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Abstract: The declining availability of natural sand resources and the significant carbon footprint
associated with the extensive use of cement are posing severe limitations on the advancement and
application of ultra-high-performance concrete (UHPC). In this study, waste tyre-derived recycled
crumb rubber particles (CR) were employed to replace quartz sand, and an alkali-activated cementi-
tious material was used to produce waste tyre-alkali-activated UHPC (T-UHPAC). The influence of
different CR replacement ratios (0%, 5%, 20%, 35%, 50%) on the tensile and flexural performance of
T-UHPAC was investigated, and a predictive model for the stress–strain response considering the CR
replacement ratio was established. An optimization method for improving the tensile and flexural
performance of T-UHPAC was proposed. The results indicate that the effect of rough-surfaced CR
on the interfacial properties of concrete differs from that of smooth quartz sand. A CR replacement
ratio exceeding 35% led to a reduction in both the tensile and flexural strengths of UHPAC, while a
replacement ratio at or below 20% resulted in a superior tensile and flexural performance of T-UHPAC.
The established predictive model for tensile performance accurately forecasts the stress–strain be-
haviour of T-UHPAC under varying CR replacement ratios, with the accuracy improving as the CR
replacement ratio increases. By utilizing CR to replace quartz sand in proportions not exceeding
20%, the production of low-carbon UHPC with exceptional comprehensive mechanical properties
is achievable. Moreover, the development of T-UHPAC through the comprehensive utilization of
waste tyres presents a promising and innovative approach for the low-carbon and cost-effective
production of UHPC, thereby facilitating the sustainable development of natural resources. This
research represents a significant step towards the widespread adoption and application of UHPC and
thus holds substantial importance.

Keywords: waste crumb rubber; tensile behaviour; tensile constitutive model; flexural behaviour;
ultra-high performance

1. Introduction

Currently, the widely researched and applied UHPC is typically composed of a large
amount of cement as cementitious materials and reinforced with steel fibres. However,
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these constituent materials have high carbon footprints. For instance, the production of
1 ton of cement generates around 0.87 tons of CO2 [1–6]. Additionally, the utilization of
aggregates in UHPC, such as natural river sand, has resulted in increased mining costs due
to the diminishing availability of natural resources. Coupled with the high cost of steel
fibres, this considerably escalates the production expenses of UHPC [7–12]. Consequently,
the carbon footprint of UHPC is 2.52 times that of ordinary concrete, and the production
cost is 8.3 times higher than that of ordinary concrete [1,13,14]. It is crucial to explore
methods for reducing the carbon footprint and production costs of UHPC.

The global annual production of waste tyres exceeds 200 million tons, with China
generating approximately 120 million tons of waste tyres per year [15–17]. Currently,
China’s annual waste tyre recycling capacity is around 6.4 million tons, with a recycling
rate of only 5%. The excessive use of natural sand in construction and industrial production
has already led to its scarcity and rising costs. Processing recycled waste tyres into rubber
powders and steel fibres not only reduces carbon emissions associated with raw material
extraction and waste tyre disposal but also reduces the weight of concrete and raw material
costs by substituting rubber particles for river sand. This enables resource utilization and
promotes a circular economy, offering significant environmental and economic benefits.

The substitution of aggregates with recycled rubber particles has the ability to absorb
and disperse stress at crack tips, thereby synergistically enhancing the toughness and
post-peak strain behavior of the matrix without significant compromise in strength. This
improvement can be further enhanced by incorporating other fibres such as waste tyre steel
fibres [18–21]. Alsaif and Alharbi [18] found out that incorporating rubber particles and
steel fibres could delay the formation and propagation of micro-cracks by reducing stress
concentration at the crack tips compared to conventional concrete.

Furthermore, according to Hesami, et al. [22], the replacement of 15% of sand with
rubber particles without the inclusion of fibres led to a reduction of 14.29% in tensile
strength and a decrease of 17% in flexural strength. Additionally, there was an increase of
26.47% in water absorption. Although higher rubber content could lead a reduction in the
mechanical performance of concrete, the negative effects can be mitigated by judiciously
adding steel fibres and silica fume, which have a positive influence on its microscopic
interface [23–26]. Zahid and Moein [27,28], in their study on the mechanical properties of
recycled aggregate concrete containing crumb rubber, found that flexural strength decreased
with CR content increases, with a combination of 5% CR and 2% volume of fibres yielding
the highest toughness and ductility. Shahjalal, et al. [29] observed that a mixture of 5% CR
and fibres enhanced energy absorption capability, when toughness and ductility gradually
decreased with increasing CR content. Guo, et al. [30], in their three-point bending test of
recycled aggregate ultra-high-performance concrete, showed that fracture energy initially
increased but also decreased with the increase in rubber content. The synergistic effect
of recycled rubber powder and steel fibres enhanced the ductility and energy absorption
capacity of rubberized ultra-high-performance concrete. Additionally, Aslani et al. [31]
pointed out that utilizing rubber aggregates to produce self-compacting rubberized concrete
reduced workability but enhanced energy absorption and concrete deformation.

