Prenatal Genome-Wide Cell-Free DNA Screening: Three Years of Clinical Experience in a Hospital Prenatal Diagnostic Unit in Spain
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Audibert, F.; De Bie, I.; Johnson, J.A.; Okun, N.; Wilson, R.D.; Armour, C.; Chitayat, D.; Kim, R. No. 348-Joint SOGC-CCMG Guideline: Update on Prenatal Screening for Fetal Aneuploidy, Fetal Anomalies, and Adverse Pregnancy Outcomes. J. Obstet. Gynaecol. Can. 2017, 39, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Dondorp, W.; de Wert, G.; Bombard, Y.; Bianchi, D.W.; Bergmann, C.; Borry, P.; Chitty, L.S.; Fellmann, F.; Forzano, F.; Hall, A.; et al. Non-invasive prenatal testing for aneuploidy and beyond: Challenges of responsible innovation in prenatal screening. Eur. J. Hum. Genet. 2015, 23, 1438–1450. [Google Scholar] [CrossRef] [PubMed]
- Dungan, J.S.; Klugman, S.; Darilek, S.; Malinowski, J.; Akkari, Y.M.N.; Monaghan, K.G.; Erwin, A.; Best, R.G. Noninvasive prenatal screening (NIPS) for fetal chromosome abnormalities in a general-risk population: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2023, 25, 100336. [Google Scholar] [CrossRef] [PubMed]
- Gil Mira, M.d.M.; Santacruz Martín, B.; Molina García, F.S.; Paco Matallana, K.d. Decalogue of the lc-DNA test in maternal blood for prenatal diagnosis (2020). Prog. Obstet. Ginecol. (Ed. Impr.) 2020, 63, 1–2. [Google Scholar] [CrossRef]
- Hui, L.; Ellis, K.; Mayen, D.; Pertile, M.D.; Reimers, R.; Sun, L.; Vermeesch, J.; Vora, N.L.; Chitty, L.S. Position statement from the International Society for Prenatal Diagnosis on the use of non-invasive prenatal testing for the detection of fetal chromosomal conditions in singleton pregnancies. Prenat. Diagn. 2023, 43, 814–828. [Google Scholar] [CrossRef]
- Rose, N.C.; Kaimal, A.J.; Dugoff, L.; Norton, M.E. Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin Summary, Number 226. Obstet. Gynecol. 2020, 136, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Wellesley, D.; Dolk, H.; Boyd, P.A.; Greenlees, R.; Haeusler, M.; Nelen, V.; Garne, E.; Khoshnood, B.; Doray, B.; Rissmann, A.; et al. Rare chromosome abnormalities, prevalence and prenatal diagnosis rates from population-based congenital anomaly registers in Europe. Eur. J. Hum. Genet. 2012, 20, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Harasim, T.; Neuhann, T.; Behnecke, A.; Stampfer, M.; Holinski-Feder, E.; Abicht, A. Initial Clinical Experience with NIPT for Rare Autosomal Aneuploidies and Large Copy Number Variations. J. Clin. Med. 2022, 11, 372. [Google Scholar] [CrossRef] [PubMed]
- Mossfield, T.; Soster, E.; Menezes, M.; Agenbag, G.; Dubois, M.L.; Gekas, J.; Hardy, T.; Jurkowska, M.; Kleinfinger, P.; Loggenberg, K.; et al. Multisite assessment of the impact of cell-free DNA-based screening for rare autosomal aneuploidies on pregnancy management and outcomes. Front. Genet. 2022, 13, 975987. [Google Scholar] [CrossRef]
- Pertile, M.D.; Flowers, N.; Vavrek, D.; Andrews, D.; Kalista, T.; Craig, A.; Deciu, C.; Duenwald, S.; Meier, K.; Bhatt, S. Performance of a Paired-End Sequencing-Based Noninvasive Prenatal Screening Test in the Detection of Genome-Wide Fetal Chromosomal Anomalies. Clin. Chem. 2021, 67, 1210–1219. [Google Scholar] [CrossRef]
