Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = rare autosomal aneuploidy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3363 KiB  
Article
Two Cases of Chromosome 27 Trisomy in Horses Detected Using Illumina BeadChip Genotyping
by Cliona A. Ryan, Donagh P. Berry, Monika Bugno-Poniewierska, Mary-Kate Burke, Terje Raudsepp, Sonja Egan and Jennifer L. Doyle
Animals 2025, 15(13), 1842; https://doi.org/10.3390/ani15131842 - 22 Jun 2025
Viewed by 594
Abstract
Autosomal trisomy, a genetic disorder characterized by the presence of an extra autosome, is a rare but important chromosomal abnormality in horses, often associated with infertility, developmental abnormalities, and reduced life expectancy. This study represents the largest population-level screening for autosomal trisomy in [...] Read more.
Autosomal trisomy, a genetic disorder characterized by the presence of an extra autosome, is a rare but important chromosomal abnormality in horses, often associated with infertility, developmental abnormalities, and reduced life expectancy. This study represents the largest population-level screening for autosomal trisomy in horses; the analysis used single nucleotide polymorphism (SNP) panel genotype intensity data from 17,078 horses, 6601 of which were juveniles (i.e., ≤12 months of age) when genotyped. Using methodologies adapted from similar screening studies in cattle, the only aneuploidy detected was trisomy 27 in two juvenile male Irish Sport Horses (ISH) (0.03% prevalence among juveniles or 0.01% prevalence in the overall population). One ISH colt was cytogenetically confirmed and displayed no overt external phenotypic abnormalities, while cytogenetics was not undertaken on the other ISH colt, nor was it phenotypically assessed. Parentage analysis revealed that one ISH colt inherited two different copies of chr27 from the sire, demonstrating heterodisomy, likely due to a nondisjunction event during meiosis I in the sire. The other ISH colt inherited two different copies of chr27 from the dam, also indicating heterodisomy; the dam was 23 years of age when the colt was born. Based on the observed prevalence of autosomal trisomy, it can be estimated that at least 3 foals per 10,000 live births are likely to have autosomal trisomy. Though, given that only 74 (i.e., 0.004%) of horses were genotyped within a month of birth, this is likely an underestimate. The economic consequence of undiagnosed trisomy in high-value breeding horses that are potentially infertile could be substantial. As horse genotyping for parentage verification and discovery is transitioning to medium-density single nucleotide polymorphism panels, routine genomic screening for autosomal aneuploidy could be readily undertaken and potentially should form a standard screening prerequisite along with other genetic defects at horse sales. Currently, thoroughbred horses registered for racing are not genotyped, and only a limited number of sport horse studbooks are using SNP genotyping. This highlights an opportunity for those already genotyping to expand their support for breeders through low-cost, high-value chromosomal screening at the time of registration rather than incurring additional costs over the horse’s life cycle to determine the root cause of certain phenotypes owing to the undiagnosed trisomy. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

11 pages, 816 KiB  
Article
Prenatal Genome-Wide Cell-Free DNA Screening: Three Years of Clinical Experience in a Hospital Prenatal Diagnostic Unit in Spain
by Laia Pedrola Vidal, Mónica Roselló Piera, Carla Martín-Grau, Juan S. Rubio Moll, Rosa Gómez Portero, Beatriz Marcos Puig, Jose V. Cervera Zamora, Ramiro Quiroga and Carmen Orellana Alonso
Genes 2024, 15(5), 568; https://doi.org/10.3390/genes15050568 - 28 Apr 2024
Cited by 1 | Viewed by 2236
Abstract
Genome-wide prenatal cell-free DNA (cfDNA) screening can be used to screen for a wide range of fetal chromosomal anomalies in pregnant patients. In this study, we describe our clinical experience with a genome-wide cfDNA assay in screening for common trisomies, sex chromosomal aneuploidies [...] Read more.
Genome-wide prenatal cell-free DNA (cfDNA) screening can be used to screen for a wide range of fetal chromosomal anomalies in pregnant patients. In this study, we describe our clinical experience with a genome-wide cfDNA assay in screening for common trisomies, sex chromosomal aneuploidies (SCAs), rare autosomal aneuploidies (RAAs), and copy-number variations (CNVs) in about 6000 patients over a three-year period at our hospital’s Prenatal Diagnostic Unit in Spain. Overall, 204 (3.3%) patients had a high-risk call, which included 76 trisomy 21, 21 trisomy 18, 7 trisomy 13, 29 SCAs, 31 RAAs, 31 CNVs, and 9 cases with multiple anomalies. The diagnostic outcomes were obtained for the high-risk cases when available, allowing for the calculation of positive predictive values (PPVs). Calculated PPVs were 95.9% for trisomy 21, 77.8% for trisomy 18, 66.7% for trisomy 13, 10.7% for RAAs, and 10.7% for CNVs. Pregnancy and birth outcomes were also collected for the majority of RAA and CNV cases. Adverse perinatal outcomes for some of these cases included preeclampsia, fetal growth restriction, preterm birth, reduced birth weight, and major congenital structural abnormalities. In conclusion, our study showed strong performance for genome-wide cfDNA screening in a large cohort of pregnancy patients in Spain. Full article
Show Figures

