Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = protein kinase C gamma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7888 KiB  
Article
Estradiol Prevents Amyloid Beta-Induced Mitochondrial Dysfunction and Neurotoxicity in Alzheimer’s Disease via AMPK-Dependent Suppression of NF-κB Signaling
by Pranav Mishra, Ehsan K. Esfahani, Paul Fernyhough and Benedict C. Albensi
Int. J. Mol. Sci. 2025, 26(13), 6203; https://doi.org/10.3390/ijms26136203 - 27 Jun 2025
Viewed by 704
Abstract
Alzheimer’s disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder characterized by memory loss and cognitive decline. In addition to its two major pathological hallmarks, extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs), recent evidence highlights the [...] Read more.
Alzheimer’s disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder characterized by memory loss and cognitive decline. In addition to its two major pathological hallmarks, extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs), recent evidence highlights the critical roles of mitochondrial dysfunction and neuroinflammation in disease progression. Aβ impairs mitochondrial function, which, in part, can subsequently trigger inflammatory cascades, creating a vicious cycle of neuronal damage. Estrogen receptors (ERs) are widely expressed throughout the brain, and the sex hormone 17β-estradiol (E2) exerts neuroprotection through both anti-inflammatory and mitochondrial mechanisms. While E2 exhibits neuroprotective properties, its mechanisms against Aβ toxicity remain incompletely understood. In this study, we investigated the neuroprotective effects of E2 against Aβ-induced mitochondrial dysfunction and neuroinflammation in primary cortical neurons, with a particular focus on the role of AMP-activated protein kinase (AMPK). We found that E2 treatment significantly increased phosphorylated AMPK and upregulated the expression of mitochondrial biogenesis regulator peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC-1α), leading to improved mitochondrial respiration. In contrast, Aβ suppressed AMPK and PGC-1α signaling, impaired mitochondrial function, activated the pro-inflammatory nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and reduced neuronal viability. E2 pretreatment also rescued Aβ-induced mitochondrial dysfunction, suppressed NF-κB activation, and, importantly, prevented the decline in neuronal viability. However, the pharmacological inhibition of AMPK using Compound C (CC) abolished these protective effects, resulting in mitochondrial collapse, elevated inflammation, and cell death, highlighting AMPK’s critical role in mediating E2’s actions. Interestingly, while NF-κB inhibition using BAY 11-7082 partially restored mitochondrial respiration, it failed to prevent Aβ-induced cytotoxicity, suggesting that E2’s full neuroprotective effects rely on broader AMPK-dependent mechanisms beyond NF-κB suppression alone. Together, these findings establish AMPK as a key mediator of E2’s protective effects against Aβ-driven mitochondrial dysfunction and neuroinflammation, providing new insights into estrogen-based therapeutic strategies for AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