When it comes to the impact of cementitious materials on carbon emissions in UHPC,
alkali-activated materials (AAM) are an ideal alternative. AAM are three-dimensional
inorganic structures obtained by reacting alkaline activators with silica-alumina-rich raw
materials [2,32]. The raw materials used for AAM have a low carbon footprint and are
widely available, including materials such as kaolin, feldspar, and other silicate-aluminate
materials, as well as industrial solid wastes like slag and fly ash [1]. Using AAM as a
binder to replace cement in concrete production can reduce the embodied carbon by up
to 80% [33]. Alkali-activated concrete (AAC) not only offers the advantage of being low
carbon and environmentally friendly but also exhibits excellent mechanical properties [34].
Gao et al. [35] found that alkali-activated slag-fly ash-based concrete exhibits a chain-like
C-A-S-H gel as the primary reaction product, regardless of the slag/fly ash ratio or activator
modulus, and higher slag/fly ash ratios result in higher strength and lower porosity. Xie
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et al. [36] studied alkali-activated recycled aggregate concrete and found that the matrix
of the concrete was very dense and strong, with cracks only occurring in the recycled
aggregate and interfacial transition zones (ITZs), leading to significant improvements in
energy dissipation and toughness. Lao et al. [37] developed slag-fly ash-based UHPC with
compressive strength as high as 222 MPa and exhibiting strain-hardening behaviour under
tension. The residual crack width after tensile testing was approximately 10–20 µm. Wang,
et al. [38] used rubber particle fines to replace fine aggregates in AAC, and found out that
incorporating 5% to 20% rubber particles reduced the overall strength of the concrete but
effectively improved its energy absorption capacity by 31.5% to 53.3%. However, compared
to ordinary concrete, AAC displays increased brittleness, and its brittleness becomes more
pronounced as the compressive strength increases [39].

Existing research in related areas mainly concentrates on the study of high-performance
concrete using traditional cementitious materials or on the study of alkali-activated concrete
using rubber as aggregates. To effectively recycle and reuse waste tyres in engineering
applications and promote sustainable and low-carbon development in the construction
materials industry, this study aimed to develop an ultra-high-performance concrete uti-
lizing an alkali-activated cementitious matrix and incorporating waste rubber, known
as T-UHPAC (Tyre-Derived Ultra-High-Performance Alkali-Activated Concrete). In this
study, crumb rubber (CR) was used to replace fine aggregates in UHPC, and waste-tyre
steel fibres were used as reinforcing materials to prepare the T-UHPAC. The influence of
different replacement ratios (0%, 5%, 20%, 35%, and 50%) of CR on the tensile and flexural
properties of T-UHPAC was investigated through static tests. Furthermore, a predictive
model for the tensile stress–strain relationship of T-UHPAC considering the influence of
CR replacement ratio on concrete damage was established. The article aimed to present
a reliable method for designing environmentally friendly, low-carbon, and performance-
stable UHPC, and provide a theoretical and data basis for the advancement and promotion
of ultra-high-performance concrete. Figure 1 illustrates the flowchart of this research.
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2. Experimental Program
2.1. Materials

The composition materials employed in this study for T-UHPAC include a binder
mixture consisting of ground granulated blast furnace slag (GGBS, S105 grade), fly ash
(FA, Class F), and silica fume (SF, Grade 92). A chemical activator is formed by a sodium
hydroxide solution (14 mol/L) and a sodium silicate solution (with a modulus of 2.25).
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The aggregate system comprises two different sizes of quartz sand (medium sand, MS,
with a particle size range of 200–750 µm, and fine sand, FS, with a particle size range
of 45–200 µm), as well as crumb rubber particles (CR) with D50 = 450 µm recycled from
discarded tyres. The quartz sand and rubber powder share similar particle sizes, with
densities of 2.65 g/cm3 and 1.13 g/cm3, respectively. Recycled steel fibres from discarded
tyres (RSF) are used as additional reinforcement. BaCl2 is added as an admixture to provide
retarding effects. The recycled tyre products CR and RSF are produced by Chengdu Sitong
Rubber and Plastic Co., Ltd., Chengdu, Sichuan, China. Please refer to Figures 2–4 and
Tables 1 and 2 for specific material parameters.

Buildings 2024, 14, x FOR PEER REVIEW 4 of 22 
 

 

2. Experimental Program 
2.1. Materials 

The composition materials employed in this study for T-UHPAC include a binder 
mixture consisting of ground granulated blast furnace slag (GGBS, S105 grade), fly ash 
(FA, Class F), and silica fume (SF, Grade 92). A chemical activator is formed by a sodium 
hydroxide solution (14 mol/L) and a sodium silicate solution (with a modulus of 2.25). The 
aggregate system comprises two different sizes of quartz sand (medium sand, MS, with a 
particle size range of 200–750 μm, and fine sand, FS, with a particle size range of 45–200 
μm), as well as crumb rubber particles (CR) with D50 = 450 μm recycled from discarded 
tyres. The quartz sand and rubber powder share similar particle sizes, with densities of 
2.65 g/cm3 and 1.13 g/cm3, respectively. Recycled steel fibres from discarded tyres (RSF) 
are used as additional reinforcement. BaCl2 is added as an admixture to provide retarding 
effects. The recycled tyre products CR and RSF are produced by Chengdu Sitong Rubber 
and Plastic Co., Ltd., Chengdu, Sichuan, China. Please refer to Figures 2–4 and Tables 1 
and 2 for specific material parameters. 

