Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = proto-tRNAs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1818 KiB  
Hypothesis
The Origin of Life in the Early Continental Crust: A Comprehensive Model
by Ulrich Schreiber
Life 2025, 15(3), 433; https://doi.org/10.3390/life15030433 - 10 Mar 2025
Viewed by 1442
Abstract
Continental rift zones on the early Earth provided essential conditions for the emergence of the first cells. These conditions included an abundant supply of raw materials, cyclic fluctuations in pressure and temperature over millions of years, and transitions of gases between supercritical and [...] Read more.
Continental rift zones on the early Earth provided essential conditions for the emergence of the first cells. These conditions included an abundant supply of raw materials, cyclic fluctuations in pressure and temperature over millions of years, and transitions of gases between supercritical and subcritical phases. While evidence supports vesicle formation and the chemical evolution of peptides, the mechanism by which information was stored remains unresolved. This study proposes a model illustrating how interactions among organic molecules may have enabled the encoding of amino acid sequences in RNA. The model highlights the interplay between three key molecular components: a proto-tRNA, the vesicle membrane, and short peptides. The vesicle membrane acted as a reservoir for hydrophobic amino acids and facilitated their attachment to proto-tRNA. As a single strand, proto-tRNA also served as proto-mRNA, enabling it to be read by charged tRNAs. By replicating this information and arranging RNA strands, the first functional peptides such as pore-forming proteins may have formed, thus improving the long-term stability of the vesicles. This model further outlines how these vesicles may have evolved into the earliest cells, with enzymes and larger RNA molecules giving rise to tRNA and ribosomal structures. Shearing forces may have facilitated the first cellular divisions, representing a pre-LUCA stage. Full article
(This article belongs to the Special Issue 2nd Edition—Featured Papers on the Origins of Life)
Show Figures

Figure 1

17 pages, 5258 KiB  
Article
EGFR-Mutant Lung Adenocarcinoma Cell-Derived Exosomal miR-651-5p Induces CD8+ T Cell Apoptosis via Downregulating BCL2 Expression
by Chao Zhao, Lei Cheng, Aiwu Li, Haowei Wang, Xuefei Li and Jun Xu
Biomedicines 2025, 13(2), 482; https://doi.org/10.3390/biomedicines13020482 - 15 Feb 2025
Viewed by 1061
Abstract
Background: The efficacy of programmed cell death 1 (PD-1) or ligand 1 (PD-L1) inhibitors in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) patients is not satisfactory. Studies have indicated that the ratio of CD8+ tumor infiltration lymphocytes [...] Read more.
Background: The efficacy of programmed cell death 1 (PD-1) or ligand 1 (PD-L1) inhibitors in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) patients is not satisfactory. Studies have indicated that the ratio of CD8+ tumor infiltration lymphocytes (TILs) was associated with immunotherapy efficacy; however, it was significantly lower in EGFR-mutant than wild type patients. The underlying mechanisms need to be studied. Methods: Database analysis, clinical specimens, small RNA sequencing, and single-cell sequencing were used to analyze miRNA expression and immune cell infiltration. Cell co-culture and flow cytometry were conducted to detect immune cell apoptosis. The mouse model was performed to analyze the influence of miR-651-5p antagomirs on the tumor microenvironment. Results: The miR-651-5p was found to be highly expressed in EGFR-mutant lung adenocarcinoma cell-derived exosomes, which could promote CD8+ T cell apoptosis, while the miR-651-5p inhibitor decreased the ratio of PC9-secreted exosomes and induced apoptosis. Mechanistically, the EGFR signaling pathway promoted the expression of miR-651-5p by activating the transcription factor Fos proto-oncogene (FOS) in EGFR-mutant lung adenocarcinoma cell lines. B-cell lymphoma 2 (BCL2) was the target of miR-651-5p, and miR-651-5p could promote T cell apoptosis by inhibiting BCL2 expression. In addition, the miR-651-5p antagomir increased T cell infiltration and enhanced the efficacy of the PD-1 inhibitor treating the EGFR-mutant lung adenocarcinoma humanized mouse model. Conclusions: EGFR-mutant lung adenocarcinoma promotes T cell apoptosis through exosomal miR-651-5p. miR-651-5p antagonists increase immune cell infiltration and enhance the anti-tumor effect of PD-1 inhibitor, suggesting a new combination therapy to improve the efficacy of immunotherapy in EGFR-mutant NSCLC patients. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

