Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = quantum-dot (QD) spin-vertical-cavity surface-emitting laser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 12421 KiB  
Article
Exploration of Four-Channel Coherent Optical Chaotic Secure Communication with the Rate of 400 Gb/s Using Photonic Reservoir Computing Based on Quantum Dot Spin-VCSELs
by Dongzhou Zhong, Tiankai Wang, Yujun Chen, Qingfan Wu, Chenghao Qiu, Hongen Zeng, Youmeng Wang and Jiangtao Xi
Photonics 2024, 11(4), 309; https://doi.org/10.3390/photonics11040309 - 27 Mar 2024
Cited by 1 | Viewed by 1580
Abstract
In this work, we present a novel four-channel coherent optical chaotic secure communication (COCSC) system, incorporating four simultaneous photonic reservoir computers in tandem with four coherent demodulation units. We employ a quartet of photonic reservoirs that capture the chaotic dynamics of four polarization [...] Read more.
In this work, we present a novel four-channel coherent optical chaotic secure communication (COCSC) system, incorporating four simultaneous photonic reservoir computers in tandem with four coherent demodulation units. We employ a quartet of photonic reservoirs that capture the chaotic dynamics of four polarization components (PCs) emitted by a driving QD spin-VCSEL. These reservoirs are realized utilizing four PCs of a corresponding reservoir QD spin-VCSEL. Through these four concurrent photonic reservoir structures, we facilitate high-quality wideband-chaos synchronization across four pairs of PCs. Leveraging wideband chaos synchronization, our COCSC system boasts a substantial 4 × 100 GHz capacity. High-quality synchronization is pivotal for the precise demasking or decoding of four distinct signal types, QPSK, 4QAM, 8QAM and 16QAM, which are concealed within disparate chaotic PCs. After initial demodulation via correlation techniques and subsequent refinement through a variety of digital signal processing methods, we successfully reconstruct four unique baseband signals that conform to the QPSK, 4QAM, 8QAM and 16QAM specifications. Careful examination of the eye diagrams, bit error rates, and temporal trajectories of the coherently demodulated baseband signals indicates that each set of baseband signals is flawlessly retrieved. This is underscored by the pronounced eye openings in the eye diagrams and a negligible bit error rate for each channel of baseband signals. Our results suggest that delay-based optical reservoir computing employing a QD spin-VCSEL is a potent approach for achieving multi-channel coherent optical secure communication with optimal performance and enhanced security. Full article
(This article belongs to the Special Issue Machine Learning Applied to Optical Communication Systems)
Show Figures

Figure 1

14 pages, 5548 KiB  
Article
Broad Tunable and High-Purity Photonic Microwave Generation Based on an Optically Pumped QD Spin-VCSEL with Optical Feedback
by Zhenye Shen, Yu Huang, Xin Zhu, Pei Zhou, Penghua Mu and Nianqiang Li
Photonics 2023, 10(3), 326; https://doi.org/10.3390/photonics10030326 - 18 Mar 2023
Cited by 3 | Viewed by 2211
Abstract
Spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) with birefringence-induced polarization oscillations have been proposed to generate desired photonic microwave signals. Here, we numerically investigate the generation of photonic microwave signals in an optically pumped quantum dot (QD) spin-VCSEL. First, the influence of intrinsic key parameters [...] Read more.
Spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) with birefringence-induced polarization oscillations have been proposed to generate desired photonic microwave signals. Here, we numerically investigate the generation of photonic microwave signals in an optically pumped quantum dot (QD) spin-VCSEL. First, the influence of intrinsic key parameters on period-one (P1) oscillations and microwave properties is discussed. Second, the difference between microwave generation based on the quantum well (QW) and QD spin-VCSELs is analyzed by controlling the carrier capture rate that is described in the spin-flip model. The QD spin-VCSEL shows superior microwave quality in the low-frequency range (e.g., 10 GHz~20 GHz) compared with the QW spin-VCSEL. Finally, to boost the performance of the generated photonic microwave signal, optical feedback is introduced. The results show that dual-loop feedback can simultaneously narrow the microwave linewidth and suppress the side modes that are derived from the external cavity mode. Full article
(This article belongs to the Special Issue Advancements in Semiconductor Lasers)
Show Figures

Figure 1

8 pages, 1143 KiB  
Article
Stability Analysis of Quantum-Dot Spin-VCSELs
by Nianqiang Li, Dimitris Alexandropoulos, Hadi Susanto, Ian Henning and Michael Adams
Electronics 2016, 5(4), 83; https://doi.org/10.3390/electronics5040083 - 23 Nov 2016
Cited by 22 | Viewed by 5661
Abstract
Spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) and vertical external-cavity surface-emitting lasers (spin-VECSELs) are of interest since their output polarization can be manipulated by spin-selective pumping, either optical or electrical. These devices, using quantum dot (QD) material for the active region, have shown instability (periodic [...] Read more.
Spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) and vertical external-cavity surface-emitting lasers (spin-VECSELs) are of interest since their output polarization can be manipulated by spin-selective pumping, either optical or electrical. These devices, using quantum dot (QD) material for the active region, have shown instability (periodic oscillations) and polarization switching in previous theoretical simulations based on a rate equation model. It has been recognized that the polarization switching occurs between two possible sets of solutions, termed here in-phase and out-of-phase. The present contribution seeks to give enhanced understanding of these behaviors by applying a stability analysis to the system of equations used for such simulations. The results indicate that the choice of in-phase and out-of-phase solutions that appear in a time-dependent simulation is determined by the condition that the corresponding steady-state solutions are stable against small perturbations. The stability analysis is shown to be a valuable theoretical tool for future study of spin-V(E)SELs in the context of understanding and guiding future experimental research. Full article
(This article belongs to the Special Issue Spin Optoelectronics)
Show Figures

Graphical abstract

Back to TopTop