR content (80% and 100%) leading to superior performance. These findings highlight FRPFC’s potential as an environmentally sustainable and thermally efficient construction material, contributing to enhanced mechanical properties compared to conventional foamed polypropylene fibre concrete. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

15 pages, 2378 KiB  
Article
Tracing the EoL Tyre Management Chain in Togo with Focus on Implementing a Tyre Recycling Plant
by Mona-Maria Narra, Djangbadjoa Gbiete, Komi Agboka, Satyanarayana Narra and Michael Nelles
Sustainability 2024, 16(21), 9193; https://doi.org/10.3390/su16219193 - 23 Oct 2024
Cited by 3 | Viewed by 1315
Abstract
As part of the “Waste2Energy: hybrid energy from waste as a sustainable solution for West-Africa” project, a tyre recycling plant is being constructed in Davié, north of Lomé, Togo. Understanding the tyre management chain is crucial for establishing the plant’s supply chain. This [...] Read more.
As part of the “Waste2Energy: hybrid energy from waste as a sustainable solution for West-Africa” project, a tyre recycling plant is being constructed in Davié, north of Lomé, Togo. Understanding the tyre management chain is crucial for establishing the plant’s supply chain. This study aimed to highlight the gaps in and the importance of tyre recycling in Togo while assessing the potential of EoL tyres for the implementation of a tyre recycling plant. Togo’s vehicle fleet, predominantly concentrated in Lomé, is rapidly increasing at a rate of 6% per year, reaching an estimated 285,000 vehicles. Due to economic constraints and limited new tyre availability, most vehicle users opt for used tyres, which have a limited lifespan due to poor road conditions. An investigation of EoL tyre quantities and management chains in Togo was carried out. To evaluate the used and end-of-life tyre management chains, both direct observation and interviews with approximately 200 used-tyre dealers were conducted. The study revealed that, on average, drivers replace tyres every 7.4 months, generating between 30,525 t/a and 78,000 t/a of used tyres, 75% of which are replaced due to severe damage or wear. While the used tyre business is well organized, end-of-life tyre treatment is nearly non-existent, often involving dumping, open burning for metal recovery, or use in meat processing, causing environmental and health risks. To address these challenges, an 8 t/hr capacity tyre recycling plant is planned, based on estimated tyre availability and development opportunities for sustainable recycling in Togo. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

22 pages, 1454 KiB  
Review
Building a Greener Future: Advancing Concrete Production Sustainability and the Thermal Properties of 3D-Printed Mortars
by Ana Paula Capêto, Manuel Jesus, Braian E. B. Uribe, Ana Sofia Guimarães and Ana L. S. Oliveira
Buildings 2024, 14(5), 1323; https://doi.org/10.3390/buildings14051323 - 8 May 2024
Cited by 10 | Viewed by 4890
Abstract
The integration of waste materials in extrudable cement mixtures has the potential to make the construction industry more sustainable by reducing carbon footprints and developing eco-friendly materials. This along with advancements in 3D concrete printing (3DCP) provides engineering and architectural benefits by reducing [...] Read more.
The integration of waste materials in extrudable cement mixtures has the potential to make the construction industry more sustainable by reducing carbon footprints and developing eco-friendly materials. This along with advancements in 3D concrete printing (3DCP) provides engineering and architectural benefits by reducing material waste and costs. In this paper, the impact of waste incorporation on properties of mortar and concrete is examined. The use of waste materials, such as pumice, coal slag, agricultural lignocellulosic residues, and recycled rubber tyres, to improve thermal insulation and durability of cementitious composites is discussed. In addition, the incorporation of air-entraining admixtures with surfactant activity is explored for their indirect effect on thermal behaviour, pore size reduction, and enhancement in concrete properties. This review includes important topics such as a strength resistance to freezing and thawing, fire resistance, plasticising effect, and delay in cement hydration. These findings highlight the benefits of using diverse waste materials in construction, providing a multidimensional approach to waste management, cost optimization, and enhanced construction materials in the context of 3DCP. Full article
(This article belongs to the Special Issue Digital Technologies Transforming Construction Design)
Show Figures

