Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = radio frequency fingerprint (RFF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 13529 KiB  
Article
A Self-Supervised Contrastive Framework for Specific Emitter Identification with Limited Labeled Data
by Jiaqi Wang, Lishu Guo, Pengfei Liu, Peng Shang, Xiaochun Lu and Hang Zhao
Remote Sens. 2025, 17(15), 2659; https://doi.org/10.3390/rs17152659 - 1 Aug 2025
Viewed by 174
Abstract
Specific Emitter Identification (SEI) is a specialized technique for identifying different emitters by analyzing the unique characteristics embedded in received signals, known as Radio Frequency Fingerprints (RFFs), and SEI plays a crucial role in civilian applications. Recently, various SEI methods based on deep [...] Read more.
Specific Emitter Identification (SEI) is a specialized technique for identifying different emitters by analyzing the unique characteristics embedded in received signals, known as Radio Frequency Fingerprints (RFFs), and SEI plays a crucial role in civilian applications. Recently, various SEI methods based on deep learning have been proposed. However, in real-world scenarios, the scarcity of accurately labeled data poses a significant challenge to these methods, which typically rely on large-scale supervised training. To address this issue, we propose a novel SEI framework based on self-supervised contrastive learning. Our approach comprises two stages: an unsupervised pretraining phase that uses contrastive loss to learn discriminative RFF representations from unlabeled data, and a supervised fine-tuning stage regularized through virtual adversarial training (VAT) to improve generalization under limited labels. This framework enables effective feature learning while mitigating overfitting. To validate the effectiveness of the proposed method, we collected real-world satellite navigation signals using a 40-meter antenna and conducted extensive experiments. The results demonstrate that our approach achieves outstanding SEI performance, significantly outperforming several mainstream SEI methods, thereby highlighting the practical potential of contrastive self-supervised learning in satellite transmitter identification. Full article
Show Figures

Graphical abstract

24 pages, 1307 KiB  
Article
A Self-Supervised Specific Emitter Identification Method Based on Contrastive Asymmetric Masked Learning
by Dong Wang, Yonghui Huang, Tianshu Cui and Yan Zhu
Sensors 2025, 25(13), 4023; https://doi.org/10.3390/s25134023 - 27 Jun 2025
Viewed by 310
Abstract
Specific emitter identification (SEI) is a core technology for wireless device security that plays a crucial role in protecting wireless communication systems from various security threats. However, current deep learning-based SEI methods heavily rely on large amounts of labeled data for supervised training, [...] Read more.
Specific emitter identification (SEI) is a core technology for wireless device security that plays a crucial role in protecting wireless communication systems from various security threats. However, current deep learning-based SEI methods heavily rely on large amounts of labeled data for supervised training, facing challenges in non-cooperative communication scenarios. To address these issues, this paper proposes a novel contrastive asymmetric masked learning-based SEI (CAML-SEI) method, effectively solving the problem of SEI under scarce labeled samples. The proposed method constructs an asymmetric auto-encoder architecture, comprising an encoder network based on channel squeeze-and-excitation residual blocks to capture radio frequency fingerprint (RFF) features embedded in signals, while employing a lightweight single-layer convolutional decoder for masked signal reconstruction. This design promotes the learning of fine-grained local feature representations. To further enhance feature discriminability, a learnable non-linear mapping is introduced to compress high-dimensional encoded features into a compact low-dimensional space, accompanied by a contrastive loss function that simultaneously achieves feature aggregation of positive samples and feature separation of negative samples. Finally, the network is jointly optimized by combining signal reconstruction and feature contrast tasks. Experiments conducted on real-world ADS-B and Wi-Fi datasets demonstrate that the proposed method effectively learns generalized RFF features, and the results show superior performance compared with other SEI methods. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