19 pages, 3635 KiB  
Article
Protective Effects of a Standardized Water Extract from the Stem of Ipomoea batatas L. Against High-Fat Diet-Induced Obesity
by Chae-Won Lee, Ye Seul Yoon, Young-Seo Yoon, Kyung-Sook Chung, Mi-ju Kim, Geonha Park, Minsik Choi, Young-Pyo Jang and Kyung-Tae Lee
Nutrients 2025, 17(10), 1643; https://doi.org/10.3390/nu17101643 - 12 May 2025
Viewed by 800
Abstract
Background/Objectives: Obesity is a major health concern that can lead to various chronic diseases. Little is known about the anti-obesity effect of a standardized hot water extract from the stems of Ipomoea batatas (WIB). This study aimed to evaluate the therapeutic potential of [...] Read more.
Background/Objectives: Obesity is a major health concern that can lead to various chronic diseases. Little is known about the anti-obesity effect of a standardized hot water extract from the stems of Ipomoea batatas (WIB). This study aimed to evaluate the therapeutic potential of WIB as a natural alternative to conventional anti-obesity treatments by assessing its effects on body weight, fat accumulation, and key metabolic biomarkers in a high-fat diet-induced obesity model. Methods: A high-fat diet (HFD) induced obesity in C57BL/6 mice. The mice were then treated orally with either orlistat (positive control) or WIB. Changes in body weight, food intake, and fat weight were measured, along with blood lipid profiles and adipokines. Western blot analyses were conducted to determine protein levels in each tissue. H&E staining in white adipose tissue and liver, and the gut microbiota composition were analyzed. Results: WIB treatment significantly reduced body weight and fat mass compared to the HFD group and demonstrated comparable effects to orlistat. WIB improved blood lipid profiles and adipokine levels. H&E staining revealed reduced fat accumulation in the white adipose tissue and liver. Also in those tissues, WIB restored expression levels of sterol regulatory element-binding protein-1 (SREBP-1) and CCAAT/enhancer-binding protein α (C/EBPα) and increased AMP-activated protein kinase (AMPK) phosphorylation. In brown adipose tissue, WIB enhanced AMPK phosphorylation and upregulated thermogenic-related proteins, including peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), peroxisome proliferator-activated receptor α (PPARα), sirtuin 1 (SIRT1), uncoupling protein-1 (UCP-1), and cytochrome C oxidase subunit 4 (COX-IV). Analysis of gut microbiota revealed that WIB normalized β-diversity and reversed HFD-induced phyla imbalances (notably in Bacteroidetes, Firmicutes, and Proteobacteria). Conclusions: By reducing adiposity under the conditions tested in a murine model, improving metabolic markers, and favorably modulating gut microbiota, WIB demonstrates potential in mitigating obesity-related risks. These findings suggest that WIB may serve as a promising natural substance for the management of obesity. Further studies are warranted to confirm its efficacy and explore the potential underlying mechanisms in overweight or obese humans as a health supplement to help manage or prevent obesity. Full article
Show Figures

Figure 1

10 pages, 809 KiB  
Communication
SCA14-Associated PKCγ-G118D Mutant Exhibits a Detrimental Effect on Cerebellar Purkinje Cell Dendritic Growth
by Qin-Wei Wu, Kejian Wang and Josef P. Kapfhammer
Int. J. Mol. Sci. 2025, 26(8), 3688; https://doi.org/10.3390/ijms26083688 - 14 Apr 2025
Viewed by 548
Abstract
Spinocerebellar ataxia (SCA), an autosomal dominant neurodegenerative condition, is marked by a gradual deterioration of cerebellar function. To date, more than 40 distinct SCA subtypes have been identified, with some attributed to CAG repeat expansions and others to point mutations or deletions. Among [...] Read more.
Spinocerebellar ataxia (SCA), an autosomal dominant neurodegenerative condition, is marked by a gradual deterioration of cerebellar function. To date, more than 40 distinct SCA subtypes have been identified, with some attributed to CAG repeat expansions and others to point mutations or deletions. Among these, spinocerebellar ataxia type 14 (SCA14) stems from missense mutations or deletions within the PRKCG gene, encoding protein kinase C gamma (PKCγ), a pivotal signaling molecule abundant in Purkinje cells. Despite its significance, the precise mechanisms underlying how genetic alterations trigger Purkinje cell malfunction and degeneration remain elusive. Given the prominent role and high expression of PKCγ in Purkinje cells, SCA14 presents a unique opportunity to unravel the underlying pathogenesis. A straightforward hypothesis posits that alterations in the biological activity of PKCγ underlie the disease phenotype, and there are hints that mutated PKCγ proteins exhibit altered enzymatic function. Our prior research focused on the PKCγ-G118D mutation, commonly found in SCA14 patients, located in the regulatory domain of the protein. While cellular assays demonstrated enhanced enzymatic activity for PKCγ-G118D, transgenic mice carrying this mutation failed to exhibit suppressed dendritic development in cerebellar cultures, raising questions about its impact within living Purkinje cells. One hypothesis is that endogenous PKCγ might interfere with the expression or effect of PKCγ-G118D. To further investigate, we leveraged CRISPR-Cas9 technology to generate a PKCγ knockout mouse model and integrated it with an L7-based, Purkinje cell-specific transfection system to analyze the effects of G118D protein expression on the dendritic morphology of developing Purkinje cells. Our findings reveal that, utilizing this approach, PKCγ-G118D exerts a detrimental effect on Purkinje cell growth, confirming its negative influence, indicating that the potential of the G118D mutation to contribute to SCA14 pathogenesis. Full article
Show Figures