- Pescia, G.; Guex, N.; Iseli, C.; Brennan, L.; Osteras, M.; Xenarios, I.; Farinelli, L.; Conrad, B. Cell-free DNA testing of an extended range of chromosomal anomalies: Clinical experience with 6,388 consecutive cases. Genet. Med. 2017, 19, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Rafalko, J.; Soster, E.; Caldwell, S.; Almasri, E.; Westover, T.; Weinblatt, V.; Cacheris, P. Genome-wide cell-free DNA screening: A focus on copy-number variants. Genet. Med. 2021, 23, 1847–1853. [Google Scholar] [CrossRef] [PubMed]
- Soster, E.; Boomer, T.; Hicks, S.; Caldwell, S.; Dyr, B.; Chibuk, J.; Almasri, E. Three years of clinical experience with a genome-wide cfDNA screening test for aneuploidies and copy-number variants. Genet. Med. 2021, 23, 1349–1355. [Google Scholar] [CrossRef] [PubMed]
- Van Den Bogaert, K.; Lannoo, L.; Brison, N.; Gatinois, V.; Baetens, M.; Blaumeiser, B.; Boemer, F.; Bourlard, L.; Bours, V.; De Leener, A.; et al. Outcome of publicly funded nationwide first-tier noninvasive prenatal screening. Genet. Med. 2021, 23, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- van Prooyen Schuurman, L.; Sistermans, E.A.; Van Opstal, D.; Henneman, L.; Bekker, M.N.; Bax, C.J.; Pieters, M.J.; Bouman, K.; de Munnik, S.; den Hollander, N.S.; et al. Clinical impact of additional findings detected by genome-wide non-invasive prenatal testing: Follow-up results of the TRIDENT-2 study. Am. J. Hum. Genet. 2022, 109, 1140–1152. [Google Scholar] [CrossRef] [PubMed]
- Illumina, I. VeriSeq NIPT Solution v2 Package Insert. Available online: https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/veriseq-nipt-v2/1000000078751_08_veriseq-nipt-solution-v2-package-insert.pdf (accessed on 5 February 2021).
- Illumina, I. VeriSeq NIPT Solution v2 Software Guide. Available online: https://emea.support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/veriseq-nipt-v2/1000000067940_08_veriseq-nipt-solution-v2-software-guide-IVD.pdf (accessed on 5 February 2021).
- van der Meij, K.R.M.; Sistermans, E.A.; Macville, M.V.E.; Stevens, S.J.C.; Bax, C.J.; Bekker, M.N.; Bilardo, C.M.; Boon, E.M.J.; Boter, M.; Diderich, K.E.M.; et al. TRIDENT-2: National Implementation of Genome-wide Non-invasive Prenatal Testing as a First-Tier Screening Test in the Netherlands. Am. J. Hum. Genet. 2019, 105, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Grati, F.R. Chromosomal Mosaicism in Human Feto-Placental Development: Implications for Prenatal Diagnosis. J. Clin. Med. 2014, 3, 809–837. [Google Scholar] [CrossRef] [PubMed]
- Page-Christiaens, L.; Klein, H.-G. Noninvasive Prenatal Testing (NIPT): Applied Genomics in Prenatal Screening and Diagnosis; Elsevier/Academic Press: London, UK, 2018; pp. 180–181. [Google Scholar]
- Russell, L.M.; Strike, P.; Browne, C.E.; Jacobs, P.A. X chromosome loss and ageing. Cytogenet. Genome Res. 2007, 116, 181–185. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Tian, F.; Zhang, J.; Song, Z.; Wu, Y.; Han, X.; Hu, W.; Ma, D.; Cram, D.; et al. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing. Clin. Chem. 2014, 60, 251–259. [Google Scholar] [CrossRef]
- Scott, F.; Bonifacio, M.; Sandow, R.; Ellis, K.; Smet, M.E.; McLennan, A. Rare autosomal trisomies: Important and not so rare. Prenat. Diagn. 2018, 38, 765–771. [Google Scholar] [CrossRef]