22 pages, 3666 KiB  
Article
Resource-Constrained Specific Emitter Identification Based on Efficient Design and Network Compression
by Mengtao Wang, Shengliang Fang, Youchen Fan and Shunhu Hou
Sensors 2025, 25(7), 2293; https://doi.org/10.3390/s25072293 - 4 Apr 2025
Cited by 1 | Viewed by 587
Abstract
Specific emitter identification (SEI) methods based on deep learning (DL) have effectively addressed complex, multi-dimensional signal recognition tasks by leveraging deep neural networks. However, this advancement introduces challenges such as model parameter redundancy and high feature dimensionality, which pose limitations for resource-constrained (RC) [...] Read more.
Specific emitter identification (SEI) methods based on deep learning (DL) have effectively addressed complex, multi-dimensional signal recognition tasks by leveraging deep neural networks. However, this advancement introduces challenges such as model parameter redundancy and high feature dimensionality, which pose limitations for resource-constrained (RC) edge devices, especially in Internet of Things (IoT) applications. To tackle these problems, we propose an RC-SEI method based on efficient design and model compression. Specifically, for efficient design, we have developed a lightweight convolution network (LCNet) that aims to balance performance and complexity. Regarding model compression, we introduce sparse regularization techniques in the fully connected (FC) layer, achieving over 99% feature dimensionality reduction. Furthermore, we have comprehensively evaluated the proposed method on public automatic-dependent surveillance-broadcast (ADS-B) and Wi-Fi datasets. Simulation results demonstrate that our proposed method exhibits superior performance in terms of both recognition accuracy and model complexity. Specifically, LCNet achieved accuracies of 99.40% and 99.90% on the ADS-B and Wi-Fi datasets, respectively, with only 33,510 and 33,544 parameters. These results highlight the feasibility and potential of our proposed RC-SEI method for RC scenarios. Full article
Show Figures

Figure 1

31 pages, 5218 KiB  
Article
KAN-ResNet-Enhanced Radio Frequency Fingerprint Identification with Zero-Forcing Equalization
by Hongbo Chen, Ruohua Zhou, Qingsheng Yuan, Ziye Guo and Wei Fu
Sensors 2025, 25(7), 2222; https://doi.org/10.3390/s25072222 - 1 Apr 2025
Cited by 2 | Viewed by 1008
Abstract
Radio Frequency Fingerprint Identification (RFFI) is a promising device authentication technique that utilizes inherent hardware flaws in transmitters to achieve device identification, thus effectively maintaining the security of the Internet of Things (IoT). However, time-varying channels degrade accuracy due to factors like device [...] Read more.
Radio Frequency Fingerprint Identification (RFFI) is a promising device authentication technique that utilizes inherent hardware flaws in transmitters to achieve device identification, thus effectively maintaining the security of the Internet of Things (IoT). However, time-varying channels degrade accuracy due to factors like device aging and environmental changes. To address this, we propose an RFFI method integrating Zero-Forcing (ZF) equalization and KAN-ResNet. Firstly, the Wi-Fi preamble signals under the IEEE 802.11 standard are Zero-Forcing equalized, so as to effectively reduce the interference of time-varying channels on RFFI. We then design a novel residual network, KAN-ResNet, which adds a KAN module on top of the traditional fully connected layer. The module combines the B-spline basis function and the traditional activation function Sigmoid Linear Unit (SiLU) to realize the nonlinear mapping of the complex function, which enhance the classification ability of the network for RFF features. In addition, to improve the generalization of the model, the grid of B-splines is dynamically updated and L1 regularization is introduced. Experiments show that on datasets collected 20 days apart, our method achieves 99.4% accuracy, reducing the error rate from 6.3% to 0.6%, outperforming existing models. Full article
(This article belongs to the Special Issue Data Protection and Privacy in Industry 4.0 Era)
Show Figures