 
Figure 2. Particle size distribution of cementitious materials and aggregates. 

Table 1. Chemical composition of cementitious materials. 

Oxide 
CaO SiO2 Al2O3 SO3 Fe2O3 MgO TiO2 Other Loss on Ignition (%) 

wt % 
GGBS 34 34.5 17.7 1.64 1.03 6.01 / 5.12 0.84 

FA 4.01 53.97 31.15 2.2 4.16 1.01 1.13 2.37 4.6 
SF / 94.7 / 0.2 / / / 5.07 1.5 

Note: / denotes the compound is not present in the composition of the material. 

Table 2. Properties of RSF. 

Fibre Type Length 
(mm) 

Diameter (mm) Strength 
(MPa) 

Aspect Ratio 
(L/d) 

RSF 9.92 
(Mean value) 

0.3 2570 33.07 

0.01 0.1 1 10 100 1000 10000
0

20

40

60

80

100

Pa
ss

 p
es

ce
nt

ag
e (

%
)

Particle size (μm)

 GGBS
 FA
 SF
 MS 
 FS
 CR

Figure 2. Particle size distribution of cementitious materials and aggregates.
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The mix proportions and corresponding compressive strengths employed in this study
are presented in Table 3. The different experimental groups are named based on the replace-
ment rate of rubber particles. CR was substituted for quartz sand at volumetric replacement
ratios of 0%, 5%, 20%, 35%, and 50%. The water-to-binder ratio (w/b), which represents the
total quantity of water from both activator and additional water, was set at 0.32. The activator
was formulated by carefully blending a solution of sodium hydroxide with a sodium silicate
solution in a controlled manner, in order to adjust the activator modulus (the molar ratio of
Na2O to SiO2 in the activator solution) to 1.5. RSF was incorporated at a 2% vol.
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Table 1. Chemical composition of cementitious materials.

Oxide
CaO SiO2 Al2O3 SO3 Fe2O3 MgO TiO2 Other Loss on Ignition (%)

wt %

GGBS 34 34.5 17.7 1.64 1.03 6.01 / 5.12 0.84
FA 4.01 53.97 31.15 2.2 4.16 1.01 1.13 2.37 4.6
SF / 94.7 / 0.2 / / / 5.07 1.5

Note: / denotes the compound is not present in the composition of the material.

Table 2. Properties of RSF.

Fibre Type Length
(mm) Diameter (mm) Strength

(MPa)
Aspect Ratio

(L/d)

RSF 9.92
(Mean value) 0.3 2570 33.07

Table 3. T-UHPAC mix proportions (kg/m3).

Mix GGBS FA SF NaOH Sodium Silicate
Solution

Extra
Water MS FS CR BaCl2 RSF Compressive

Strength (MPa)

R-0 688 167 45.0 28.5 307 117 543 362 0.00 9.10 156 148
R-5 688 167 45.0 28.5 307 117 516 344 19.3 9.10 156 137

R-20 688 167 45.0 28.5 307 117 434 290 77.2 9.10 156 105
R-35 688 167 45.0 28.5 307 117 353 235 135 9.10 156 76.6
R-50 688 167 45.0 28.5 307 117 272 181 193 9.10 156 51.3

Note: R-X: X denotes the replacement ratios of CR.

The mixing procedure for the specimens follows the flowchart shown in Figure 5
and can be divided into three main stages. First, the activator was prepared by creating a
14 mol/L sodium hydroxide solution 24 h prior to casting T-UHPAC. After the solution
cooled down, it was mixed evenly with the sodium silicate solution and allowed to reach
room temperature. Second, the materials were mixed. The fine aggregate was added to
a planetary mixer and stirred for 3 min, followed by the addition of the coarse aggregate
and another 3 min of mixing until uniformity was achieved. The alkaline activator and
additional water were mixed separately and then added to the mixer, followed by an
additional 3 min of mixing. The RSF was introduced in the final stage and incorporated
into the slurry within 3 min. Lastly, the thoroughly mixed T-AUHPC was poured into
dumbbell-shaped moulds for tensile specimens and prism-shaped moulds for flexural
specimens. After the initial setting of the specimens, they were covered with plastic film
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for curing. After 24 h, the specimens were de-moulded and submerged in a water tank for
continuous curing until the age of 28 d.

Buildings 2024, 14, x FOR PEER REVIEW 6 of 22 
 

 

The mixing procedure for the specimens follows the flowchart shown in Figure 5 and 
can be divided into three main stages. First, the activator was prepared by creating a 14 
mol/L sodium hydroxide solution 24 h prior to casting T-UHPAC. After the solution 
cooled down, it was mixed evenly with the sodium silicate solution and allowed to reach 
room temperature. Second, the materials were mixed. The fine aggregate was added to a 
planetary mixer and stirred for 3 min, followed by the addition of the coarse aggregate 
and another 3 min of mixing until uniformity was achieved. The alkaline activator and 
additional water were mixed separately and then added to the mixer, followed by an ad-
ditional 3 min of mixing. The RSF was introduced in the final stage and incorporated into 
the slurry within 3 min. Lastly, the thoroughly mixed T-AUHPC was poured into dumb-
bell-shaped moulds for tensile specimens and prism-shaped moulds for flexural speci-
mens. After the initial setting of the specimens, they were covered with plastic film for 
curing. After 24 h, the specimens were de-moulded and submerged in a water tank for 
continuous curing until the age of 28 d. 