Figure 1

11 pages, 691 KiB  
Article
Clinical Experience with Genome-Wide Noninvasive Prenatal Screening in a Large Cohort of Twin Pregnancies
by Luigia De Falco, Giovanni Savarese, Pasquale Savarese, Nadia Petrillo, Monica Ianniello, Raffaella Ruggiero, Teresa Suero, Cosimo Barbato, Alessio Mori, Cristina Ramiro, Luigi Della Corte, Gabriele Saccone, Attilio Di Spiezio Sardo and Antonio Fico
Genes 2023, 14(5), 982; https://doi.org/10.3390/genes14050982 - 26 Apr 2023
Cited by 6 | Viewed by 2784
Abstract
Non-invasive prenatal screening (NIPS) in twin gestations has been shown to have high detection rates and low false-positive rates for trisomy 21, as seen in singleton pregnancies, although there have been few large cohort twin studies, genome-wide studies in particular, to date. In [...] Read more.
Non-invasive prenatal screening (NIPS) in twin gestations has been shown to have high detection rates and low false-positive rates for trisomy 21, as seen in singleton pregnancies, although there have been few large cohort twin studies, genome-wide studies in particular, to date. In this study, we looked at the performance of genome-wide NIPT in a large cohort consisting of 1244 twin pregnancy samples collected over a two-year period in a single laboratory in Italy. All samples underwent an NIPS for common trisomies, with 61.5% of study participants choosing to undergo genome-wide NIPS for additional fetal anomalies (namely, rare autosomal aneuploidies and CNVs). There were nine initial no-call results, all of which were resolved upon retest. Based on our NIPS results, 17 samples were at high risk for trisomy 21, one for trisomy 18, six for a rare autosomal aneuploidy, and four for a CNV. Clinical follow-up was available for 27 out of 29 high-risk cases; a sensitivity of 100%, a specificity of 99.9%, and a PPV of 94.4% were noted for trisomy 21. Clinical follow-up was also available for 1110 (96.6%) of the low-risk cases, all of which were true negatives. In conclusion, we found that NIPS was a reliable screening approach for trisomy 21 in twin pregnancies. Full article
Show Figures