Figure 1

21 pages, 13688 KiB  
Article
Ultra-High-Performance Alkali-Activated Concrete: Effect of Waste Crumb Rubber Aggregate Proportions on Tensile and Flexural Properties
by Lei Li, Zhongmin Chen, Weixian Che, Cheng Cheng, Yiwu Chen, Dehui Li, Lianghua Liu and Yongchang Guo
Buildings 2024, 14(4), 1088; https://doi.org/10.3390/buildings14041088 - 13 Apr 2024
Cited by 2 | Viewed by 2146
Abstract
The declining availability of natural sand resources and the significant carbon footprint associated with the extensive use of cement are posing severe limitations on the advancement and application of ultra-high-performance concrete (UHPC). In this study, waste tyre-derived recycled crumb rubber particles (CR) were [...] Read more.
The declining availability of natural sand resources and the significant carbon footprint associated with the extensive use of cement are posing severe limitations on the advancement and application of ultra-high-performance concrete (UHPC). In this study, waste tyre-derived recycled crumb rubber particles (CR) were employed to replace quartz sand, and an alkali-activated cementitious material was used to produce waste tyre-alkali-activated UHPC (T-UHPAC). The influence of different CR replacement ratios (0%, 5%, 20%, 35%, 50%) on the tensile and flexural performance of T-UHPAC was investigated, and a predictive model for the stress–strain response considering the CR replacement ratio was established. An optimization method for improving the tensile and flexural performance of T-UHPAC was proposed. The results indicate that the effect of rough-surfaced CR on the interfacial properties of concrete differs from that of smooth quartz sand. A CR replacement ratio exceeding 35% led to a reduction in both the tensile and flexural strengths of UHPAC, while a replacement ratio at or below 20% resulted in a superior tensile and flexural performance of T-UHPAC. The established predictive model for tensile performance accurately forecasts the stress–strain behaviour of T-UHPAC under varying CR replacement ratios, with the accuracy improving as the CR replacement ratio increases. By utilizing CR to replace quartz sand in proportions not exceeding 20%, the production of low-carbon UHPC with exceptional comprehensive mechanical properties is achievable. Moreover, the development of T-UHPAC through the comprehensive utilization of waste tyres presents a promising and innovative approach for the low-carbon and cost-effective production of UHPC, thereby facilitating the sustainable development of natural resources. This research represents a significant step towards the widespread adoption and application of UHPC and thus holds substantial importance. Full article
(This article belongs to the Special Issue Next-Gen Cementitious Composites for Sustainable Construction)
Show Figures

Figure 1

16 pages, 5749 KiB  
Article
Eco-Design and Characterization of Sustainable Lightweight Gypsum Composites for Panel Manufacturing including End-of-Life Tyre Wastes
by Daniel Ferrández, Manuel Álvarez, Alicia Zaragoza-Benzal and Paulo Santos
Materials 2024, 17(3), 635; https://doi.org/10.3390/ma17030635 - 28 Jan 2024
Cited by 8 | Viewed by 2231
Abstract
The incorporation of rubber recycled aggregates from end-of-life tyres (ELT) in the manufacturing process of sustainable building materials has gained great interest in recent decades as a result of the large volume of this waste being generated annually. In this work, the objective [...] Read more.
The incorporation of rubber recycled aggregates from end-of-life tyres (ELT) in the manufacturing process of sustainable building materials has gained great interest in recent decades as a result of the large volume of this waste being generated annually. In this work, the objective is to make a contribution towards the circularity of construction products by carrying out a physico-mechanical characterisation of new gypsum composites made with the incorporation of these recycled rubber aggregates. To this end, up to 30% by volume of the original raw material has been substituted, analysing the mechanical resistance to bending and compression. Although lower than those of traditional gypsum material, both properties exceed the limits set at 1 and 2 MPa, respectively, by the current regulations. In addition, water absorption by capillarity significantly decreases, and thermal conductivity is reduced by more than 35% with respect to the reference material. Finally, in order to provide the research with a practical application, a prefabricated plate design has been proposed that incorporates the gypsum materials studied and an agglomerated rubber band that increases the thermal resistance and improves the efficiency of the designed construction system. In this way, this research reflects the potential of these novel building materials and explores new avenues for their application in building construction. Full article
Show Figures