Figure 1

15 pages, 2263 KiB  
Article
Effects of Vitamin E Intake and Voluntary Wheel Running on Whole-Body and Skeletal Muscle Metabolism in Ovariectomized Mice
by Youngyun Jin, Hee-Jung Yoon, Ki-Woong Park, Hanall Lee, Yuan Tan, Byung-Jun Ryu, Seung-Min Lee, Chae-Eun Cho, Jae-Geun Kim, Nam-Ah Kim and Young-Min Park
Nutrients 2025, 17(6), 991; https://doi.org/10.3390/nu17060991 - 12 Mar 2025
Viewed by 886
Abstract
Background/Objectives: Ovariectomized rodents experience metabolic dysfunction in whole-body and skeletal muscle. A disrupted balance between oxidative stress and antioxidants might exacerbate metabolic dysfunction in ovariectomized rodents. Dietary antioxidants, such as vitamin E intake, before or during exercise would be beneficial by mitigating the [...] Read more.
Background/Objectives: Ovariectomized rodents experience metabolic dysfunction in whole-body and skeletal muscle. A disrupted balance between oxidative stress and antioxidants might exacerbate metabolic dysfunction in ovariectomized rodents. Dietary antioxidants, such as vitamin E intake, before or during exercise would be beneficial by mitigating the exercise-induced increase in oxidative stress in ovariectomized rodents. The purpose of the current study was to investigate the potential effect of vitamin E intake combined with voluntary exercise on whole-body and skeletal muscle metabolism in ovariectomized mice. Methods: This study used C57BL/6J wild-type female mice (n = 40, 8 weeks old), which were randomly assigned into sham (SHM), ovariectomy (OVX), ovariectomy with exercise (OVXVE), ovariectomy with vitamin E (OVXV), ovariectomy with exercise and vitamin E (OVXVE) groups. Body composition, resting metabolic rate, glucose tolerance, skeletal muscle mitochondrial function, and protein contents were assessed using dual-energy x-ray absorptiometry, indirect calorimetry, glucose tolerance test, O2K OROBOROS, and Western blot, respectively. Results: The combined treatment of vitamin E and voluntary wheel running did not show a beneficial effect on whole-body metabolism such as fat mass, energy expenditure, and glucose tolerance. However, independent of exercise intervention, vitamin E intake enhanced mitochondrial function, Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1-a), and adenosine monophosphate-activated protein kinase (AMPK) levels and also reduced oxidative stress in the skeletal muscles of ovariectomized mice. Specifically, in the soleus muscle, vitamin E intake enhanced mitochondrial function and PGC1-a content (p < 0.05). In the gastrocnemius muscle, vitamin E intake enhanced PGC1-a and AMPK levels and reduced a marker of oxidative stress (p < 0.05). Conclusions: Vitamin E, as a potent antioxidant, may play a crucial role in maintaining skeletal muscle health in ovariectomized mice. More studies are necessary to investigate whether this finding is applicable to women. Full article
(This article belongs to the Special Issue Diet, Maternal Nutrition and Reproductive Health)
Show Figures