Figure 1

7 pages, 231 KiB  
Case Report
Coexistence of Genetic Diseases Is a New Clinical Challenge: Three Unrelated Cases of Dual Diagnosis
by Anna Paola Capra, Maria Angela La Rosa, Sara Briguori, Rosa Civa, Chiara Passarelli, Emanuele Agolini, Antonio Novelli and Silvana Briuglia
Genes 2023, 14(2), 484; https://doi.org/10.3390/genes14020484 - 14 Feb 2023
Cited by 9 | Viewed by 2300
Abstract
Technological advancements in molecular genetics and cytogenetics have led to the diagnostic definition of complex or atypical clinical pictures. In this paper, a genetic analysis identifies multimorbidities, one due to either a copy number variant or a chromosome aneuploidy, and a second due [...] Read more.
Technological advancements in molecular genetics and cytogenetics have led to the diagnostic definition of complex or atypical clinical pictures. In this paper, a genetic analysis identifies multimorbidities, one due to either a copy number variant or a chromosome aneuploidy, and a second due to biallelic sequence variants in a gene associated with an autosomal recessive disorder. We diagnosed the simultaneous presence of these conditions, which co-occurred by chance, in three unrelated patients: a 10q11.22q11.23 microduplication and a homozygous variant, c.3470A>G (p.Tyr1157Cys), in the WDR19 gene associated with autosomal recessive ciliopathy; down syndrome and two variants, c.850G>A; p.(Gly284Arg) and c.5374G>T; p.(Glu1792*), in the LAMA2 gene associated with merosin-deficient congenital muscular dystrophy type 1A (MDC1A); and a de novo 16p11.2 microdeletion syndrome and homozygous variant, c.2828G>A (p.Arg943Gln), in the ABCA4 gene associated with Stargardt disease 1 (STGD1). The possibility of being affected by two relatively common or rare inherited genetic conditions would be suspected when signs and symptoms are incoherent with the primary diagnosis. All this could have important implications for improving genetic counseling, determining the correct prognosis, and, consequently, organizing the best long-term follow-up. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
10 pages, 2349 KiB  
Case Report
Prenatal Diagnosis of Uniparental Disomy in Cases of Rare Autosomal Trisomies Detected Using Noninvasive Prenatal Test: A Case of Prader–Willi Syndrome
by Da Kyung Hong, Ji Eun Park, Kyung Min Kang, Sung Han Shim, So Hyun Shim, You Jung Han, Hee Young Cho and Dong Hyun Cha
Diagnostics 2023, 13(4), 580; https://doi.org/10.3390/diagnostics13040580 - 4 Feb 2023
Cited by 4 | Viewed by 3814
Abstract
Rare autosomal trisomies (RATs) other than common aneuploidies can be detected using noninvasive prenatal testing (NIPT). However, conventional karyotyping is insufficient for evaluating diploid fetuses with uniparental disomy (UPD) due to trisomy rescue. Using the diagnostic process for Prader–Willi syndrome (PWS), we aim [...] Read more.
Rare autosomal trisomies (RATs) other than common aneuploidies can be detected using noninvasive prenatal testing (NIPT). However, conventional karyotyping is insufficient for evaluating diploid fetuses with uniparental disomy (UPD) due to trisomy rescue. Using the diagnostic process for Prader–Willi syndrome (PWS), we aim to describe the need for additional prenatal diagnostic testing for confirming UPD in fetuses diagnosed with RATs via NIPT and its clinical implications. NIPT was performed using the massively parallel sequencing (MPS) method, and all pregnant women with RATs underwent amniocentesis. After confirming the normal karyotype, short tandem repeat (STR) analysis, methylation-specific PCR (MS-PCR), and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) were performed to detect UPD. Overall, six cases were diagnosed with RATs. There was a suspicion of trisomies of chromosomes 7, 8, and 15 in two cases each. However, these cases were confirmed to have a normal karyotype using amniocentesis. In one of six cases, PWS caused by maternal UPD 15 was diagnosed using MS-PCR and MS-MLPA. We propose that in cases where RAT is detected by NIPT, UPD should be considered following trisomy rescue. Even if amniocentesis confirms a normal karyotype, UPD testing (such as MS-PCR and MS-MLPA) should be recommended for accurate assessment, as an accurate diagnosis can lead to appropriate genetic counseling and improved overall pregnancy management. Full article
(This article belongs to the Special Issue Prenatal Diagnosis: Current Trends and Future Directions)
Show Figures