Figure 1

20 pages, 2850 KiB  
Article
A Satellite Individual Identification Method Based on a Complex-Valued Conditional Generative Adversarial Network
by Jun He, Can Xu, Canbin Yin, Pengju Li, Jishun Li, Shuailong Zhao and Yasheng Zhang
Remote Sens. 2025, 17(5), 740; https://doi.org/10.3390/rs17050740 - 20 Feb 2025
Viewed by 504
Abstract
With the help of specific emitter identification (SEI), the control efficiency of the satellite communication systems can be effectively improved by discriminating the individual satellite. In recent years, deep learning has been introduced into SEI to enhance identification performance because of its powerful [...] Read more.
With the help of specific emitter identification (SEI), the control efficiency of the satellite communication systems can be effectively improved by discriminating the individual satellite. In recent years, deep learning has been introduced into SEI to enhance identification performance because of its powerful classification capability. However, classical real-valued neural networks exhibit some limitations in extracting the radio frequency fingerprint (RFF) features from complex signals, limiting the improvement of identification accuracy. Thus, we proposed a complex-valued conditional adversarial generative network (CC-GAN) which can directly deal with complex signals. Through adversarial learning between the generator and the discriminator, the generator implements direct mapping from the dynamic noisy signals to the noise-free signals. In addition, an auxiliary classifier is introduced into the discriminator to make the discriminator able to label the sample, which effectively compress the proposed model. The experimental results for a signal dataset collected in a real environment demonstrated that the proposed model is superior to the traditional denoising methods in denoising performance, which effectively improves the identification accuracy under dynamic noises. Furthermore, the proposed model outperforms other deep learning models in terms of identification performance under various SNRs, which can effectively improve the robustness and adaptability of the SEI system for communication satellites in dynamic noisy environments. Full article
Show Figures

Figure 1

18 pages, 5180 KiB  
Article
Dataset Augmentation and Fractional Frequency Offset Compensation Based Radio Frequency Fingerprint Identification in Drone Communications
by Dongming Li, Zhaorui Wang, Yuting Lai and Huafei Shen
Drones 2024, 8(10), 569; https://doi.org/10.3390/drones8100569 - 10 Oct 2024
Viewed by 1402
Abstract
The open nature of the wireless channel makes the drone communication vulnerable to adverse spoofing attacks, and the radio frequency fingerprint (RFF) identification is promising in effectively safeguarding the access security for drones. Since drones are constantly flying in the three dimensional aerial [...] Read more.
The open nature of the wireless channel makes the drone communication vulnerable to adverse spoofing attacks, and the radio frequency fingerprint (RFF) identification is promising in effectively safeguarding the access security for drones. Since drones are constantly flying in the three dimensional aerial space, the unique RFF identification problem emerges in drone communication that the effective extraction and identification of RFF suffer from the time-varying channel effects and unavoidable jitterings due to the constant flight. To tackle this issue, we propose augmenting the training RFF dataset by regenerating the drone channel characteristics and compensate the fractional frequency offset. The proposed method estimates the Rician K value of the channel and curve-fits the statistical distribution, the Rician channels are regenerated using the sinusoidal superposition method. Then, a probabilistic switching channel is also set up to introduce the Rayleigh channel effects into the training dataset. The proposed method effectively addresses the unilateral channel effects in the training dataset and achieves the balanced channel effect distribution. Consequently, the pre-trained model can extract channel-robust RFF features in drone air-ground channels. In addition, by compensating the fractional frequency offset, the proposed method removes the unstable frequency components and retains the stable integer frequency offset. Then, the stable frequency offset features that are robust to environmental changes can be extracted. The proposed method achieves an average classification accuracy of 97% under spatial and temporal varying conditions. Full article
(This article belongs to the Special Issue Physical-Layer Security in Drone Communications)
Show Figures