 
Figure 5. Preparation Procedure of T-UHPAC. 

2.2. Testing Setup 
2.2.1. Flowability Test 

Figure 6 shows the flowability test setup. The flowability test of fresh concrete was 
conducted according to the code (ASTM-C1437, 2013 [40]). The testing apparatus is shown 
in the diagram below [2]. 

Figure 5. Preparation Procedure of T-UHPAC.

2.2. Testing Setup
2.2.1. Flowability Test

Figure 6 shows the flowability test setup. The flowability test of fresh concrete was
conducted according to the code (ASTM-C1437, 2013 [40]). The testing apparatus is shown
in the diagram below [2].
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2.2.2. Axial Tensile Test

Tensile testing was conducted according to the standard T/CBMF 37-2018 [41] (as
shown in Figures 7 and 8). Three dumbbell-shaped specimens were prepared for each
group to perform axial tensile loading on T-UHPAC, and strain data were recorded using a
TDS-540 data logger manufactured by Tokyo Measuring Instruments Laboratory, Tokyo,
Japan. The specimens were loaded using displacement control, with a loading rate of
0.06 mm/min. The gauge length of the specimens for measuring strain was set at 100 mm.
Prior to the test, strain gauges were attached to the middle region of the gauge length, and
two linear variable displacement transducers (LVDTs) were symmetrically placed along
the axial direction.
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2.2.3. Flexural Test

The images captured by the digital image correlation (DIC) system are actually stored
in the computer in matrix form. For convenience, we use f(x, y) to represent the pre-
deformation image and g(x′, y′) to represent the post-deformation image. The basic princi-
ple of the DIC method is shown in Figure 9. First, a reference image subzone is selected in
the pre-deformation image, with the measurement point (x0, y0) as the centre and a certain
size. Then, through a certain correlation search method, the target image subzone with
the maximum correlation to the reference image subzone, centred at (x0

′, y0
′), is found

in the post-deformation image. The displacement of the measurement point (x0, y0) is
calculated as follows: u = x0

′ − x0, v = y0
′ − y0. The calculated displacement is in pixels.

By combining it with calibration results, the actual displacement of the measurement point
in the world coordinate system can be obtained.

Flexural testing was conducted following ASTM C1609/C1609M [42], (as shown in
Figures 10 and 11). A four-point bending test was performed on the MTS-370 loading
system at a displacement rate of 0.075 mm/min. Prior to the test, the side surfaces of
the specimens were coated with white paint and marked with black dots to facilitate the
measurement of deflection using DIC-3D technology. DIC technology involves capturing
high-definition images of the specimen’s surface markings using cameras and analyzing the
motion of these markings using correlation functions to obtain deformation information [43].
The accuracy of DIC technology has been validated and it can effectively capture key
information such as strain and displacement of the specimen [44,45]. Please refer to Figure 8
for the specific testing setup.
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2.2.4. SEM and EDS Analysis

The scanning electron microscopy and energy-dispersive X-ray spectroscopy test was
conducted using an S-3400N-II scanning electron microscope, produced by Hitachi (Tokyo,
Japan). The SEM test mainly characterized the morphology of the interface between the
aggregates and the matrix in the fractured cross-sections.
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3. Results
3.1. Micro Analysis

The microstructural changes in the binder matrix of the slag-fly ash alkali-activated
cementitious materials have a significant impact on its macroscopic mechanical properties,
and the characteristics of the microstructure mainly depend on the properties of the mate-
rial [46]. For the R-5 specimens, scanning electron microscopy (SEM) and energy-dispersive
X-ray spectroscopy (EDS) were employed to conduct a thorough analysis and examination
of the samples. Figure 12 displays the surface morphology of the specimens and the distri-
bution of different elements in the observed areas, with each detected element represented
by a different colour.
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Upon observation, it is evident that the Si element is significantly enriched in Region
1, and based on the comparison with the surface morphology, it can be inferred that
Region 1 corresponds to quartz sand particles. On the other hand, the carbon © element
is only present in Region 2, which can also be inferred from the surface morphology as
corresponding to rubber particles. The aluminium (Al) element is distributed in a point-like
manner, including in Region 3, and it can be deduced that Region 3 corresponds to partially
hydrated fly ash particles.

Interestingly, no presence of slag was observed in the images, and this could be
attributed to the fact that slag exhibits higher reactivity and a higher degree of hydration
compared to fly ash. This conclusion can be supported by the uniform distribution of the
calcium (Ca) element in the measured area.

From the SEM images showing the morphology of the quartz sand and rubber
(Figure 12), it can be observed that the surface of the quartz sand is smooth, while the
rubber surface is rough, with numerous protrusions. This explains why the compressive
strength decreased as the rubber replacement ratio increased in the fresh T-UHPAC mixture,
as it led to the increased number of weak interfaces between the matrix and the aggregates.