Figure 1

24 pages, 10642 KiB  
Article
The Use of Waste Tyre Rubber Recycled Products in Lightweight Timber Frame Systems as Acoustic Insulation: A Comparative Analysis of Acoustic Performance
by José-Antonio Balmori, Milagros Casado-Sanz, María Machimbarrena, Susana Quirós-Alpera, Roberto Mostaza and Luis Acuña
Buildings 2024, 14(1), 35; https://doi.org/10.3390/buildings14010035 - 22 Dec 2023
Cited by 6 | Viewed by 3590
Abstract
The current European standards demand more energy-efficient, comfortable, and sustainable buildings and encourage the incorporation of recycled materials in building construction. Timber buildings are successfully competing with traditional building materials in addressing these challenges; however, one of the weaknesses of timber systems is [...] Read more.
The current European standards demand more energy-efficient, comfortable, and sustainable buildings and encourage the incorporation of recycled materials in building construction. Timber buildings are successfully competing with traditional building materials in addressing these challenges; however, one of the weaknesses of timber systems is their limited sound insulation capacity. One material that can fit into the sustainability aims of timber construction and improve its acoustic performance is recycled ground tyre rubber (GTR), which, on top of this, is a serious environmental problem. This paper presents research on the use of GTR materials combined with timber systems in order to improve their acoustic performance. Three different types of GTR products (granulate, rolls, and sheets) of different thicknesses and densities are selected and are combined with different sound-absorbing materials (mineral wool, cellulose, and wood fibre) inside a lightweight timber sandwich system. In this study, the first qualitative approach, the acoustic performance of the different resulting systems is compared based on the sound pressure level difference measured in a custom-made reduced-size transmission chamber. Secondly, the sound reduction index of four selected specimens is measured in an accredited sound transmission laboratory. The results show that, for all the lightweight timber systems included in this research, introducing a GTR layer improves the acoustic performance of the system. Full article
(This article belongs to the Special Issue Acoustics and Noise Control in Buildings)
Show Figures

Figure 1

24 pages, 4637 KiB  
Review
A Review of Rubberised Asphalt for Flexible Pavement Applications: Production, Content, Performance, Motivations and Future Directions
by Munder Bilema, Choon Wah Yuen, Mohammad Alharthai, Zaid Hazim Al-Saffar, Abdulnaser Al-Sabaeei and Nur Izzi Md Yusoff
Sustainability 2023, 15(19), 14481; https://doi.org/10.3390/su151914481 - 4 Oct 2023
Cited by 11 | Viewed by 7385
Abstract
The crumb rubber (CR) recycled from waste tyres could be a viable alternative in achieving green pavements that offer exciting new markets to global investors. Adding CR into flexible pavements enhances their performance and ensures environmental sustainability. This paper will discuss the production [...] Read more.
The crumb rubber (CR) recycled from waste tyres could be a viable alternative in achieving green pavements that offer exciting new markets to global investors. Adding CR into flexible pavements enhances their performance and ensures environmental sustainability. This paper will discuss the production variables, CR sizes and contents, blending techniques, optimum bitumen contents, morphology, standard characteristics, rheological characteristics, mechanical performance, greenhouse gas emissions, energy consumption and life cycle cost. This review study found that compared to traditional asphalt mixtures, the CR-modified asphalts had superior performance and longer service life. However, the dearth of information on several factors in CR asphalt production, including greenhouse gas emissions, energy consumption and life cycle cost during recycling, causes many agencies in the global asphalt industry to continue employing costly, energy-consuming additives such as styrene-butadiene-styrene (SBS) instead of CR to enhance asphalt. Full article
(This article belongs to the Special Issue Asphalt Binder and Sustainable Pavement Design)
Show Figures

Figure 1

21 pages, 6932 KiB  
Article
Experimental Research and Transfer Matrix Method for Analysis of Transmission Loss in Multilayer Constructions with Devulcanized Waste Rubber
by Tomas Vilniškis and Tomas Januševičius
Sustainability 2023, 15(17), 12774; https://doi.org/10.3390/su151712774 - 23 Aug 2023
Viewed by 1438
Abstract
According to circular economy principles, the recycling and reuse of tyre rubber waste are among the most advanced and ecological waste disposal technologies. Each year, about 19 million tons of tyres are produced, and this number increases every year. One of the most [...] Read more.
According to circular economy principles, the recycling and reuse of tyre rubber waste are among the most advanced and ecological waste disposal technologies. Each year, about 19 million tons of tyres are produced, and this number increases every year. One of the most innovative ways to recycle rubber waste is devulcanization. There are many methods of rubber devulcanization, but the most popular is chemical devulcanization. Also, pre-process treatment is important before devulcanization. In this article, devulcanized rubber granules were used for the preparation of rubber samples. Two of the samples were obtained via the grinding method and one via chemical devulcanization. In total, 15 different rubber samples were produced for experimental measurements. Multilayer constructions, with two solid layers of plasterboard on both sides (GKB (a standard gypsum board) and GKFI (an enhanced-strength and surface-hardness gypsum board)) and the porous acoustic material of the rubber sample inside, were produced. Measurements were made in an impedance tube and compared with the results of a transfer matrix method (TMM) analysis. The same trends of resonant frequencies were determined. According to the results, the resonant frequencies depended on the thickness of the material, since transmission loss (TL) values depended on the mass of the construction. According to the test results of transmission loss, constructions with 50 mm thick rubber samples had results that were, on average, 3 dB better than those of structures with 25 mm thick samples and 5 dB better than those of structures with 12 mm thick rubber samples. In addition, it was found that higher-density plasterboards (GKFI) increased the overall transmission loss value of the structure by 5 dB. The same trends were determined using the TMM method. The test results showed that multilayered constructions with devulcanized waste rubber had high transmission loss results and could be used for sound-insulating structures. Full article
Show Figures