Figure 1

17 pages, 2192 KiB  
Article
Composite Ensemble Learning Framework for Passive Drone Radio Frequency Fingerprinting in Sixth-Generation Networks
by Muhammad Usama Zahid, Muhammad Danish Nisar, Adnan Fazil, Jihyoung Ryu and Maqsood Hussain Shah
Sensors 2024, 24(17), 5618; https://doi.org/10.3390/s24175618 - 29 Aug 2024
Cited by 3 | Viewed by 1386
Abstract
The rapid evolution of drone technology has introduced unprecedented challenges in security, particularly concerning the threat of unconventional drone and swarm attacks. In order to deal with threats, drones need to be classified by intercepting their Radio Frequency (RF) signals. With the arrival [...] Read more.
The rapid evolution of drone technology has introduced unprecedented challenges in security, particularly concerning the threat of unconventional drone and swarm attacks. In order to deal with threats, drones need to be classified by intercepting their Radio Frequency (RF) signals. With the arrival of Sixth Generation (6G) networks, it is required to develop sophisticated methods to properly categorize drone signals in order to achieve optimal resource sharing, high-security levels, and mobility management. However, deep ensemble learning has not been investigated properly in the case of 6G. It is anticipated that it will incorporate drone-based BTS and cellular networks that, in one way or another, may be subjected to jamming, intentional interferences, or other dangers from unauthorized UAVs. Thus, this study is conducted based on Radio Frequency Fingerprinting (RFF) of drones identified to detect unauthorized ones so that proper actions can be taken to protect the network’s security and integrity. This paper proposes a novel method—a Composite Ensemble Learning (CEL)-based neural network—for drone signal classification. The proposed method integrates wavelet-based denoising and combines automatic and manual feature extraction techniques to foster feature diversity, robustness, and performance enhancement. Through extensive experiments conducted on open-source benchmark datasets of drones, our approach demonstrates superior classification accuracies compared to recent benchmark deep learning techniques across various Signal-to-Noise Ratios (SNRs). This novel approach holds promise for enhancing communication efficiency, security, and safety in 6G networks amidst the proliferation of drone-based applications. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 914 KiB  
Article
LoRa Radio Frequency Fingerprinting with Residual of Variational Mode Decomposition and Hybrid Machine-Learning/Deep-Learning Optimization
by Gianmarco Baldini and Fausto Bonavitacola
Electronics 2024, 13(10), 1925; https://doi.org/10.3390/electronics13101925 - 14 May 2024
Cited by 3 | Viewed by 1790
Abstract
Radio Frequency Fingerprinting (RFF) refers to the technique for identifying and classifying wireless devices on the basis of their physical characteristics, which appear in the digital signal transmitted in space. Small differences in the radio frequency front-end of the wireless devices are generated [...] Read more.
Radio Frequency Fingerprinting (RFF) refers to the technique for identifying and classifying wireless devices on the basis of their physical characteristics, which appear in the digital signal transmitted in space. Small differences in the radio frequency front-end of the wireless devices are generated across the same wireless device model during the implementation and manufacturing process. These differences create small variations in the transmitted signal, even if the wireless device is still compliant with the wireless standard. By using data analysis and machine-learning algorithms, it is possible to classify different electronic devices on the basis of these variations. This technique has been well proven in the literature, but research is continuing to improve the classification performance, robustness to noise, and computing efficiency. Recently, Deep Learning (DL) has been applied to RFF with considerable success. In particular, the combination of time-frequency representations and Convolutional Neural Networks (CNN) has been particularly effective, but this comes at a great computational cost because of the size of the time-frequency representation and the computing time of CNN. This problem is particularly challenging for wireless standards, where the data to be analyzed is extensive (e.g., long preambles) as in the case of the LoRa (Long Range) wireless standard. This paper proposes a novel approach where two pre-processing steps are adopted to (1) improve the classification performance and (2) to decrease the computing time. The steps are based on the application of Variational Mode Decomposition (VMD) where (in opposition to the known literature) the residual of the VMD application is used instead of the extracted modes. The concept is to remove the modes, which are common among the LoRa devices, and keep with the residuals the unique intrinsic features, which are related to the fingerprints. Then, the spectrogram is applied to the residual component. Even after this step, the computing complexity of applying CNN to the spectrogram is high. This paper proposes a novel step where only segments of the spectrogram are used as input to CNN. The segments are selected using a machine-learning approach applied to the features extracted from the spectrogram using the Local Binary Pattern (LBP). The approach is applied to a recent LoRa radio frequency fingerprinting public data set, where it is shown to significantly outperform the baseline approach based on the full use of the spectrogram of the original signal in terms of both classification performance and computing complexity. Full article
Show Figures