On the other hand, it can be observed from Figure 13a that the rubber particles, as a
replacement for aggregates, are densely packed within the cementitious materials, which
mainly consist of reaction products such as C-S-H, N-A-S-H, and C-A-S-H formed by
the active materials of slag, fly ash, and silica fume. However, as highlighted by the
yellow line in Figure 13a, due to the poor compatibility of CR, their interface with the
cementitious materials is weaker and prone to microcrack development. Consequently, the
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rubber particles maintain their relatively intact shape through interface expansion along
microcrack paths.
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Figure 13. SEM analysis of R-5.

Furthermore, the area highlighted by the yellow line in Figure 13b shows the mechan-
ical interlocking and frictional energy between the cementitious materials and the steel
fibres, as the fibres are pulled out from the matrix. This interaction provides additional
strengthening and energy dissipation mechanisms.

3.2. The Effect of Replacement Ratios of Crumb Rubber under Uniaxial Tensile Test
3.2.1. Damage Pattern

Figure 14 shows the damage pattern of the specimens with different CR content in
T-UHPAC. The red dashed lines highlight the cracks. During the test, it could be observed
that micro-cracks appeared in the middle of the specimen as the tensile loading increased.
As the test load further increased, the micro-cracks expanded, accompanied by a slight and
noticeable cracking sound. This is consistent with the common tensile failure mode of steel
fibre-reinforced UHPC materials [47,48]. This provides valuable data for subsequent stress–
strain analysis of T-UHPAC under uniaxial tensile loading. From the detailed cross-sections,
we can see that after the crack initiation, the steel fibres undergo pull-out from the matrix,
providing bridging action in the form of fibre pull-out. Moreover, Figure 15 illustrates the
flowability of freshly mixed T-UHPAC, as it showed an increase in the replacement ratio of
CR, significantly reducing the workability of the fresh paste.
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3.2.2. Tensile Stress–Strain Relationship

Notably, it can be seen from Figure 16 that different CR replacement ratios significantly
influence the strain-hardening stage of T-UHPAC. The R-0 and R-5 exhibited clear strain-
hardening stages, while the test groups with higher CR replacement ratio exhibited very
short or even non-existent strain-hardening stages. The CR replacement ratio modified
the strain-hardening behavior, which significantly affected the peak tensile strength. The
highest tensile strength could be observed in the R-5 within Figure 16. Considering the other
test groups, they showed premature termination of the elastic stage, resulting in insufficient
strength development, lower initial crack strength, and reduced ductility. The incorporation
of CR into the fresh slurry introduced air entrainment, and this was generally attributed to
the hydrophobicity of rubber particles and their tendency to repel water [2,49,50]. During
vibration, it became challenging to completely remove the entrapped air bubbles. The
presence of defects at material interfaces has the potential to diminish bond strength and
compromise the bridging strength between the fibres and matrix in T-UHPC. In turn, it
could result in a decrease in initial crack strength and hinder the strain-hardening capacity
of the material. It is important to note that the incorporation of CR also influences the
softening stage curve of T-UHAPC. As evidenced by the data, an increase in the CR
replacement ratio tends to flatten the end section of the stress–strain curve.

3.2.3. Tensile Strength and Toughness

Figure 17 presents a comprehensive analysis of the correlation between different CR
replacement ratios and the resulting changes in the tensile performance, while Table 4
provides precise mechanical performance indicators. It can be observed that the R-5 peak
tensile strength is 2.79 MPa, the highest among all groups, surpassing the R-0 by 3.20%.
Additionally, the R-20 maintained a peak tensile strength similar to the R-0. The lowest
tensile strength is observed in the R-50, measuring 2.16 MPa, which represents a reduction
of 22.6% and 25.0% compared to the R-0 and R-5, respectively. In general, no more than
20% CR could lead to an increase in peak tensile strength. This is contrary to some of the
existing research findings [31,51]. The reason may be that the hydration behaviour of the
slag-fly ash alkali-activated binder material used differs from that of conventional concrete.
Additionally, the CR particles used are smaller than 1 mm and have a good particle size
distribution with other materials, which allows for an optimization of the internal structure
to a certain extent with a CR replacement ratio of less than 20%.
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Figure 17. The effect of replacement ratios of crumb rubber on tensile mechanical property index of
T-UHPAC. (a) Peak strength; (b) Tensile modulus; and (c) Strain energy.

Table 4. Parameter of axial tensile behaviour.

Mix

Initial Cracking
Strength

σc
(MPa)

Initial Cracking
STRAIN

εc
(%)

Peak Strength
σt

(MPa)

Strain Capacity
εt

(%)

Tensile Modulus
Et

(GPa)

Strain Energy
Gt

(kJ/m3)

R-0 2.48 (0.29) 0.043 (0.009) 2.79 (0.44) 0.14 (0.06) 5.90 (0.80) 41.40 (7.01)
R-5 2.72 (0.30) 0.037 (0.001) 2.88 (0.31) 0.10 (0.05) 7.43 (1.42) 40.13 (5.43)

R-20 2.55 (0.08) 0.056 (0.015) 2.70 (0.04) 0.11 (0.06) 4.57 (1.33) 41.20 (5.28)
R-35 2.19 (0.46) 0.046 (0.015) 2.38 (0.37) 0.07 (0.03) 4.37 (0.32) 27.53 (11.88)
R-50 2.03 (0.12) 0.052 (0.003) 2.16 (0.11) 0.13 (0.07) 3.90 (0.26) 28.57 (0.85)

