Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = reconfigurable droplet manipulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 17404 KiB  
Article
Reconfigurable Orbital Electrowetting for Controllable Droplet Transport on Slippery Surfaces
by Jiayao Wu, Huafei Li, Yifan Zhou, Ge Gao, Teng Zhou, Ziyu Wang and Huai Zheng
Micromachines 2025, 16(6), 618; https://doi.org/10.3390/mi16060618 - 25 May 2025
Viewed by 681
Abstract
The controllable transport of droplets on solid surfaces is crucial for many applications, from water harvesting to bio-analysis. Herein, we propose a novel droplet transport controlling method, reconfigurable orbital electrowetting (ROEW) on inclined slippery liquid-infused porous surfaces (SLIPS), which enables controllable transport and [...] Read more.
The controllable transport of droplets on solid surfaces is crucial for many applications, from water harvesting to bio-analysis. Herein, we propose a novel droplet transport controlling method, reconfigurable orbital electrowetting (ROEW) on inclined slippery liquid-infused porous surfaces (SLIPS), which enables controllable transport and dynamic handling of droplets by non-contact reconfiguration of orbital electrodes. The flexible reconfigurability is attributed to the non-contact wettability modulation and reversibly deformable flexible electrodes. ROEW graphically customizes stable wettability pathways by real-time and non-contact printing of charge-orbit patterns on SLIPS to support the continuous transport of droplets. Benefiting from the fast erase-writability of charges and the movability of non-contact electrodes, ROEW enables reconfiguration of the wetting pathways by designing electrode shapes and dynamically switching electrode configurations, achieving controllable transport of various pathways and dynamic handling of droplet sorting and mixing. ROEW provides a new approach for reconfigurable, electrode-free arrays and reusable microfluidics. Full article
(This article belongs to the Topic Micro-Mechatronic Engineering, 2nd Edition)
Show Figures

Figure 1

11 pages, 1895 KiB  
Communication
Self-Oscillating Liquid Gating Membranes with Periodic Gas Transport
by Xue Xu, Jing Liu, Min Cao, Jian Zhang, Xinlu Huang and Xu Hou
Membranes 2022, 12(7), 642; https://doi.org/10.3390/membranes12070642 - 23 Jun 2022
Cited by 2 | Viewed by 2835
Abstract
Liquid gating membranes with molecular-level smooth liquid lining layers break through the limitations of traditional porous membrane materials in gas transport control. Owing to the stable, self-healing, and reconfigurable properties, liquid gating membranes have shown wide application prospects in microfluidics, intelligent valves, chemical [...] Read more.
Liquid gating membranes with molecular-level smooth liquid lining layers break through the limitations of traditional porous membrane materials in gas transport control. Owing to the stable, self-healing, and reconfigurable properties, liquid gating membranes have shown wide application prospects in microfluidics, intelligent valves, chemical reactions, and beyond. Here, we develop a periodic gas transport control system based on the self-oscillating liquid gating membrane. Under continuous gas injection, the gas–liquid interface is reversibly deformed, enabling self-oscillating behavior for discontinuous and periodic gas transport without the need for any complex external changes to the original system. Meanwhile, our experimental analysis reveals that the periodic time and periodic gas release in the system can be regulated. Based on the cycle stability of the system, we further demonstrate the controllability of the system for periodic droplet manipulation in microfluidics. Looking forward, it will offer new opportunities for various applications, such as pneumatic robots, gas-involved chemical reactions, droplet microfluidics, and beyond. Full article
Show Figures

Figure 1

7 pages, 2912 KiB  
Communication
Automatic Morphology Control of Liquid Metal using a Combined Electrochemical and Feedback Control Approach
by Ming Li, Hisham Mohamed Cassim Mohamed Anver, Yuxin Zhang, Shi-Yang Tang and Weihua Li
Micromachines 2019, 10(3), 209; https://doi.org/10.3390/mi10030209 - 26 Mar 2019
Cited by 11 | Viewed by 4314
Abstract
Gallium-based liquid metal alloys have been attracting attention from both industry and academia as soft, deformable, reconfigurable and multifunctional materials in microfluidic, electronic and electromagnetic devices. Although various technologies have been explored to control the morphology of liquid metals, there is still a [...] Read more.
Gallium-based liquid metal alloys have been attracting attention from both industry and academia as soft, deformable, reconfigurable and multifunctional materials in microfluidic, electronic and electromagnetic devices. Although various technologies have been explored to control the morphology of liquid metals, there is still a lack of methods that can achieve precise morphological control over a free-standing liquid metal droplet without the use of mechanical confinement. Electrochemical manipulation can be relatively easy to apply to liquid metals, but there is a need for techniques that can enable automatic and precise control. Here, we investigate the use of an electrochemical technique combined with a feedback control system to automatically and precisely control the morphology of a free-standing liquid metal droplet in a sodium hydroxide solution. We establish a proof-of-concept platform controlled by a microcontroller to demonstrate the reconfiguration of a liquid metal droplet to desired patterns. We expect that this method will be further developed to realize future reconfigurable liquid metal-enabled soft robots. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

11 pages, 3649 KiB  
Article
Numerical and Experimental Study of Optoelectronic Trapping on Iron-Doped Lithium Niobate Substrate
by Michela Gazzetto, Giovanni Nava, Annamaria Zaltron, Ilaria Cristiani, Cinzia Sada and Paolo Minzioni
Crystals 2016, 6(10), 123; https://doi.org/10.3390/cryst6100123 - 23 Sep 2016
Cited by 31 | Viewed by 5365
Abstract
Optoelectronic tweezers (OET) are a promising technique for the realization of reconfigurable systems suitable to trap and manipulate microparticles. In particular, dielectrophoretic (DEP) forces produced by OET represent a valid alternative to micro-fabricated metal electrodes, as strong and spatially reconfigurable electrical fields can [...] Read more.
Optoelectronic tweezers (OET) are a promising technique for the realization of reconfigurable systems suitable to trap and manipulate microparticles. In particular, dielectrophoretic (DEP) forces produced by OET represent a valid alternative to micro-fabricated metal electrodes, as strong and spatially reconfigurable electrical fields can be induced in a photoconductive layer by means of light-driven phenomena. In this paper we report, and compare with the experimental data, the results obtained by analyzing the spatial configurations of the DEP-forces produced by a 532 nm laser beam, with Gaussian intensity distribution, impinging on a Fe-doped Lithium Niobate substrate. Furthermore, we also present a promising preliminary result for water-droplets trapping, which could open the way to the application of this technique to biological samples manipulation. Full article
(This article belongs to the Special Issue Lithium Niobate Crystals)
Show Figures

Figure 1

Back to TopTop