23 pages, 5944 KiB  
Article
Whole-Transcriptome Analysis Reveals Potential CeRNA Regulatory Mechanism in Takifugu rubripes against Cryptocaryon irritans Infection
by Yuqing Xia, Xiaoqing Yu, Zhen Yuan, Yi Yang and Ying Liu
Biology 2024, 13(10), 788; https://doi.org/10.3390/biology13100788 - 1 Oct 2024
Cited by 1 | Viewed by 1616
Abstract
Cryptocaryon irritans (C. irritans) is a proto-ciliate parasite that infects marine fishes, including the cultured species Takifugu rubripes (T. rubripes), causing disease and potential mortality. In host organisms, infection by parasites triggers an immune response that is modulated by [...] Read more.
Cryptocaryon irritans (C. irritans) is a proto-ciliate parasite that infects marine fishes, including the cultured species Takifugu rubripes (T. rubripes), causing disease and potential mortality. In host organisms, infection by parasites triggers an immune response that is modulated by regulatory elements including proteins and non-coding RNAs. In this study, the whole transcriptome RNA sequencing of T. rubripes gill tissue before and after infection with C. irritans was performed to reveal the competitive endogenous RNA (ceRNA) regulatory network. Histomorphology revealed gill segment swelling and parasitic invasion in the infected group. The analysis identified 18 differentially expressed miRNAs (DEMs), 214 lncRNAs (DELs), 2501 genes (DEGs), and 7 circRNAs (DECs) in the infected group. Gene Ontology (GO) enrichment analysis revealed that these genes were notably enriched in the Wnt signaling pathway and mTOR signaling pathway. The co-expression networks (lncRNA/circRNA-miRNA-mRNA) were constructed based on correlation analysis of the differentially expressed RNAs. Further analysis suggested that the LOC105418663-circ_0000361-fru-miR-204a-fzd3a ceRNA axis was potentially involved in the regulation of immune responses against C. irritans infection. Finally, the expression levels of DEG, DEL, and DEM were validated. This study reveals the regulatory mechanism of a candidate ceRNA network, providing insights into the potential mechanism of T. rubripes’ infection with C. irritans. Full article
(This article belongs to the Special Issue Research Progress on Parasitic and Microbial Infection and Immunity)
Show Figures

Graphical abstract

21 pages, 1037 KiB  
Review
Three Biopolymers and Origin of Life Scenarios
by Ilana Agmon
Life 2024, 14(2), 277; https://doi.org/10.3390/life14020277 - 18 Feb 2024
Cited by 8 | Viewed by 3349
Abstract
To track down the possible roots of life, various models for the initial living system composed of different combinations of the three extant biopolymers, RNA, DNA, and proteins, are presented. The suitability of each molecular set is assessed according to its ability to [...] Read more.
To track down the possible roots of life, various models for the initial living system composed of different combinations of the three extant biopolymers, RNA, DNA, and proteins, are presented. The suitability of each molecular set is assessed according to its ability to emerge autonomously, sustain, and evolve continuously towards life as we know it. The analysis incorporates current biological knowledge gained from high-resolution structural data and large sequence datasets, together with experimental results concerned with RNA replication and with the activity demonstrated by standalone constructs of the ribosomal Peptidyl Transferase Center region. The scrutiny excludes the DNA–protein combination and assigns negligible likelihood to the existence of an RNA–DNA world, as well as to an RNA world that contained a replicase made of RNA. It points to the precedence of an RNA–protein system, whose model of emergence suggests specific processes whereby a coded proto-ribosome ribozyme, specifically aminoacylated proto-tRNAs and a proto-polymerase enzyme, could have autonomously emerged, cross-catalyzing the formation of each other. This molecular set constitutes a feasible starting point for a continuous evolutionary path, proceeding via natural processes from the inanimate matter towards life as we know it. Full article
(This article belongs to the Special Issue Feature Papers in Origins of Life)
Show Figures