Figure 1

4 pages, 509 KiB  
Proceeding Paper
Preliminary Mechanical Characterization of HMA Mixtures with a High Content of Recycled Materials
by Giulia Tarsi and Cesare Sangiorgi
Eng. Proc. 2023, 36(1), 17; https://doi.org/10.3390/engproc2023036017 - 4 Jul 2023
Viewed by 932
Abstract
The use of recycled materials is necessary to realize the green transition towards carbon neutrality. Several waste products are highly valued materials that cannot be landfilled without exploiting their full potential. Promoting the circular economy concept, this study aims to produce more sustainable [...] Read more.
The use of recycled materials is necessary to realize the green transition towards carbon neutrality. Several waste products are highly valued materials that cannot be landfilled without exploiting their full potential. Promoting the circular economy concept, this study aims to produce more sustainable paving materials using selected recycled products in binders and asphalt mixes. Rubber (R) from End-of-Life Tyres (ELTs) and Re-refined Engine Oil Bottom (REOB), i.e., the by-product of waste lubricants refining, were employed to produce extended bitumens (25%wt. bitumen replacement) trying to solve the ELTs and REOBs large production, thus disposal, worldwide. In addition, recycled aggregates from various urban and industrial sources were used to halve the quantity of virgin mineral aggregates in the developed asphalt mixtures. Considering two different types of REOBs, two mass proportions of R and REOB and two production temperatures of extended bitumens, eight asphalt mixes containing about 50%wt. of recycled materials were manufactured and underwent to preliminary mechanical tests. The stiffness, tensile and moisture resistances of the greener asphalt concretes were evaluated and compared to two reference mixes: one mainly consisted of virgin materials, and another contained 50%wt. of recycled aggregates and neat bitumen. The eight greener mixes exhibited promising responses in terms of stiffness and tensile strength, showing better intermediate values than the reference ones, but more water susceptibility. Full article
Show Figures

Figure 1

17 pages, 8625 KiB  
Article
Effect of a New Additive Based on Textile Fibres from End-of-Life Tyres (ELT) on the Mechanical Properties of Stone Mastic Asphalt
by Gonzalo Valdés-Vidal, Alejandra Calabi-Floody, Cristian Mignolet-Garrido and Cristian Díaz-Montecinos
Polymers 2023, 15(7), 1705; https://doi.org/10.3390/polym15071705 - 29 Mar 2023
Cited by 7 | Viewed by 2208
Abstract
Stone Mastic Asphalts (SMA) are asphalt mixes with discontinuous granulometry and a high content of asphalt binder. In order to prevent draindown of the asphalt binder and ensure good performance, these mixes must be strengthened with cellulose or mineral fibres and/or polymer additives. [...] Read more.
Stone Mastic Asphalts (SMA) are asphalt mixes with discontinuous granulometry and a high content of asphalt binder. In order to prevent draindown of the asphalt binder and ensure good performance, these mixes must be strengthened with cellulose or mineral fibres and/or polymer additives. This study was designed to evaluate the effect of a granular additive based on waste tyre textile fibres (WTTF), developed as a replacement for cellulose commercial additives in SMA mixes. Use of the WTTF-based additive will encourage the development of sustainable mixes by recycling a by-product of end-of-life tyres (ELT), which currently constitute a major environmental problem around the world. To this end, in the present experimental study we evaluated the replacement of cellulose-based commercial fibre with different percentages of WTTF-based additive (0%, 50%, 75%, 100%) in an SMA asphalt mix. The following design and performance properties were evaluated: resistance to cracking, stiffness modulus, sensitivity to moisture, and resistance to permanent deformation. The results indicated that replacing 100% of the cellulose commercial additive in the SMA mix by the WTTF-based additive allowed the mix to meet its design properties and showed good performance in the mechanical properties evaluated, with behaviour similar to that of the reference SMA mix. Full article
Show Figures