Note: the values in parentheses are the standard deviation of test results obtained from three specimens.
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The determination of the tensile elastic modulus refers to T/CBMF 37-2018, and it is
obtained from the secant elastic modulus in the elastic stage of T-UHPAC and calculated
according to Equation (1). Considering the transient characteristics of strain-hardening
in the tensile stress–strain curve of T-UHPAC, the variation of tensile strength could be
explored by investigating the influence of the CR replacement ratio on the overall elastic
modulus of the material. Figure 17b shows the highest elastic modulus still occurred in
R-5, and the trend of elastic modulus with CR replacement ratio is consistent with the
compressive strength. This validates that a 5% CR replacement can provide T-UHPAC with
a higher elastic modulus, thereby achieving sufficient strength growth in the elastic stage
and attaining the highest compressive strength in this study.

The tensile toughness of the material is characterized by the strain energy, which is
obtained by integrating the strain along the stress–strain curve to calculate the area under
the curve. From Figure 17c, the highest strain energy of 41.40 kJ/m3 occurred in the R-0,
while the R-5 and R-20 are very close, measuring 40.13 kJ/m3 and 41.20 kJ/m3, respectively.
It is worth noting that the strain energy of the R-20 and R-35 decreased significantly
compared to the other three groups. This could be explained by the increased content of
CR weakened the interfacial density of T-UHPAC and affects its bonding performance [2].
Additionally, excessive use of CR led to high plastic viscosity of the fresh mortar and
significantly affects fibre dispersion [52,53]. Considering recycled steel fibres with different
lengths and thicknesses were used in this study, they are more susceptible to irregular
dispersion due to variations in plastic viscosity. It is important to highlight the fact that
though the elastic modulus of the R-20 also decreased due to the use of CR, it maintained a
comparable strain energy to the R-0 and R-5, due to its similar peak tensile strength and a
gradual strength reduction in the softening stage, as compared to the R-5.

Et = σc/3/εc/3 (1)

The stress value at the end of the elastic stage in T-UHPAC is also known as the
initial cracking strength. The initial cracking strength can be defined as one-third of initial
cracking strength, denoted as σc/3. The corresponding strain value for σc/3 is denoted
as σc/3.

3.2.4. Constitutive Model for Stress–Strain Relationship

Drawing from the outcomes of uniaxial tensile stress–strain experiments conducted
on T-UHPAC, this study referred to the concrete tensile constitutive model proposed in
GB50010-2010 [54]. Modifications were made to the model, taking into consideration the
effects of CR on the material damage coefficients (Equations (2)–(5)). The effectiveness of
fitting the stress–strain relationship of T-UHPAC was assessed.

σ = (1 − dc)Ecε (2)

dc =

{
1 − ρt[1.2 − 0.2x5] x ≤ 1
1 − ρt

αt(x−1)n+x x > 1 (3)

x =
ε

εt
(4)

ρt =
σt

Ecεt
(5)

The dc plays a role in the evolution of damage in concrete under uniaxial tension, while
αt and n are the parameter values related to the descending segment of the stress–strain
curve under uniaxial tension. The replacement ratio of CR affects the damage evolution
of T-UHPAC. A calculation based on Equations (6) and (7) was performed with the fitting
effect of the CR replacement ratio and is shown in Figure 18.

at = r2 − 0.95r + 0.25, R2 = 0.86 (6)
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n = 0.91r + 1.92, R2 = 0.99 (7)
Buildings 2024, 14, x FOR PEER REVIEW 15 of 22 
 

 

  
(a) Fitting curve for tα  (b) Fitting curve for n  

Figure 18. tα  and n  fitting curve for “r”. 

Figure 19 illustrates the stress–strain curves and simulated curves under different CR 
replacement ratios. At a fixed CR replacement ratio, the modified tensile stress–strain 
model proposed in this study exhibited a strong correlation with T-UHPAC, as observed. 
The value fluctuates between 0.87 and 0.98. It is worth noting that 2R  increases with an 
increase in the CR replacement ratio. 

 
Figure 19. Tensile constitutive model of T-UHPAC. 

3.3. The Effect of Crumb Rubber Replacement Ratios on Flexural Properties Testing 
3.3.1. Failure Mode 

Figure 20 shows the surface cracks and section modes of the T-UHPAC beam speci-
mens. Since the crack patterns and section modes of the four test groups with CR additions 
are almost identical, this study selected R-0 and R-20 for comparison. Figure 20 shows that 
the crack patterns in both groups are consistent (as shown in the area marked by the red 

0 5 20 35 50
0.0

0.1

0.2

0.3

0.4

 Replacement ratio of CR, r (%)

 αt

 Fitting curve

α t

R=0.83

0 5 20 35 50
1.5

2.0

2.5

3.0

Replacement ratio of CR, r (%)

 n
 Fitting curve

n R=0.99

Figure 18. αt and n fitting curve for “r”.