Figure 1

22 pages, 1264 KiB  
Article
FeRHA: Fuzzy-Extractor-Based RF and Hardware Fingerprinting Two-Factor Authentication
by Mona Alkanhal, Mohamed Younis, Abdulaziz Alali and Suhee Sanjana Mehjabin
Appl. Sci. 2024, 14(8), 3363; https://doi.org/10.3390/app14083363 - 16 Apr 2024
Cited by 3 | Viewed by 1686
Abstract
The Internet of Things (IoT) reflects the internetworking of numerous devices with limited computational capabilities. Given the ad-hoc network formation and the dynamic nature of node membership, secure device authentication mechanisms are critical. This paper proposes a novel two-factor authentication protocol for IoT [...] Read more.
The Internet of Things (IoT) reflects the internetworking of numerous devices with limited computational capabilities. Given the ad-hoc network formation and the dynamic nature of node membership, secure device authentication mechanisms are critical. This paper proposes a novel two-factor authentication protocol for IoT devices. The protocol integrates physical unclonable functions (PUFs) and radio frequency fingerprints (RFFs), providing a unique identification method for each device. Compared with existing PUF-based schemes, the proposed protocol facilitates the mutual authentication of two devices without the need for a trusted third party. Our design is resilient to the intrinsic noise associated with PUFs and RFFs, ensuring reliable authentication, even under various operational conditions. Furthermore, we have implemented an obfuscation technique to secure shared authentication data against eavesdropping attempts aimed at modeling the security primitive, i.e., the PUF, through machine learning algorithms. We have validated the performance of our protocol and demonstrated its efficacy against various security threats, including impersonation, message replay, and PUF modeling attacks. Notably, the validation results indicate that predicting any given PUF response bit’s accuracy does not exceed 56%, making it as unpredictable as a random guess. Full article
Show Figures

Figure 1

15 pages, 3480 KiB  
Article
A Radio Frequency Fingerprinting-Based Aircraft Identification Method Using ADS-B Transmissions
by Gursu Gurer, Yaser Dalveren, Ali Kara and Mohammad Derawi
Aerospace 2024, 11(3), 235; https://doi.org/10.3390/aerospace11030235 - 17 Mar 2024
Cited by 3 | Viewed by 2130
Abstract
The automatic dependent surveillance broadcast (ADS-B) system is one of the key components of the next generation air transportation system (NextGen). ADS-B messages are transmitted in unencrypted plain text. This, however, causes significant security vulnerabilities, leaving the system open to various types of [...] Read more.
The automatic dependent surveillance broadcast (ADS-B) system is one of the key components of the next generation air transportation system (NextGen). ADS-B messages are transmitted in unencrypted plain text. This, however, causes significant security vulnerabilities, leaving the system open to various types of wireless attacks. In particular, the attacks can be intensified by simple hardware, like a software-defined radio (SDR). In order to provide high security against such attacks, radio frequency fingerprinting (RFF) approaches offer reasonable solutions. In this study, an RFF method is proposed for aircraft identification based on ADS-B transmissions. Initially, 3480 ADS-B samples were collected by an SDR from eight aircrafts. The power spectral density (PSD) features were then extracted from the filtered and normalized samples. Furthermore, the support vector machine (SVM) with three kernels (linear, polynomial, and radial basis function) was used to identify the aircraft. Moreover, the classification accuracy was demonstrated via varying channel signal-to-noise ratio (SNR) levels (10–30 dB). With a minimum accuracy of 92% achieved at lower SNR levels (10 dB), the proposed method based on SVM with a polynomial kernel offers an acceptable performance. The promising performance achieved with even a small dataset also suggests that the proposed method is implementable in real-world applications. Full article
Show Figures

Figure 1

15 pages, 5659 KiB  
Article
Bluetooth Device Identification Using RF Fingerprinting and Jensen-Shannon Divergence
by Rene Francisco Santana-Cruz, Martin Moreno-Guzman, César Enrique Rojas-López, Ricardo Vázquez-Morán and Rubén Vázquez-Medina
Sensors 2024, 24(5), 1482; https://doi.org/10.3390/s24051482 - 24 Feb 2024
Cited by 2 | Viewed by 2251
Abstract
The proliferation of radio frequency (RF) devices in contemporary society, especially in the fields of smart homes, Internet of Things (IoT) gadgets, and smartphones, underscores the urgent need for robust identification methods to strengthen cybersecurity. This paper delves into the realms of RF [...] Read more.
The proliferation of radio frequency (RF) devices in contemporary society, especially in the fields of smart homes, Internet of Things (IoT) gadgets, and smartphones, underscores the urgent need for robust identification methods to strengthen cybersecurity. This paper delves into the realms of RF fingerprint (RFF) based on applying the Jensen-Shannon divergence (JSD) to the statistical distribution of noise in RF signals to identify Bluetooth devices. Thus, through a detailed case study, Bluetooth RF noise taken at 5 Gsps from different devices is explored. A noise model is considered to extract a unique, universal, permanent, permanent, collectable, and robust statistical RFF that identifies each Bluetooth device. Then, the different JSD noise signals provided by Bluetooth devices are contrasted with the statistical RFF of all devices and a membership resolution is declared. The study shows that this way of identifying Bluetooth devices based on RFF allows one to discern between devices of the same make and model, achieving 99.5% identification effectiveness. By leveraging statistical RFFs extracted from noise in RF signals emitted by devices, this research not only contributes to the advancement of the field of implicit device authentication systems based on wireless communication but also provides valuable insights into the practical implementation of RF identification techniques, which could be useful in forensic processes. Full article
(This article belongs to the Special Issue Security, Cybercrime, and Digital Forensics for the IoT)
Show Figures