Figure 1

13 pages, 4235 KiB  
Article
A Proposal of the Ur-RNAome
by Miryam Palacios-Pérez and Marco V. José
Genes 2023, 14(12), 2158; https://doi.org/10.3390/genes14122158 - 29 Nov 2023
Cited by 2 | Viewed by 1871
Abstract
It is widely accepted that the earliest RNA molecules were folded into hairpins or mini-helixes. Herein, we depict the 2D and 3D conformations of those earliest RNA molecules with only RNY triplets, which Eigen proposed as the primeval genetic code. We selected 26 [...] Read more.
It is widely accepted that the earliest RNA molecules were folded into hairpins or mini-helixes. Herein, we depict the 2D and 3D conformations of those earliest RNA molecules with only RNY triplets, which Eigen proposed as the primeval genetic code. We selected 26 species (13 bacteria and 13 archaea). We found that the free energy of RNY hairpins was consistently lower than that of their corresponding shuffled controls. We found traces of the three ribosomal RNAs (16S, 23S, and 5S), tRNAs, 6S RNA, and the RNA moieties of RNase P and the signal recognition particle. Nevertheless, at this stage of evolution there was no genetic code (as seen in the absence of the peptidyl transferase centre and any vestiges of the anti-Shine–Dalgarno sequence). Interestingly, we detected the anticodons of both glycine (GCC) and threonine (GGU) in the hairpins of proto-tRNA. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1839 KiB  
Hypothesis
Prebiotic Assembly of Cloverleaf tRNA, Its Aminoacylation and the Origin of Coding, Inferred from Acceptor Stem Coding-Triplets
by Ilana Agmon
Int. J. Mol. Sci. 2022, 23(24), 15756; https://doi.org/10.3390/ijms232415756 - 12 Dec 2022
Cited by 6 | Viewed by 2253
Abstract
tRNA is a key component in life’s most fundamental process, the translation of the instructions contained in mRNA into proteins. Its role had to be executed as soon as the earliest translation emerged, but the questions of the prebiotic tRNA materialization, aminoacylation, and [...] Read more.
tRNA is a key component in life’s most fundamental process, the translation of the instructions contained in mRNA into proteins. Its role had to be executed as soon as the earliest translation emerged, but the questions of the prebiotic tRNA materialization, aminoacylation, and the origin of the coding triplets it carries are still open. Here, these questions are addressed by utilizing a distinct pattern of coding triplets highly conserved in the acceptor stems from the modern bacterial tRNAs of five early-emerging amino acids. Self-assembly of several copies of a short RNA oligonucleotide that carries a related pattern of coding triplets, via a simple and statistically feasible process, is suggested to result in a proto-tRNA model highly compatible with the cloverleaf secondary structure of the modern tRNA. Furthermore, these stem coding triplets evoke the possibility that they were involved in self-aminoacylation of proto-tRNAs prior to the emergence of the earliest synthetases, a process proposed to underlie the formation of the genetic code. Being capable of autonomous materialization and of self-aminoacylation, this verifiable model of the proto-tRNA advent adds principal components to an initial set of molecules and processes that may have led, exclusively through natural means, to the emergence of life. Full article
(This article belongs to the Special Issue Was There an RNA World?)
Show Figures