- Van Opstal, D.; van Maarle, M.C.; Lichtenbelt, K.; Weiss, M.M.; Schuring-Blom, H.; Bhola, S.L.; Hoffer, M.J.V.; Huijsdens-van Amsterdam, K.; Macville, M.V.; Kooper, A.J.A.; et al. Origin and clinical relevance of chromosomal aberrations other than the common trisomies detected by genome-wide NIPS: Results of the TRIDENT study. Genet. Med. 2018, 20, 480–485. [Google Scholar] [CrossRef]
- Pertile, M.D.; Halks-Miller, M.; Flowers, N.; Barbacioru, C.; Kinnings, S.L.; Vavrek, D.; Seltzer, W.K.; Bianchi, D.W. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci. Transl. Med. 2017, 9, eaan1240. [Google Scholar] [CrossRef]
- Hassold, T.; Merrill, M.; Adkins, K.; Freeman, S.; Sherman, S. Recombination and maternal age-dependent nondisjunction: Molecular studies of trisomy 16. Am. J. Hum. Genet. 1995, 57, 867–874. [Google Scholar]
- Acreman, M.L.; Bussolaro, S.; Raymond, Y.C.; Fantasia, I.; Rolnik, D.L.; Da Silva Costa, F. The predictive value of prenatal cell-free DNA testing for rare autosomal trisomies: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2023, 228, 292–305.e6. [Google Scholar] [CrossRef]
- Eggenhuizen, G.M.; Go, A.; Koster, M.P.H.; Baart, E.B.; Galjaard, R.J. Confined placental mosaicism and the association with pregnancy outcome and fetal growth: A review of the literature. Hum. Reprod. Update 2021, 27, 885–903. [Google Scholar] [CrossRef] [PubMed]
- Raymond, Y.C.; Fernando, S.; Menezes, M.; Meagher, S.; Mol, B.W.; McLennan, A.; Scott, F.; Mizia, K.; Carey, K.; Fleming, G.; et al. Cell-free DNA screening for rare autosomal trisomies and segmental chromosome imbalances. Prenat. Diagn. 2022, 42, 1349–1357. [Google Scholar] [CrossRef]
- Huijsdens-van Amsterdam, K.; Straver, R.; van Maarle, M.C.; Knegt, A.C.; Van Opstal, D.; Sleutels, F.; Smeets, D.; Sistermans, E.A. Mosaic maternal 10qter deletions are associated with FRA10B expansions and may cause false-positive noninvasive prenatal screening results. Genet. Med. 2018, 20, 1472–1476. [Google Scholar] [CrossRef] [PubMed]
- Heesterbeek, C.J.; Aukema, S.M.; Galjaard, R.H.; Boon, E.M.J.; Srebniak, M.I.; Bouman, K.; Faas, B.H.W.; Govaerts, L.C.P.; Hoffer, M.J.V.; den Hollander, N.S.; et al. Noninvasive Prenatal Test Results Indicative of Maternal Malignancies: A Nationwide Genetic and Clinical Follow-Up Study. J. Clin. Oncol. 2022, 40, 2426–2435. [Google Scholar] [CrossRef]
- Ottaiano, A.; Ianniello, M.; Petrillo, N.; Santorsola, M.; De Falco, L.; Castaldi, S.G.; Castaldi, M.A.; Giudice, V.; Selleri, C.; Savarese, G. Non-invasive prenatal testing can detect silent cancers in expecting mothers. Genes Dis. 2024, 11, 585–588. [Google Scholar] [CrossRef]
- Gregg, A.R.; Skotko, B.G.; Benkendorf, J.L.; Monaghan, K.G.; Bajaj, K.; Best, R.G.; Klugman, S.; Watson, M.S. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: A position statement of the American College of Medical Genetics and Genomics. Genet. Med. 2016, 18, 1056–1065. [Google Scholar] [CrossRef]
Variable | Mean + SD | Median | Range |
---|---|---|---|
Maternal age, years | 35.48 ± 5.18 | 36 | 18–53 |
Gestational age, weeks | 13.50 ± 2.34 | 13.99 | 10–37 |
Body mass index (BMI) | 25.25 ± 5.07 | 24.17 | 14.69–54.20 |