Figure 1

16 pages, 5904 KiB  
Article
Modifying the Sand Concrete with Recycled Tyre Polymer Fiber to Increase the Crack Resistance of Building Structures
by Svetlana V. Samchenko and Oksana A. Larsen
Buildings 2023, 13(4), 897; https://doi.org/10.3390/buildings13040897 - 29 Mar 2023
Cited by 5 | Viewed by 1860
Abstract
Recently, the use of recycled tyre polymer fiber derived from waste tires as a concrete reinforcement has received a great deal of attention. The recycled tyre polymer fiber is a promising additive to concrete for building materials which require resistance against cracking. In [...] Read more.
Recently, the use of recycled tyre polymer fiber derived from waste tires as a concrete reinforcement has received a great deal of attention. The recycled tyre polymer fiber is a promising additive to concrete for building materials which require resistance against cracking. In this work, the effect of treated and untreated fiber on the properties of sand concrete was studied. It was shown that recycled tyre polymer fiber consists mainly of different fractions of crumb rubber, fiber, and metal fiber. The main polymer components in the fiber are polyamide and polyester threads of 6.5 mm length (l) and 0.05 mm diameter (d); the ratio l/d = 150; and the average fiber density is 0.923 g/cm3. It was established that the addition of untreated recycled tyre polymer fiber in the amounts of 11 and 19 kg/m3 into sand concrete leads to a decrease in compressive and flexural strengths by 15% and 21%, respectively. The reinforcement of concrete with the treated fiber in the amounts of 5 and 10 kg/m3 increases the flexural strength by 14% and 23.4%, respectively. The prismatic strength of the concrete which contents 5 and 10 kg/m3 of the treated polymer fiber was lower than that of ordinary concrete by 10.8% and 4.6%, respectively. The obtained results showed that the use of recycled tyre polymer fiber increases the crack resistance of concrete. The recycled tyre polymer fiber can be used as a cost-effective alternative to other types of low-modulus fibers to produce durable building materials. Full article
(This article belongs to the Special Issue Safety and Optimization of Building Structures)
Show Figures

Figure 1

14 pages, 4857 KiB  
Article
Freeze/Thaw Resistance of Mortar with Recycled Tyre Waste at Varying Particle Sizes
by Riccardo Maddalena
Materials 2023, 16(3), 1301; https://doi.org/10.3390/ma16031301 - 3 Feb 2023
Cited by 2 | Viewed by 3244
Abstract
There is a growing concern for finding alternative solutions to construction materials in order to minimise their environmental impact as well as enhancing their service life. This study investigated the durability of cementitious mortars prepared by replacing fine aggregate (sand) with recycled tyre [...] Read more.
There is a growing concern for finding alternative solutions to construction materials in order to minimise their environmental impact as well as enhancing their service life. This study investigated the durability of cementitious mortars prepared by replacing fine aggregate (sand) with recycled tyre shreds and crumbs, aiming at providing an alternative outlet to tyre waste disposal. Tyre shreds obtained at different particle sizes, from fibres of 0.5–5.0 mm to crumbs of 0.1–0.85 mm in diameter, were used as fine aggregate replacement at 20% by volume. The strength of the mortar samples, their thermal conductivity and their water absorption rate were tested at the age of 28 days and after 20 freeze/thaw cycles. The results showed that the mortar containing tyre crumbs at lower particle sizes resulted in negligible shrinkage, improved freeze/thaw resistance, a reduced water absorption by up to 52% and an improved thermal resistivity. Full article
(This article belongs to the Special Issue Durability and Sustainability of Cement and Concrete Composites)
Show Figures

Figure 1

15 pages, 6647 KiB  
Article
Recovery of End-of-Life Tyres and Mineral Wool Waste: A Case Study with Gypsum Composite Materials Applying Circular Economy Criteria
by Alicia Zaragoza-Benzal, Daniel Ferrández, Paulo Santos and Carlos Morón
Materials 2023, 16(1), 243; https://doi.org/10.3390/ma16010243 - 27 Dec 2022
Cited by 15 | Viewed by 2889
Abstract
The building sector is currently undergoing a process of change due to concerns about the sustainability of the construction industry. The application of circular economy criteria to develop new, more sustainable construction products has become one of the major challenges for the society [...] Read more.
The building sector is currently undergoing a process of change due to concerns about the sustainability of the construction industry. The application of circular economy criteria to develop new, more sustainable construction products has become one of the major challenges for the society of the future. This research advances towards the development of new lightened gypsum composites that incorporate waste from end-of-life tyres and recycled fibres from mineral wool thermal insulation in their composition. The results show how it is possible to reduce the consumption of the original raw materials by replacing them with recycled rubber granular particles, developing new construction products that are lighter, with better water resistance and greater thermal resistance. Additionally, it is shown that the incorporation of recycled fibres from rock wool and glass wool insulation is a good solution to improve the mechanical resistance of lightened gypsum composites, giving these construction and demolition wastes a second useful life by reincorporating them in the process of manufacturing new prefabricated housing products. Full article
Show Figures

Figure 1

Back to TopTop