Figure 1

18 pages, 3082 KiB  
Hypothesis
How Did Life Emerge in Chemically Complex Messy Environments?
by Kenji Ikehara
Life 2022, 12(9), 1319; https://doi.org/10.3390/life12091319 - 26 Aug 2022
Cited by 3 | Viewed by 4141
Abstract
One of the problems that make it difficult to solve the mystery of the origin of life is determining how life emerged in chemically complex messy environments on primitive Earth. In this article, the “chemically complex messy environments” that are focused on are [...] Read more.
One of the problems that make it difficult to solve the mystery of the origin of life is determining how life emerged in chemically complex messy environments on primitive Earth. In this article, the “chemically complex messy environments” that are focused on are a mixed state of various organic compounds produced via prebiotic means and accumulated on primitive earth. The five factors described below are thought to have contributed to opening the way for the emergence of life: (1) A characteristic inherent in [GADV]-amino acids, which are easily produced via prebiotic means. [GADV] stands for four amino acids, Gly [G], Ala [A], Asp [D] and Val [V], which are indicated by a one-letter symbol. (2) The protein 0th-order structure or a [GADV]-amino acid composition generating water-soluble globular protein with some flexibility, which can be produced even by the random joining of [GADV]-amino acids. (3) The formation of versatile [GADV]-microspheres, which can grow, divide and proliferate even without a genetic system, was the emergence of proto-life. (4) The [GADV]-microspheres with a higher proliferation ability than others were able to be selected. Proto-Darwin evolution made it possible to proceed forward to the creation of a core life system composed of the (GNC)n gene, anticodon stem-loop tRNA or AntiC-SL tRNA (GNC genetic code), and [GADV]-protein. (5) Eventually, the first genuine life with a core life system emerged. Thus, the formation processes of [GADV]-protein and the (GNC)n gene in chemically complex messy environments were the steps to the emergence of genuine life. Full article
(This article belongs to the Special Issue Origin of Life in Chemically Complex Messy Environments)
Show Figures

Figure 1

11 pages, 1201 KiB  
Article
Peptide Bond Formation between Aminoacyl-Minihelices by a Scaffold Derived from the Peptidyl Transferase Center
by Mai Kawabata, Kentaro Kawashima, Hiromi Mutsuro-Aoki, Tadashi Ando, Takuya Umehara and Koji Tamura
Life 2022, 12(4), 573; https://doi.org/10.3390/life12040573 - 12 Apr 2022
Cited by 18 | Viewed by 10865
Abstract
The peptidyl transferase center (PTC) in the ribosome is composed of two symmetrically arranged tRNA-like units that contribute to peptide bond formation. We prepared units of the PTC components with putative tRNA-like structure and attempted to obtain peptide bond formation between aminoacyl-minihelices (primordial [...] Read more.
The peptidyl transferase center (PTC) in the ribosome is composed of two symmetrically arranged tRNA-like units that contribute to peptide bond formation. We prepared units of the PTC components with putative tRNA-like structure and attempted to obtain peptide bond formation between aminoacyl-minihelices (primordial tRNAs, the structures composed of a coaxial stack of the acceptor stem on the T-stem of tRNA). One of the components of the PTC, P1c2UGGU (74-mer), formed a dimer and a peptide bond was formed between two aminoacyl-minihelices tethered by the dimeric P1c2UGGU. Peptide synthesis depended on both the existence of the dimeric P1c2UGGU and the sequence complementarity between the ACCA-3′ sequence of the minihelix. Thus, the tRNA-like structures derived from the PTC could have originated as a scaffold of aminoacyl-minihelices for peptide bond formation through an interaction of the CCA sequence of minihelices. Moreover, with the same origin, some would have evolved to constitute the present PTC of the ribosome, and others to function as present tRNAs. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Figure 1