Test Indication | n (%) |
---|---|
High-risk first-trimester screening | 4677 (77.98) |
High-risk second-trimester screening | 692 (11.54) |
No first-trimester screening | 217 (3.62) |
Previously affected pregnancy | 171 (2.85) |
X-linked disease | 34 (0.57) |
Parental translocation carrier | 9 (0.15) |
Other a | 154 (2.57) |
Unknown/not specified | 44 (0.73) |
cfDNA Screening Result | Number | No Diagnostic Testing | True Positive | False Positive | PPV, % (95% CI) |
---|---|---|---|---|---|
T21 | 76 | 3 | 70 | 3 | 95.9 (88.5–99.1) |
T18 | 21 | 3 | 14 | 4 | 77.8 (50.1–93.2) |
T13 | 7 | 1 | 4 | 2 | 66.7 (22.3–95.7) |
SCAs | 29 | 7 | 14 | 8 * | 63.6 (45.1–86.1) |
RAA Cases (n = 26) | CNV Cases (n = 28) | |
---|---|---|
Pregnancy complications (%) | ||
Gestational hypertension | 0 (0) | 2 (7.1) |
Preeclampsia (or suspicion of preeclampsia) | 4 (15.4) | 1 (3.6) |
Chronic hypertension | 1 (3.9) | 1 (3.6) |
Gestational diabetes | 4 (15.4) | 4 (14.3) |
Fetal growth restriction | 6 (23.1) | 5 (17.9) |
Placental alterations | 0 (0) | 3 (10.7) |
Table Pregnancy outcomes (%) | ||
Spontaneous abortion (<20 wk) | 3 (11.5) | 2 (7.1) a |
Intrauterine fetal demise (>20 wk) | 0 (0) | 2 (7.1) |
Elective termination | 0 (0) | 2 (7.1) |
Preterm birth (<37 wk) | 3 (11.5) | 3 (10.7) |
Emergency C-section before 34 wk | 1 (3.9) | 1 (3.6) |
Emergency C-section between 34 and 37 wk | 2 (7.7) | 0 (0) |
Emergency C-section >37 wk | 2 (7.7) | 6 (21.4) |
Neonatal outcomes (%) | ||
5-min Apgar score < 7 | 1 (3.9) | 0 (0) |
Reduced birth weight | 7 (26.9) | 1 (3.6) |
Admission to the NICU | 3 (11.5) | 2 (7.1) |
Neonatal death | 1 (3.9) | 1 (3.6) |
Major congenital structural abnormalities b | 3 (11.5) | 4 (14.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedrola Vidal, L.; Roselló Piera, M.; Martín-Grau, C.; Rubio Moll, J.S.; Gómez Portero, R.; Marcos Puig, B.; Cervera Zamora, J.V.; Quiroga, R.; Orellana Alonso, C. Prenatal Genome-Wide Cell-Free DNA Screening: Three Years of Clinical Experience in a Hospital Prenatal Diagnostic Unit in Spain. Genes 2024, 15, 568. https://doi.org/10.3390/genes15050568
Pedrola Vidal L, Roselló Piera M, Martín-Grau C, Rubio Moll JS, Gómez Portero R, Marcos Puig B, Cervera Zamora JV, Quiroga R, Orellana Alonso C. Prenatal Genome-Wide Cell-Free DNA Screening: Three Years of Clinical Experience in a Hospital Prenatal Diagnostic Unit in Spain. Genes. 2024; 15(5):568. https://doi.org/10.3390/genes15050568
Chicago/Turabian StylePedrola Vidal, Laia, Mónica Roselló Piera, Carla Martín-Grau, Juan S. Rubio Moll, Rosa Gómez Portero, Beatriz Marcos Puig, Jose V. Cervera Zamora, Ramiro Quiroga, and Carmen Orellana Alonso. 2024. "Prenatal Genome-Wide Cell-Free DNA Screening: Three Years of Clinical Experience in a Hospital Prenatal Diagnostic Unit in Spain" Genes 15, no. 5: 568. https://doi.org/10.3390/genes15050568
APA StylePedrola Vidal, L., Roselló Piera, M., Martín-Grau, C., Rubio Moll, J. S., Gómez Portero, R., Marcos Puig, B., Cervera Zamora, J. V., Quiroga, R., & Orellana Alonso, C. (2024). Prenatal Genome-Wide Cell-Free DNA Screening: Three Years of Clinical Experience in a Hospital Prenatal Diagnostic Unit in Spain. Genes, 15(5), 568. https://doi.org/10.3390/genes15050568