Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = quasi brittle cement composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7286 KiB  
Article
Enhancing Mechanical Properties of Three-Dimensional Cementitious Composites Through 3 mm Short Fibre Systems: Single and Hybrid Types
by Han Yao, Yujie Cao, Yangling Mei and Zhixuan Xiong
Buildings 2025, 15(14), 2519; https://doi.org/10.3390/buildings15142519 - 18 Jul 2025
Viewed by 381
Abstract
Three-dimensionally printed cement-based composites emerge as a research hotspot in the fields of construction engineering in recent years. Current research primarily focuses on the reinforcement mechanisms of individually incorporated fibres, while a significant gap remains in the synergistic effects of hybrid fibre systems. [...] Read more.
Three-dimensionally printed cement-based composites emerge as a research hotspot in the fields of construction engineering in recent years. Current research primarily focuses on the reinforcement mechanisms of individually incorporated fibres, while a significant gap remains in the synergistic effects of hybrid fibre systems. This study investigates the effects of mono-doping (0.2 wt.% and 0.4 wt.% by the mass of the cement) and hybrid-doping (0.1 wt.% + 0.1 wt.% by the mass of the cement) with 3 mm polypropylene, basalt, and carbon fibres on the fresh-state properties and mechanical behaviours. Through quantitative characterisation of the flowability and mechanical performance of short-fibre-reinforced 3D-printed cementitious composites (SFR3DPC), coupled with comprehensive testing including digital image correlation, X-ray diffraction, and scanning electron microscopy, several key findings are obtained. The experimental results indicate that the addition of excess fibres reduces fluidity, which affects the mechanical performance and make the anisotropy of the composites more pronounced. While the single addition of 0.2 wt.% CF shows the most significant improvement in flexural and compressive strengths, the hybrid combination of 0.1 wt.% CF and 0.1 wt.% BF shows the greatest increase in interlayer bond strength by 26.7%. The complementary effect of the hybrid fibres contributes to the damage mode of the composites from brittle fracture to quasi-brittle behaviour at the physical level. These findings offer valuable insights into optimising the mechanical performance and improving defects of 3D-printed cementitious composites with short fibres. Full article
(This article belongs to the Special Issue Advanced Research on Cementitious Composites for Construction)
Show Figures

Graphical abstract

31 pages, 5693 KiB  
Review
A Review on Fresh, Hardened, and Microstructural Properties of Fibre-Reinforced Geopolymer Concrete
by Prabu Baskar, Shalini Annadurai, Kaviya Sekar and Mayakrishnan Prabakaran
Polymers 2023, 15(6), 1484; https://doi.org/10.3390/polym15061484 - 16 Mar 2023
Cited by 16 | Viewed by 4467
Abstract
Alternative eco-friendly and sustainable construction methods are being developed to address growing infrastructure demands, which is a promising field of study. The development of substitute concrete binders is required to alleviate the environmental consequences of Portland cement. Geopolymers are very promising low-carbon, cement-free [...] Read more.
Alternative eco-friendly and sustainable construction methods are being developed to address growing infrastructure demands, which is a promising field of study. The development of substitute concrete binders is required to alleviate the environmental consequences of Portland cement. Geopolymers are very promising low-carbon, cement-free composite materials with superior mechanical and serviceability properties, compared to Ordinary Portland Cement (OPC) based construction materials. These quasi-brittle inorganic composites, which employ an “alkali activating solution” as a binder agent and industrial waste with greater alumina and silica content as its base material, can have their ductility enhanced by utilising the proper reinforcing elements, ideally “fibres”. By analysing prior investigations, this paper explains and shows that Fibre Reinforced Geopolymer Concrete (FRGPC) possesses excellent thermal stability, low weight, and decreased shrinking properties. Thus, it is strongly predicted that fibre-reinforced geopolymers will innovate quickly. This research also discusses the history of FRGPC and its fresh and hardened properties. Lightweight Geopolymer Concrete (GPC) absorption of moisture content and thermomechanical properties formed from Fly ash (FA), Sodium Hydroxide (NaOH), and Sodium Silicate (Na2SiO3) solutions, as well as fibres, are evaluated experimentally and discussed. Additionally, extending fibre measures become advantageous by enhancing the instance’s long-term shrinking performance. Compared to non-fibrous composites, adding more fibre to the composite often strengthens its mechanical properties. The outcome of this review study demonstrates the mechanical features of FRGPC, including density, compressive strength, split tensile strength, and flexural strength, as well as its microstructural properties. Full article
(This article belongs to the Special Issue New Developments in Fiber Reinforced Polymer Materials)
Show Figures