18 pages, 3040 KiB  
Article
Exosomal Carboxypeptidase E (CPE) and CPE-shRNA-Loaded Exosomes Regulate Metastatic Phenotype of Tumor Cells
by Sangeetha Hareendran, Bassam Albraidy, Xuyu Yang, Aiyi Liu, Anne Breggia, Clark C. Chen and Y. Peng Loh
Int. J. Mol. Sci. 2022, 23(6), 3113; https://doi.org/10.3390/ijms23063113 - 14 Mar 2022
Cited by 18 | Viewed by 3994
Abstract
Background: Exosomes promote tumor growth and metastasis through intercellular communication, although the mechanism remains elusive. Carboxypeptidase E (CPE) supports the progression of different cancers, including hepatocellular carcinoma (HCC). Here, we investigated whether CPE is the bioactive cargo within exosomes, and whether it contributes [...] Read more.
Background: Exosomes promote tumor growth and metastasis through intercellular communication, although the mechanism remains elusive. Carboxypeptidase E (CPE) supports the progression of different cancers, including hepatocellular carcinoma (HCC). Here, we investigated whether CPE is the bioactive cargo within exosomes, and whether it contributes to tumorigenesis, using HCC cell lines as a cancer model. Methods: Exosomes were isolated from supernatant media of cancer cells, or human sera. mRNA and protein expression were analyzed using PCR and Western blot. Low-metastatic HCC97L cells were incubated with exosomes derived from high-metastatic HCC97H cells. In other experiments, HCC97H cells were incubated with CPE-shRNA-loaded exosomes. Cell proliferation and invasion were assessed using MTT, colony formation, and matrigel invasion assays. Results: Exosomes released from cancer cells contain CPE mRNA and protein. CPE mRNA levels are enriched in exosomes secreted from high- versus low-metastastic cells, across various cancer types. In a pilot study, significantly higher CPE copy numbers were found in serum exosomes from cancer patients compared to healthy subjects. HCC97L cells, treated with exosomes derived from HCC97H cells, displayed enhanced proliferation and invasion; however, exosomes from HCC97H cells pre-treated with CPE-shRNA failed to promote proliferation. When HEK293T exosomes loaded with CPE-shRNA were incubated with HCC97H cells, the expression of CPE, Cyclin D1, a cell-cycle regulatory protein and c-myc, a proto-oncogene, were suppressed, resulting in the diminished proliferation of HCC97H cells. Conclusions: We identified CPE as an exosomal bioactive molecule driving the growth and invasion of low-metastatic HCC cells. CPE-shRNA loaded exosomes can inhibit malignant tumor cell proliferation via Cyclin D1 and c-MYC suppression. Thus, CPE is a key player in the exosome transmission of tumorigenesis, and the exosome-based delivery of CPE-shRNA offers a potential treatment for tumor progression. Notably, measuring CPE transcript levels in serum exosomes from cancer patients could have potential liquid biopsy applications. Full article
Show Figures

Figure 1

17 pages, 2040 KiB  
Article
Inhibition of Metabolism as a Therapeutic Option for Tamoxifen-Resistant Breast Cancer Cells
by Friederike Steifensand, Julia Gallwas, Gerd Bauerschmitz and Carsten Gründker
Cells 2021, 10(9), 2398; https://doi.org/10.3390/cells10092398 - 12 Sep 2021
Cited by 14 | Viewed by 3983
Abstract
Cancer cells have an increased need for glucose and, despite aerobic conditions, obtain their energy through aerobic oxidation and lactate fermentation, instead of aerobic oxidation alone. Glutamine is an essential amino acid in the human body. Glutaminolysis and glycolysis are crucial for cancer [...] Read more.
Cancer cells have an increased need for glucose and, despite aerobic conditions, obtain their energy through aerobic oxidation and lactate fermentation, instead of aerobic oxidation alone. Glutamine is an essential amino acid in the human body. Glutaminolysis and glycolysis are crucial for cancer cell survival. In the therapy of estrogen receptor α (ERα)-positive breast cancer (BC), the focus lies on hormone sensitivity targeting therapy with selective estrogen receptor modulators (SERMs) such as 4-hydroxytamoxifen (4-OHT), although this therapy is partially limited by the development of resistance. Therefore, further targets for therapy improvement of ERα-positive BC with secondary 4-OHT resistance are needed. Hence, increased glucose requirement and upregulated glutaminolysis in BC cells could be used. We have established sublines of ERα-positive MCF7 and T47D BC cells, which were developed to be resistant to 4-OHT. Further, glycolysis inhibitor 2-Deoxy-D-Glucose (2-DG) and glutaminase inhibitor CB-839 were analyzed. Co-treatments using 4-OHT and CB-839, 2-DG and CB-839, or 4-OHT, 2-DG and CB-839, respectively, showed significantly stronger inhibitory effects on viability compared to single treatments. It could be shown that tamoxifen-resistant BC cell lines, compared to the non-resistant cell lines, exhibited a stronger reducing effect on cell viability under co-treatments. In addition, the tamoxifen-resistant BC cell lines showed increased expression of proto-oncogene c-Myc compared to the parental cell lines. This could be reduced depending on the treatment. Suppression of c-Myc expression using specific siRNA completely abolished resistance to 4OH-tamoxifen. In summary, our data suggest that combined treatments affecting the metabolism of BC are suitable depending on the cellularity and resistance status. In addition, the anti-metabolic treatments affected the expression of the proto-oncogene c-Myc, a key player in the regulation of cancer cell metabolism. Full article
(This article belongs to the Special Issue Metabolic Interactions in Tumor Microenvironment (TME))
Show Figures