Figure 1

17 pages, 2615 KiB  
Article
A Low-Latency Approach for RFF Identification in Open-Set Scenarios
by Bo Zhang, Tao Zhang, Yuanyuan Ma, Zesheng Xi, Chuan He, Yunfan Wang and Zhuo Lv
Electronics 2024, 13(2), 384; https://doi.org/10.3390/electronics13020384 - 17 Jan 2024
Cited by 4 | Viewed by 1791
Abstract
Radio frequency fingerprint (RFF) identification represents a promising technique for lightweight device authentication. However, current research on RFF primarily focuses on the close-set recognition assumption. Moreover, the high computational complexity and excessive latency during the identification stage represent an intolerable burden for Internet [...] Read more.
Radio frequency fingerprint (RFF) identification represents a promising technique for lightweight device authentication. However, current research on RFF primarily focuses on the close-set recognition assumption. Moreover, the high computational complexity and excessive latency during the identification stage represent an intolerable burden for Internet of Things (IoT) devices. In this paper, we propose a deep-learning-based RFF identification framework in relation to open-set scenarios. Specifically, we leverage a simulated training scheme, in which we strategically designate certain devices as simulated unknowns. This allows us to fine-tune our extractor to better handle open-set recognition. Additionally, we construct an exemplar set that only contains representative RFF features to further reduce time consumption in the identification stage. The experiments are carried out on a hardware platform involving LoRa devices and using a USRP N210 software-defined radio receiver. The results show that the proposed framework can achieve 90.23% accuracy for rogue device detection and 93.85% accuracy for legitimate device classification. Furthermore, it is observed that using an exemplar set consisting of half the total data size can reduce the time overhead by 58% compared to using the entire dataset. Full article
(This article belongs to the Special Issue Precise Timing and Security in Internet of Things)
Show Figures

Figure 1

19 pages, 3471 KiB  
Article
Radio Frequency Fingerprint Identification for 5G Mobile Devices Using DCTF and Deep Learning
by Hua Fu, Hao Dong, Jian Yin and Linning Peng
Entropy 2024, 26(1), 38; https://doi.org/10.3390/e26010038 - 29 Dec 2023
Cited by 3 | Viewed by 4308
Abstract
The fifth-generation (5G) mobile cellular network is vulnerable to various security threats. Radio frequency fingerprint (RFF) identification is an emerging physical layer authentication technique which can be used to detect spoofing and distributed denial of service attacks. In this paper, the performance of [...] Read more.
The fifth-generation (5G) mobile cellular network is vulnerable to various security threats. Radio frequency fingerprint (RFF) identification is an emerging physical layer authentication technique which can be used to detect spoofing and distributed denial of service attacks. In this paper, the performance of RFF identification is studied for 5G mobile phones. The differential constellation trace figure (DCTF) is extracted from the physical random access channel (PRACH) preamble. When the database of all 64 PRACH preambles is available at the gNodeB (gNB), an index-based DCTF identification scheme is proposed, and the classification accuracy reaches 92.78% with a signal-to-noise ratio of 25 dB. Moreover, due to the randomness in the selection of preamble sequences in the random access procedure, when only a portion of the preamble sequences can be trained, a group-based DCTF identification scheme is proposed. The preamble sequences generated from the same root value are grouped together, and the untrained sequences can be identified based on the trained sequences within the same group. The classification accuracy of the group-based scheme is 89.59%. An experimental system has been set up using six 5G mobile phones of three models. The 5G gNB is implemented on the OpenAirInterface platform. Full article
(This article belongs to the Special Issue Wireless Communications: Signal Processing Perspectives)
Show Figures