Figure 1

13 pages, 3749 KiB  
Article
Identifying the Range of Micro-Events Preceding the Critical Point in the Destruction Process in Traditional and Quasi-Brittle Cement Composites with the Use of a Sound Spectrum
by Dominik Logoń, Janusz Juraszek, Zbynek Keršner and Petr Frantík
Materials 2021, 14(7), 1809; https://doi.org/10.3390/ma14071809 - 6 Apr 2021
Cited by 1 | Viewed by 2348
Abstract
This paper presents the possibilities of determining the range of stresses preceding the critical destruction process in cement composites with the use of micro-events identified by means of a sound spectrum. The presented test results refer to the earlier papers in which micro-events [...] Read more.
This paper presents the possibilities of determining the range of stresses preceding the critical destruction process in cement composites with the use of micro-events identified by means of a sound spectrum. The presented test results refer to the earlier papers in which micro-events (destruction processes) were identified but without determining the stress level of their occurrence. This paper indicates a correlation of 2/3 of the stress level corresponding to the elastic range with the occurrence of micro-events in traditional and quasi-brittle composites. Tests were carried out on beams (with and without reinforcement) subjected to four-point bending. In summary, it is suggested that the conclusions can be extended to other test cases (e.g., compression strength), which should be confirmed by the appropriate tests. The paper also indicates a need for further research to identify micro-events. The correct recognition of micro-events is important for the safety and durability of traditional and quasi-brittle cement composites. Full article
(This article belongs to the Special Issue Testing of Materials and Elements in Civil Engineering)
Show Figures

Figure 1

11 pages, 1937 KiB  
Article
The Increase in the Elastic Range and Strengthening Control of Quasi Brittle Cement Composites by Low-Module Dispersed Reinforcement: An Assessment of Reinforcement Effects
by Dominik Logoń, Krzysztof Schabowicz, Maciej Roskosz and Krzysztof Fryczowski
Materials 2021, 14(2), 341; https://doi.org/10.3390/ma14020341 - 12 Jan 2021
Cited by 5 | Viewed by 1935
Abstract
This paper presents the possibility of using low-module polypropylene dispersed reinforcement (E = 4.9 GPa) to influence the load-deflection correlation of cement composites. Problems have been indicated regarding the improvement of elastic range by using that type of fibre as compared with a [...] Read more.
This paper presents the possibility of using low-module polypropylene dispersed reinforcement (E = 4.9 GPa) to influence the load-deflection correlation of cement composites. Problems have been indicated regarding the improvement of elastic range by using that type of fibre as compared with a composite without reinforcement. It was demonstrated that it was possible to increase the ability to carry stress in the Hooke’s law proportionality range in mortar and paste types of composites reinforced with low-module fibres, i.e., Vf = 3% (in contrast to concrete composites). The possibility of having good strengthening and deflection control in order to limit the catastrophic destruction process was confirmed. In this paper, we identify the problem of deformation assessment in composites with significant deformation capacity. Determining the effects of reinforcement based on a comparison with a composite without fibres is suggested as a reasonable approach as it enables the comparison of results obtained by various universities with different research conditions. Full article
(This article belongs to the Special Issue Testing of Materials and Elements in Civil Engineering)
Show Figures

Figure 1

20 pages, 3522 KiB  
Article
Mechanical Fracture and Fatigue Characteristics of Fine-Grained Composite Based on Sodium Hydroxide-Activated Slag Cured under High Relative Humidity
by Hana Šimonová, Barbara Kucharczyková, Vlastimil Bílek, Lucie Malíková, Petr Miarka and Martin Lipowczan
Appl. Sci. 2021, 11(1), 259; https://doi.org/10.3390/app11010259 - 29 Dec 2020
Cited by 11 | Viewed by 2448
Abstract
A typical example of an alternative binder to commonly used Portland cement is alkali-activated binders that have high potential as a part of a toolkit for sustainable construction materials. One group of these materials is alkali-activated slag. There is a lack of information [...] Read more.
A typical example of an alternative binder to commonly used Portland cement is alkali-activated binders that have high potential as a part of a toolkit for sustainable construction materials. One group of these materials is alkali-activated slag. There is a lack of information about its long-term properties. In addition, its mechanical properties are characterized most often in terms of compressive strength; however, it is not sensitive enough to sufficiently cover the changes in microstructure such as microcracking, and thus, it poses a potential risk for practical utilization. Consequently, the present study deals with the determination of long-term mechanical fracture and fatigue parameters of the fine-grained composites based on this interesting binder. The mechanical fracture parameters are primarily obtained through the direct evaluation of fracture test data via the effective crack model, the work-of-fracture method, the double-K fracture model, and complemented by parameter identification using the inverse analysis. The outcome of cyclic/fatigue fracture tests is represented by a Wöhler curve. The results presented in this article represent the complex information about material behavior and valuable input parameters for material models used for numerical simulations of crack propagation in this quasi-brittle material. Full article
(This article belongs to the Special Issue Concrete and Mortar with Non-conventional Materials)
Show Figures