Graphical abstract

21 pages, 3978 KiB  
Article
Transcriptomic Analyses of MYCN-Regulated Genes in Anaplastic Wilms’ Tumour Cell Lines Reveals Oncogenic Pathways and Potential Therapeutic Vulnerabilities
by Marianna Szemes, Zsombor Melegh, Jacob Bellamy, Ji Hyun Park, Biyao Chen, Alexander Greenhough, Daniel Catchpoole and Karim Malik
Cancers 2021, 13(4), 656; https://doi.org/10.3390/cancers13040656 - 6 Feb 2021
Cited by 7 | Viewed by 4446
Abstract
The MYCN proto-oncogene is deregulated in many cancers, most notably in neuroblastoma, where MYCN gene amplification identifies a clinical subset with very poor prognosis. Gene expression and DNA analyses have also demonstrated overexpression of MYCN mRNA, as well as focal amplifications, copy number [...] Read more.
The MYCN proto-oncogene is deregulated in many cancers, most notably in neuroblastoma, where MYCN gene amplification identifies a clinical subset with very poor prognosis. Gene expression and DNA analyses have also demonstrated overexpression of MYCN mRNA, as well as focal amplifications, copy number gains and presumptive change of function mutations of MYCN in Wilms’ tumours with poorer outcomes, including tumours with diffuse anaplasia. Surprisingly, however, the expression and functions of the MYCN protein in Wilms’ tumours still remain obscure. In this study, we assessed MYCN protein expression in primary Wilms’ tumours using immunohistochemistry of tissue microarrays. We found MYCN protein to be expressed in tumour blastemal cells, and absent in stromal and epithelial components. For functional studies, we used two anaplastic Wilms’ tumour cell-lines, WiT49 and 17.94, to study the biological and transcriptomic effects of MYCN depletion. We found that MYCN knockdown consistently led to growth suppression but not cell death. RNA sequencing identified 561 MYCN-regulated genes shared by WiT49 and 17.94 cell-lines. As expected, numerous cellular processes were downstream of MYCN. MYCN positively regulated the miRNA regulator and known Wilms’ tumour oncogene LIN28B, the genes encoding methylosome proteins PRMT1, PRMT5 and WDR77, and the mitochondrial translocase genes TOMM20 and TIMM50. MYCN repressed genes including the developmental signalling receptor ROBO1 and the stromal marker COL1A1. Importantly, we found that MYCN also repressed the presumptive Wilms’ tumour suppressor gene REST, with MYCN knockdown resulting in increased REST protein and concomitant repression of RE1-Silencing Transcription factor (REST) target genes. Together, our study identifies regulatory axes that interact with MYCN, providing novel pathways for potential targeted therapeutics for poor-prognosis Wilms’ tumour. Full article
(This article belongs to the Special Issue Rare Childhood Malignancy)
Show Figures