Figure 1

17 pages, 2960 KiB  
Article
Deployment and Implementation Aspects of Radio Frequency Fingerprinting in Cybersecurity of Smart Grids
by Maaz Ali Awan, Yaser Dalveren, Ferhat Ozgur Catak and Ali Kara
Electronics 2023, 12(24), 4914; https://doi.org/10.3390/electronics12244914 - 6 Dec 2023
Cited by 4 | Viewed by 2204
Abstract
Smart grids incorporate diverse power equipment used for energy optimization in intelligent cities. This equipment may use Internet of Things (IoT) devices and services in the future. To ensure stable operation of smart grids, cybersecurity of IoT is paramount. To this end, use [...] Read more.
Smart grids incorporate diverse power equipment used for energy optimization in intelligent cities. This equipment may use Internet of Things (IoT) devices and services in the future. To ensure stable operation of smart grids, cybersecurity of IoT is paramount. To this end, use of cryptographic security methods is prevalent in existing IoT. Non-cryptographic methods such as radio frequency fingerprinting (RFF) have been on the horizon for a few decades but are limited to academic research or military interest. RFF is a physical layer security feature that leverages hardware impairments in radios of IoT devices for classification and rogue device detection. The article discusses the potential of RFF in wireless communication of IoT devices to augment the cybersecurity of smart grids. The characteristics of a deep learning (DL)-aided RFF system are presented. Subsequently, a deployment framework of RFF for smart grids is presented with implementation and regulatory aspects. The article culminates with a discussion of existing challenges and potential research directions for maturation of RFF. Full article
(This article belongs to the Special Issue Security and Privacy in Networks and Multimedia)
Show Figures

Figure 1

23 pages, 1899 KiB  
Article
A Specific Emitter Identification System Design for Crossing Signal Modes in the Air Traffic Control Radar Beacon System and Wireless Devices
by Miyi Zeng, Yue Yao, Hong Liu, Youzhang Hu and Hongyu Yang
Sensors 2023, 23(20), 8576; https://doi.org/10.3390/s23208576 - 19 Oct 2023
Cited by 3 | Viewed by 1825
Abstract
To improve communication stability, more wireless devices transmit multi-modal signals while operating. The term ‘modal’ refers to signal waveforms or signal types. This poses challenges to traditional specific emitter identification (SEI) systems, e.g., unknown modal signals require extra open-set mode identification; different modes [...] Read more.
To improve communication stability, more wireless devices transmit multi-modal signals while operating. The term ‘modal’ refers to signal waveforms or signal types. This poses challenges to traditional specific emitter identification (SEI) systems, e.g., unknown modal signals require extra open-set mode identification; different modes require different radio frequency fingerprint (RFF) extractors and SEI classifiers; and it is hard to collect and label all signals. To address these issues, we propose an enhanced SEI system consisting of a universal RFF extractor, denoted as multiple synchrosqueezed wavelet transformation of energy unified (MSWTEu), and a new generative adversarial network for feature transferring (FTGAN). MSWTEu extracts uniform RFF features for different modal signals, FTGAN transfers different modal features to a recognized distribution in an unsupervised manner, and a novel training strategy is proposed to achieve emitter identification across multi-modal signals using a single clustering method. To evaluate the system, we built a hybrid dataset, which consists of multi-modal signals transmitted by various emitters, and built a complete civil air traffic control radar beacon system (ATCRBS) dataset for airplanes. The experiments show that our enhanced SEI system can resolve the SEI problems associated with crossing signal modes. It directly achieves 86% accuracy in cross-modal emitter identification using an unsupervised classifier, and simultaneously obtains 99% accuracy in open-set recognition of signal mode. Full article
(This article belongs to the Special Issue AI-Based Security and Privacy for IoT Applications)
Show Figures

Figure 1

Back to TopTop