Figure 19 illustrates the stress–strain curves and simulated curves under different
CR replacement ratios. At a fixed CR replacement ratio, the modified tensile stress–strain
model proposed in this study exhibited a strong correlation with T-UHPAC, as observed.
The value fluctuates between 0.87 and 0.98. It is worth noting that R2 increases with an
increase in the CR replacement ratio.
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3.3. The Effect of Crumb Rubber Replacement Ratios on Flexural Properties Testing
3.3.1. Failure Mode

Figure 20 shows the surface cracks and section modes of the T-UHPAC beam speci-
mens. Since the crack patterns and section modes of the four test groups with CR additions
are almost identical, this study selected R-0 and R-20 for comparison. Figure 20 shows
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that the crack patterns in both groups are consistent (as shown in the area marked by
the red line), and the crack propagation pattern is nearly consistent with that observed
in the tensile test. The section modes were captured using an optical microscope at high
magnification, and it can be observed from the figure that there are extracted steel fibres,
interface debonding, cracks, and voids in the sections. Comparing Figure 20b,d, there are
more and larger voids in the damaged interface of R-20, which confirms that the addition of
CR led to more gas in the fresh mortar, forming voids and causing interface defects. After
the specimen developed cracks, the steel fibres were slowly pulled out from the matrix,
and complete steel fibres can be observed in the sections. Therefore, the steel fibres act as
bridges by being pulled out in the flexural properties test, consistent with the tensile test.
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3.3.2. Flexural Load–Deflection Relationship

This study employed Digital Image Correlation (DIC) technology to capture deflection
changes during the bending tests of the T-UHPAC specimens. The real-time load was
collected using the MTS-370 system. The flexural load–deflection curves of T-UHPAC were
obtained and presented in Figure 21. Under observation, T-UHPAC exhibited rapid and
nearly linear growth in deflection until reaching the peak load. Subsequently, the deflection
started to decrease progressively until failure. During the ascending phase of the load,
the CR replacement ratio showed minimal influence on the slope of the load–deflection
curve, indicating a relatively constant rigidity of the material. However, the peak load was
strongly affected by changes in the CR replacement ratio. A higher CR replacement ratio
resulted in an early cessation of the load growth phase. In the descending phase of the
curve, a higher CR replacement ratio led to a smaller slope, directing to a more gradual
deflection decrease.
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3.3.3. Flexural Strength and Toughness

As shown in Figure 22, the basic flexural performance of T-UHPAC is primarily de-
scribed through the initial cracking load (Pc), peak load (Pf), corresponding initial cracking
deflection (δc), peak deflection (δc), and flexural strength indices (Fc,Ff) as stated in ex-
isting research [55] (Figure 17). The flexural strength indices are calculated according to
Equation (8).

F =
PL
bd2 (8)
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In Equation (8), L represents the span of the flexural specimen, while b and d refer to
the width and height (or thickness) of the specimen’s cross-section, respectively.

Table 5 presents the flexural performance indicators obtained from the flexural tests of
T-UHPAC. According to the load–deflection curve, there is a noticeable difference between
the initial cracking strength and the peak strength, and all specimens exhibited significant
strain-hardening behaviour. The R-5 demonstrated the highest initial cracking strength, and
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an increase in the CR replacement ratio resulted in a decrease in initial cracking strength,
with the maximum reduction of 26.2% observed when the CR replacement ratio increased
from 20% to 35%. Except for R-50, the differences in initial cracking deflection among the
test groups were not substantial. However, considering Pc/δc, it is evident that the slope
of the ascending phase of the curve decreased with the addition of rubber, which aligns
with the findings of a previous study conducted by Xie et al. [40]. The test groups with
CR exhibited higher peak deflection compared to R-0, with R-20 showcasing the highest
peak deflection of 0.354 mm, representing a 53% increase compared to R-0. The initial
cracking strength as well as the peak strength were derived from the R-5 and R-20, with
R-5 displaying the highest initial cracking strength and R-20 exhibiting the highest peak
strength. This trend is similar to the variation observed in the tensile strength of T-UHPAC.
Wanasinghe, Aslani and Dai [24] demonstrated in previous studies that the addition of a
certain amount of rubber could enhance the flexural performance of concrete. However,
beyond a replacement ratio of 20%, the flexural strength noticeably decreased, causing the
load–deflection curve to exhibit a more gradual descent.

Table 5. Parameter of flexural behaviour.

Mix
Initial

Cracking Load
Pc (kN)

Initial Cracking
Deflection

δc (mm)
Pc/δc

Peak Load
Pf (kN)

Peak Deflection
δf (mm) Fc (MPa) Ff (MPa)

R-0 17.5 (2.1) 0.110 (0.033) 166 20.1 (2.9) 0.232 (0.083) 6.99 (0.84) 8.05 (1.15)
R-5 18.8 (1.5) 0.123 (0.059) 171 20.7 (2.7) 0.259 (0.125) 7.35 (0.60) 8.28 (1.07)

R-20 17.6 (1.4) 0.125 (0.049) 150 20.8 (0.8) 0.354 (0.037) 7.02 (0.57) 8.33 (0.33)
R-35 13.0 (1.4) 0.117 (0.011) 112 14.5 (0.6) 0.234 (0.067) 5.18 (0.54) 5.80 (0.23)
R-50 12.0 (1.1) 0.145 (0.021) 81.0 13.2 (1.3) 0.256 (0.034) 4.66 (0.44) 5.29 (0.53)

Note: the values in parentheses are standard deviation of test results obtained from the specimens.