Figure 1

19 pages, 1082 KiB  
Article
Combinatorial Fusion Rules to Describe Codon Assignment in the Standard Genetic Code
by Alexander Nesterov-Mueller, Roman Popov and Hervé Seligmann
Life 2021, 11(1), 4; https://doi.org/10.3390/life11010004 - 23 Dec 2020
Cited by 3 | Viewed by 4134
Abstract
We propose combinatorial fusion rules that describe the codon assignment in the standard genetic code simply and uniformly for all canonical amino acids. These rules become obvious if the origin of the standard genetic code is considered as a result of a fusion [...] Read more.
We propose combinatorial fusion rules that describe the codon assignment in the standard genetic code simply and uniformly for all canonical amino acids. These rules become obvious if the origin of the standard genetic code is considered as a result of a fusion of four protocodes: Two dominant AU and GC protocodes and two recessive AU and GC protocodes. The biochemical meaning of the fusion rules consists of retaining the complementarity between cognate codons of the small hydrophobic amino acids and large charged or polar amino acids within the protocodes. The proto tRNAs were assembled in form of two kissing hairpins with 9-base and 10-base loops in the case of dominant protocodes and two 9-base loops in the case of recessive protocodes. The fusion rules reveal the connection between the stop codons, the non-canonical amino acids, pyrrolysine and selenocysteine, and deviations in the translation of mitochondria. Using fusion rules, we predicted the existence of additional amino acids that are essential for the development of the standard genetic code. The validity of the proposed partition of the genetic code into dominant and recessive protocodes is considered referring to state-of-the-art hypotheses. The formation of two aminoacyl-tRNA synthetase classes is compatible with four-protocode partition. Full article
Show Figures

Figure 1

22 pages, 3434 KiB  
Article
Multi-Omics Database Analysis of Aminoacyl-tRNA Synthetases in Cancer
by Justin Wang, Ingrid Vallee, Aditi Dutta, Yu Wang, Zhongying Mo, Ze Liu, Haissi Cui, Andrew I. Su and Xiang-Lei Yang
Genes 2020, 11(11), 1384; https://doi.org/10.3390/genes11111384 - 22 Nov 2020
Cited by 21 | Viewed by 4967
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are key enzymes in the mRNA translation machinery, yet they possess numerous non-canonical functions developed during the evolution of complex organisms. The aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are continually being implicated in tumorigenesis, but these connections are often limited [...] Read more.
Aminoacyl-tRNA synthetases (aaRSs) are key enzymes in the mRNA translation machinery, yet they possess numerous non-canonical functions developed during the evolution of complex organisms. The aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are continually being implicated in tumorigenesis, but these connections are often limited in scope, focusing on specific aaRSs in distinct cancer subtypes. Here, we analyze publicly available genomic and transcriptomic data on human cytoplasmic and mitochondrial aaRSs across many cancer types. As high-throughput technologies have improved exponentially, large-scale projects have systematically quantified genetic alteration and expression from thousands of cancer patient samples. One such project is the Cancer Genome Atlas (TCGA), which processed over 20,000 primary cancer and matched normal samples from 33 cancer types. The wealth of knowledge provided from this undertaking has streamlined the identification of cancer drivers and suppressors. We examined aaRS expression data produced by the TCGA project and combined this with patient survival data to recognize trends in aaRSs’ impact on cancer both molecularly and prognostically. We further compared these trends to an established tumor suppressor and a proto-oncogene. We observed apparent upregulation of many tRNA synthetase genes with aggressive cancer types, yet, at the individual gene level, some aaRSs resemble a tumor suppressor while others show similarities to an oncogene. This study provides an unbiased, overarching perspective on the relationship of aaRSs with cancers and identifies certain aaRS family members as promising therapeutic targets or potential leads for developing biological therapy for cancer. Full article
(This article belongs to the Special Issue tRNAs in Biology)
Show Figures