Figure 1

11 pages, 263 KiB  
Article
Clinical, Cytogenetic and Molecular Cytogenetic Outcomes of Cell-Free DNA Testing for Rare Chromosomal Anomalies
by Seher Basaran, Recep Has, Ibrahim Halil Kalelioglu, Tugba Sarac Sivrikoz, Birsen Karaman, Melike Kirgiz, Tahir Dehgan, Tugba Kalayci, Bilge Ozsait Selcuk, Peter Miny and Atil Yuksel
Genes 2022, 13(12), 2389; https://doi.org/10.3390/genes13122389 - 16 Dec 2022
Cited by 3 | Viewed by 2428
Abstract
The scope of cell-free DNA (cfDNA) testing was expanded to the genome, which allowed screening for rare chromosome anomalies (RCAs). Since the efficiency of the test for RCAs remains below the common aneuploidies, there is a debate on the usage of expanded tests. [...] Read more.
The scope of cell-free DNA (cfDNA) testing was expanded to the genome, which allowed screening for rare chromosome anomalies (RCAs). Since the efficiency of the test for RCAs remains below the common aneuploidies, there is a debate on the usage of expanded tests. This study focuses on the confirmatory and follow-up data of cases with positive cfDNA testing for RCAs and cases with screen-negative results in a series of 912 consecutive cases that underwent invasive testing following cfDNA testing. Chorion villus sampling (CVS), amniocentesis (AS), fetal blood sampling, and term placenta samples were investigated using classical cytogenetic and molecular cytogenetic techniques. Out of 593 screen-positive results, 504 (85%) were for common aneuploidies, 40 (6.7%) for rare autosomal trisomies (RATs), and 49 (8.3%) for structural chromosome anomalies (SAs). Of the screen-positives for RATs, 20 cases were evaluated only in fetal tissue, and confined placental mosaicism (CPM) could not be excluded. Among cases with definitive results (n = 20), the rates of true positives, placental mosaics, and false positives were 35%, 45%, and 10%, respectively. Among screen-positives for SAs, 32.7% were true positives. The confirmation rate was higher for duplications than deletions (58.3% vs. 29.4%). The rate of chromosomal abnormality was 10.9% in the group of 256 screen-negatives with pathological ultrasound findings. This study provides further data to assess the efficiency of expanded cfDNA testing for RATs and SAs. The test efficiency for cfDNA seems to be higher for duplications than for deletions, which is evidence of the role of expert ultrasound in identifying pregnancies at increased risk for chromosome anomalies, even in pregnancies with screen-negatives. Furthermore, we discussed the efficiency of CVS vs. AC in screen-positives for RATs. Full article
16 pages, 473 KiB  
Article
Genome-Wide Cell-Free DNA Test for Fetal Chromosomal Abnormalities and Variants: Unrestricted Versus Restricted Reporting
by Angel H. W. Kwan, Xiaofan Zhu, Maria Mar Gil, Yvonne K. Y. Kwok, Isabella Y. M. Wah, Annie S. Y. Hui, Yuen-Ha Ting, Kwok-Ming Law, Doris Lau, Shuwen Xue, Kwong-Wai Choy, Daljit Sahota, Tak-Yeung Leung and Liona C. Poon
Diagnostics 2022, 12(10), 2439; https://doi.org/10.3390/diagnostics12102439 - 9 Oct 2022
Cited by 2 | Viewed by 2118
Abstract
This study aimed to compare the screening performance of genome-wide cfDNA testing for chromosomal abnormalities between two periods where additional findings were reported and not reported. Data were obtained from consecutive pregnant women with a singleton pregnancy at ≥10 weeks who requested cfDNA [...] Read more.
This study aimed to compare the screening performance of genome-wide cfDNA testing for chromosomal abnormalities between two periods where additional findings were reported and not reported. Data were obtained from consecutive pregnant women with a singleton pregnancy at ≥10 weeks who requested cfDNA testing during 2015–2019. The performance of screening of the cfDNA test was determined by calculating the concordance rate, detection rate, and false-positive rate. Data from 3981 women were included. The no-result rates were similar between the two reporting periods (2.04% vs. 2.08%). Concordance rates for trisomy 21 and 18 were 100% and 100%, respectively. There were two cases tested high risk for trisomy 13, with a concordance rate of 0%. In total, 12 cases were high risk for any sex chromosome aneuploidy with an overall concordance of 75%, and 15 cases tested high risk for any rare autosomal trisomy, with a 13.3% concordance rate. The detection rates for trisomy 21 and 18 were 100% and 100%, respectively. For any SCA, the detection rate was 90%. For the two reporting periods, the combined false-positive rates were 0.93% and 0.17%, which were significantly different (p = 0.002). Restricting the reporting of additional findings from genome-wide cfDNA analysis has reduced the false-positive rate but without a reduction in the no-result rate. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