3.3.4. Equivalent Bending Strength

Based on ASTM C1609, the equivalent flexural strength and flexural strength ratio
at deflections L/600 and L/150 are calculated as toughness indicators to investigate the
effect of rubber content on the toughness of T-UHPAC using Equations (8) and (9). In these
equations, TD

n represents the integral of the load–deflection curve with respect to deflection,
which assesses the bending energy absorption capacity of the material. f D

e,n and RD
T,n are

the equivalent flexural strength and flexural strength ratio corresponding to deflection L/n,
respectively. This study calculated the equivalent flexural strength and flexural strength
ratio at deflections L/600 and L/150.

The results of these calculations are presented in Figure 23 and Table 6. R-5 and R-20
showed higher equivalent flexural strengths compared to R-0 at deflections L/600 and
L/150. However, it should be noted that there was a significant decrease in the equivalent
flexural strength when the CR replacement ratio reached 35% or higher. A larger flexural
strength ratio indicated greater toughness of the concrete material after cracking. Figure 23
illustrates that the flexural strength ratios at deflections L/600 and L/150 increased with
the rubber content, as long as the rubber content remained below 20%. Compared to R-0,
R-20 and R-5 demonstrated increases of 11% and 33% in flexural strength ratio, respectively.
These findings indicated that the addition of rubber enhanced the flexural toughness
of T-UHPAC. However, when the rubber content exceeded 20%, the flexural strength
ratios started to decline. The flexural strength ratios of R-35 and R-50 did not show a
significant difference from R-0. This suggests that a high rubber content had little influence
on the flexural toughness of T-UHPAC. This may be attributed to the fact that excessive
replacement of CR led to reduced bond strength within the matrix, resulting in lower initial
cracking strength and peak strength. This, in turn, hindered the propagation of cracks.

f D
e,n =

n · TD
n

bd2 (9)
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RD
T,n =

f D
e,n

Fc
· 100% (10)
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Figure 23. The effect of the replacement ratio of CR on the equivalent bending strength ratio.

Table 6. Parameter of equivalent bending strength.

Mix TD
600 (J) fD

e,600 (MPa) RD
T,600 (%) TD

150 (J) fD
e,150 (MPa) RD

T,150 (%)

R-0 10.5 (1.6) 6.30 90.1 21.5 (5.7) 3.23 46.0
R-5 11.4 (1.4) 6.84 93.1 25.5 (8.4) 3.83 52.0
R-20 11.7 (0.2) 7.02 100 28.6 (5.9) 4.29 61.1
R-35 7.38 (0.90) 4.43 85.5 16.3 (3.9) 2.45 47.2
R-50 7.08 (0.30) 4.25 91.2 15.0 (0.4) 2.25 48.3

Note: the values in parentheses are standard deviation of test results obtained from the specimens.

4. Conclusions

In this study, T-UHPAC was prepared by using CR as a replacement for quartz sand
aggregate and combining a slag-fly ash alkali activation matrix. The microstructure, tensile
properties, and four-point bending performance were studied. Based on the existing
research findings and the workability characteristics of alkali-activated composite materials
used, we did not conduct research on the mechanical properties of T-UHPAC under higher
CR replacement ratios. Our focus is primarily on the impact of CR substitution below
50% on alkali-activated ultra-high-performance concrete, and the results are summarized
as follows:

(1) CR did not participate in the formation reaction of C-S-H in the alkali-activated mate-
rial. It existed in T-UHPAC as a rough-surfaced aggregate. Though it would weaken
the interfacial strength between aggregate and matrix because of the significant dif-
ference in elastic modulus, the particle size distribution of CR in relation to other
materials and the dosage of CR should also be taken into consideration.

(2) CR caused an air entrainment effect in the fresh mortar of T-UHPAC, generating
defects at the material interface and reducing the tensile cracking strength. R-5 showed
the highest tensile strength of 2.88 MPa. When the CR replacement ratio was 20% or
below, the tensile toughness of T-UHPAC reached its highest value in this study, with
only a 3% difference in tensile toughness values between R-0, R-5, and R-20.

(3) Based on the concrete tensile constitutive model combined with the influence of CR on
UHPAC’s tensile damage, a predictive model for the stress–strain curve of T-UHPAC
considering the CR replacement ratio was proposed. The curve fitting performance
improved with increasing CR replacement ratio, showing good predictive accuracy.
The development of an effective constitutive model provides valuable support for the
research and development of subsequent rubberized concrete performance.
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(4) T-UHPAC exhibited excellent flexural strength and toughness when the CR replace-
ment ratio was not higher than 20%. Among them, R-20 had a flexural strength
of 20.8 MPa and the highest equivalent flexural strength ratio, making it the best-
performing group in terms of bending performance in this study. Based on the results
of tensile tests, bending tests, and compressive strength, this study demonstrates that
replacing quartz sand with up to 20% CR is suitable to enhance the tensile and flexural
strength, as well as the toughness of T-UHPAC, while maintaining its compressive
strength higher than 100 MPa. This provides theoretical support for the design and
development of integrated utilization of recycled materials and low-carbon, environ-
mentally friendly, ultra-high-performance building materials.
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