Figure 1

17 pages, 2952 KiB  
Article
The Ancient History of Peptidyl Transferase Center Formation as Told by Conservation and Information Analyses
by Francisco Prosdocimi, Gabriel S. Zamudio, Miryam Palacios-Pérez, Sávio Torres de Farias and Marco V. José
Life 2020, 10(8), 134; https://doi.org/10.3390/life10080134 - 5 Aug 2020
Cited by 20 | Viewed by 4391
Abstract
The peptidyl transferase center (PTC) is the catalytic center of the ribosome and forms part of the 23S ribosomal RNA. The PTC has been recognized as the earliest ribosomal part and its origins embodied the First Universal Common Ancestor (FUCA). The PTC is [...] Read more.
The peptidyl transferase center (PTC) is the catalytic center of the ribosome and forms part of the 23S ribosomal RNA. The PTC has been recognized as the earliest ribosomal part and its origins embodied the First Universal Common Ancestor (FUCA). The PTC is frequently assumed to be highly conserved along all living beings. In this work, we posed the following questions: (i) How many 100% conserved bases can be found in the PTC? (ii) Is it possible to identify clusters of informationally linked nucleotides along its sequence? (iii) Can we propose how the PTC was formed? (iv) How does sequence conservation reflect on the secondary and tertiary structures of the PTC? Aiming to answer these questions, all available complete sequences of 23S ribosomal RNA from Bacteria and Archaea deposited on GenBank database were downloaded. Using a sequence bait of 179 bp from the PTC of Thermus termophilus, we performed an optimum pairwise alignment to retrieve the PTC region from 1424 filtered 23S rRNA sequences. These PTC sequences were multiply aligned, and the conserved regions were assigned and observed along the primary, secondary, and tertiary structures. The PTC structure was observed to be more highly conserved close to the adenine located at the catalytical site. Clusters of interrelated, co-evolving nucleotides reinforce previous assumptions that the PTC was formed by the concatenation of proto-tRNAs and important residues responsible for its assembly were identified. The observed sequence variation does not seem to significantly affect the 3D structure of the PTC ribozyme. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

17 pages, 3056 KiB  
Article
Origin of the Genetic Code Is Found at the Transition between a Thioester World of Peptides and the Phosphoester World of Polynucleotides
by Hyman Hartman and Temple F. Smith
Life 2019, 9(3), 69; https://doi.org/10.3390/life9030069 - 22 Aug 2019
Cited by 27 | Viewed by 7094
Abstract
The early metabolism arising in a Thioester world gave rise to amino acids and their simple peptides. The catalytic activity of these early simple peptides became instrumental in the transition from Thioester World to a Phosphate World. This transition involved the appearances of [...] Read more.
The early metabolism arising in a Thioester world gave rise to amino acids and their simple peptides. The catalytic activity of these early simple peptides became instrumental in the transition from Thioester World to a Phosphate World. This transition involved the appearances of sugar phosphates, nucleotides, and polynucleotides. The coupling of the amino acids and peptides to nucleotides and polynucleotides is the origin for the genetic code. Many of the key steps in this transition are seen in the catalytic cores of the nucleotidyltransferases, the class II tRNA synthetases (aaRSs) and the CCA adding enzyme. These catalytic cores are dominated by simple beta hairpin structures formed in the Thioester World. The code evolved from a proto-tRNA, a tetramer XCCA interacting with a proto-aminoacyl-tRNA synthetase (aaRS) activating Glycine and Proline. The initial expanded code is found in the acceptor arm of the tRNA, the operational code. It is the coevolution of the tRNA with the aaRSs that is at the heart of the origin and evolution of the genetic code. There is also a close relationship between the accretion models of the evolving tRNA and that of the ribosome. Full article
Show Figures

Figure 1

Back to TopTop