13 pages, 792 KiB  
Article
Initial Clinical Experience with NIPT for Rare Autosomal Aneuploidies and Large Copy Number Variations
by Thomas Harasim, Teresa Neuhann, Anne Behnecke, Miriam Stampfer, Elke Holinski-Feder and Angela Abicht
J. Clin. Med. 2022, 11(2), 372; https://doi.org/10.3390/jcm11020372 - 13 Jan 2022
Cited by 20 | Viewed by 3559
Abstract
Objective: Amniocentesis, chorionic villi sampling and first trimester combined testing are able to screen for common trisomies 13, 18, and 21 and other atypical chromosomal anomalies (ACA). The most frequent atypical aberrations reported are rare autosomal aneuploidies (RAA) and copy number variations (CNV), [...] Read more.
Objective: Amniocentesis, chorionic villi sampling and first trimester combined testing are able to screen for common trisomies 13, 18, and 21 and other atypical chromosomal anomalies (ACA). The most frequent atypical aberrations reported are rare autosomal aneuploidies (RAA) and copy number variations (CNV), which are deletions or duplications of various sizes. We evaluated the clinical outcome of non-invasive prenatal testing (NIPT) results positive for RAA and large CNVs to determine the clinical significance of these abnormal results. Methods: Genome-wide NIPT was performed on 3664 eligible patient samples at a single genetics center. For patients with positive NIPT reports, the prescribing physician was asked retrospectively to provide clinical follow-up information using a standardized questionnaire. Results: RAAs and CNVs (>7 Mb) were detected in 0.5%, and 0.2% of tested cases, respectively. Follow up on pregnancies with an NIPT-positive result for RAA revealed signs of placental insufficiency or intra-uterine death in 50% of the cases and normal outcome at the time of birth in the other 50% of cases. We showed that CNV testing by NIPT allows for the detection of unbalanced translocations and relevant maternal health conditions. Conclusion: NIPT for aneuploidies of all autosomes and large CNVs of at least 7 Mb has a low “non-reportable”-rate (<0.2%) and allows the detection of additional conditions of clinical significance. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

13 pages, 905 KiB  
Article
Strategy for Use of Genome-Wide Non-Invasive Prenatal Testing for Rare Autosomal Aneuploidies and Unbalanced Structural Chromosomal Anomalies
by Pascale Kleinfinger, Laurence Lohmann, Armelle Luscan, Detlef Trost, Laurent Bidat, Véronique Debarge, Vanina Castaigne, Marie-Victoire Senat, Marie-Pierre Brechard, Lucie Guilbaud, Gwenaël Le Guyader, Véronique Satre, Hélène Laurichesse Delmas, Hakima Lallaoui, Marie-Christine Manca-Pellissier, Aicha Boughalem, Mylene Valduga, Farah Hodeib, Alexandra Benachi and Jean Marc Costa
J. Clin. Med. 2020, 9(8), 2466; https://doi.org/10.3390/jcm9082466 - 1 Aug 2020
Cited by 19 | Viewed by 5563
Abstract
Atypical fetal chromosomal anomalies are more frequent than previously recognized and can affect fetal development. We propose a screening strategy for a genome-wide non-invasive prenatal test (NIPT) to detect these atypical chromosomal anomalies (ACAs). Two sample cohorts were tested. Assay performances were determined [...] Read more.
Atypical fetal chromosomal anomalies are more frequent than previously recognized and can affect fetal development. We propose a screening strategy for a genome-wide non-invasive prenatal test (NIPT) to detect these atypical chromosomal anomalies (ACAs). Two sample cohorts were tested. Assay performances were determined using Cohort A, which consisted of 192 biobanked plasma samples—42 with ACAs, and 150 without. The rate of additional invasive diagnostic procedures was determined using Cohort B, which consisted of 3097 pregnant women referred for routine NIPT. Of the 192 samples in Cohort A, there were four initial test failures and six discordant calls; overall sensitivity was 88.1% (37/42; CI 75.00–94.81) and specificity was 99.3% (145/146; CI 96.22–99.88). In Cohort B, there were 90 first-pass failures (2.9%). The rate of positive results indicating an anomaly was 1.2% (36/3007) and 0.57% (17/3007) when limited to significant unbalanced chromosomal anomalies and trisomies 8, 9, 12, 14, 15, 16, and 22. These results show that genome-wide NIPT can screen for ACAs with an acceptable sensitivity and a small increase in invasive testing, particularly for women with increased risk following maternal serum screening and by limiting screening to structural anomalies and the most clinically meaningful trisomies. Full article
(This article belongs to the Special Issue Prenatal Genetic Screening and Diagnosis)
Show Figures

Figure 1

Back to TopTop