Figure 1

13 pages, 7183 KiB  
Article
The Recognition of the Micro-Events in Cement Composites and the Identification of the Destruction Process Using Acoustic Emission and Sound Spectrum
by Dominik Logoń and Krzysztof Schabowicz
Materials 2020, 13(13), 2988; https://doi.org/10.3390/ma13132988 - 4 Jul 2020
Cited by 9 | Viewed by 1963
Abstract
This paper presents the recognition of micro-events and their concentration in quasi-brittle cement composites and the identification of the destruction process based on acoustic emission and sound spectrum. The tests were conducted on a quasi-brittle composite of a cement paste reinforced with a [...] Read more.
This paper presents the recognition of micro-events and their concentration in quasi-brittle cement composites and the identification of the destruction process based on acoustic emission and sound spectrum. The tests were conducted on a quasi-brittle composite of a cement paste reinforced with a high volume of dispersed polypropylene fibers. The possibility of identifying the destruction process based on acoustic emission and sound spectrum was confirmed. This paper focused on the identification of micro-events using the 3D spectrum. It was shown that the identification of the concentration of micro-events precedes the occurrence of critical crack fcr, ending the Hooke’s law range. The ability to recognize this phenomenon with the use of the 3D spectrum makes it possible to predict the structure destruction process and subsequently to assess the structure destruction (micro and macro-cracks) and the reinforcement destruction (pull-off, breaking). It was confirmed that the three-dimensional spectrum provided additional information, enabling a better recognition of micro and macro-changes in the structure of the samples based on the analysis of sound intensity, amplitudes, and frequencies. Full article
(This article belongs to the Special Issue Non-Destructive Testing of Structures)
Show Figures

Figure 1

17 pages, 8781 KiB  
Article
Assessment of the Mechanical Properties of ESD Pseudoplastic Resins for Joints in Working Elements of Concrete Structures
by Dominik Logoń, Krzysztof Schabowicz and Krzysztof Wróblewski
Materials 2020, 13(11), 2426; https://doi.org/10.3390/ma13112426 - 26 May 2020
Cited by 6 | Viewed by 2594
Abstract
Concrete structure joints are filled in mainly in the course of sealing works ensuring protection against the influence of water. This paper presents the methodology of testing the mechanical properties of ESD pseudoplastic resins (E-elastic deformation, S-strengthening control, D-deflection control) recommended for concrete [...] Read more.
Concrete structure joints are filled in mainly in the course of sealing works ensuring protection against the influence of water. This paper presents the methodology of testing the mechanical properties of ESD pseudoplastic resins (E-elastic deformation, S-strengthening control, D-deflection control) recommended for concrete structure joint fillers. The existing standards and papers concerning quasi-brittle cement composites do not provide an adequate point of reference for the tested resins. The lack of a standardised testing method hampers the development of materials universally used in expansion joint fillers in reinforced concrete structures as well as the assessment of their properties and durability. An assessment of the obtained results by reference to the reference sample has been suggested in the article. A test stand and a method of assessing the mechanical properties results (including adhesion to concrete surface) of pseudoplastic resins in the axial tensile test have been presented. Full article
(This article belongs to the Special Issue Testing of Materials and Elements in Civil Engineering)
Show Figures

Figure 1

11 pages, 2359 KiB  
Article
Identification of the Destruction Process in Quasi Brittle Concrete with Dispersed Fibers Based on Acoustic Emission and Sound Spectrum
by Dominik Logoń
Materials 2019, 12(14), 2266; https://doi.org/10.3390/ma12142266 - 15 Jul 2019
Cited by 14 | Viewed by 2897
Abstract
The paper presents the identification of the destruction process in a quasi-brittle composite based on acoustic emission and the sound spectrum. The tests were conducted on a quasi-brittle composite. The sample was made from ordinary concrete with dispersed polypropylene fibers. The possibility of [...] Read more.
The paper presents the identification of the destruction process in a quasi-brittle composite based on acoustic emission and the sound spectrum. The tests were conducted on a quasi-brittle composite. The sample was made from ordinary concrete with dispersed polypropylene fibers. The possibility of identifying the destruction process based on the acoustic emission and sound spectrum was confirmed and the ability to identify the destruction process was demonstrated. It was noted that in order to recognize the failure mechanisms accurately, it is necessary to first identify them separately. Three- and two-dimensional spectra were used to identify the destruction process. The three-dimensional spectrum provides additional information, enabling a better recognition of changes in the structure of the samples on the basis of the analysis of sound intensity, amplitudes, and frequencies. The paper shows the possibility of constructing quasi-brittle composites to limit the risk of catastrophic destruction processes and the possibility of identifying those processes with the use of acoustic emission at different stages of destruction. Full article
(This article belongs to the Special Issue Non-destructive Testing of Materials in Civil Engineering)
Show Figures

Figure 1

Back to TopTop