Figure 1

12 pages, 255 KiB  
Article
Outbreak of Trypanosoma vivax in Dairy Cows: Hematologic, Immunological and Antioxidant Responses Before and After Treatment with Isometamidium Chloride
by Alexandro Fritzen, Maksuel Gatto de Vitt, Guilherme Luiz Deolindo, Mateus Henrique Signor, Nathalia Gemelli Correa, Brenda Guedes Ribeiro, Julia Marques, Gabriella Bassi das Neves, Luiz Claudio Miletti and Aleksandro Schafer da Silva
Pathogens 2025, 14(2), 143; https://doi.org/10.3390/pathogens14020143 - 4 Feb 2025
Cited by 1 | Viewed by 1208
Abstract
Trypanosoma vivax infection is an emerging condition that causes damage and mortality among cattle and is transmitted by mechanical vectors or contaminated fomites. This disease has been spreading in southern Brazil, causing anemia, weight loss, diarrhea, abortion, and infertility; however, its behavior and [...] Read more.
Trypanosoma vivax infection is an emerging condition that causes damage and mortality among cattle and is transmitted by mechanical vectors or contaminated fomites. This disease has been spreading in southern Brazil, causing anemia, weight loss, diarrhea, abortion, and infertility; however, its behavior and host–parasite relationships are not yet fully understood. To clarify this issue, animals that presented clinical signs were subjected to an immunochromatographic screening test. An indirect immunofluorescence test was then performed on samples collected before treatment (the gold standard test), which showed that in the herd of 20 cows, we had 14 seropositive for T. vivax. Blood samples were collected before and after treatment to study the effects of the disease and treatment, with the cows divided into two groups: infected and uninfected. Cows were evaluated for hematologic, biochemical, and antioxidant responses, comparing them with uninfected and infected animals, as well as pre- and post-treatment (isometamidium chloride—1 mg/kg body weight [BW]). There was no difference (p > 0.05) between groups in milk production and feed intake; however, ten days after treatment, there was an increase of 1.72 kg of milk in cows diagnosed as infected with T. vivax. Seropositive cows had lower erythrocyte counts, hemoglobin concentrations, hematocrit, platelet counts, and lymphocyte and granulocyte counts. In seropositive cows, the higher total protein concentration is due to increased globulins, which the protein profile by electrophoresis showed to be related to higher levels of immunoglobulins (IgA and other heavy-chain immunoglobulins), ceruloplasmin, haptoglobin, ferritin, C-reactive protein; associated with lower transferrin levels. The activity of the enzymes aspartate aminotransferase, gamma-glutamyl transferase, cholinesterases, and creatine kinase were compared in seronegative and seropositive cows for T. vivax. Lower serum calcium levels were observed in seropositive cows. Cows diagnosed with trypanosomosis presented high levels of reactive oxygen species, lipid peroxidation, protein oxidation, nitrite/nitrate activity, superoxide dismutase, and glutathione peroxidase. The enzymes catalase and glutathione S-transferase presented lower activity in the blood of seropositive cows compared to the control on the day of diagnosis, which was no longer observed ten days after treatment. The animals exhibited hypogalactia, anemia, thrombocytopenia, leukopenia, and acute phase response accompanied by liver and muscle tissue damage and oxidative stress, demonstrating the effect of T. vivax infection in naturally infected Jersey cows. Full article
21 pages, 6640 KiB  
Article
Combining Network Pharmacology and Transcriptomic Strategies to Explore the Pharmacological Mechanism of Total Ginsenoside Ginseng Root and Its Impact on Antidepressant Effects
by Weijia Chen, Pengli Guo, Lili Su, Xiangjuan Guo, Meiling Shi, Jianan Geng, Ying Zong, Yan Zhao, Rui Du and Zhongmei He
Int. J. Mol. Sci. 2024, 25(23), 12606; https://doi.org/10.3390/ijms252312606 - 24 Nov 2024
Cited by 1 | Viewed by 1622
Abstract
Depression is one of the most common neurological diseases, which imposes a substantial social and economic burden on modern society. The purpose of this study was to explore the mechanism of total ginsenoside ginseng root (TGGR) in the treatment of depression through a [...] Read more.
Depression is one of the most common neurological diseases, which imposes a substantial social and economic burden on modern society. The purpose of this study was to explore the mechanism of total ginsenoside ginseng root (TGGR) in the treatment of depression through a comprehensive strategy combining network pharmacology, transcriptomics, and in vivo experimental validation. The Traditional Chinese Medicine Systematic Pharmacology (TCMSP) database and literature were used to collect the main components and targets of TGGR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were applied to explore the underlying mechanisms. In addition, the chronic unpredictable mild stress (CUMS)-induced C57BL/6 mouse model was used to evaluate the antidepressant activity of TGGR. The results showed that TGGR improved depression-like behavior in mice and increased the decrease in serum 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) levels caused by CUMS. Combined network pharmacology and transcriptomic analysis showed that the AMP-activated kinase (AMPK) signaling pathway mainly enriched the core target. Immunohistochemistry, Western blotting, and reverse transcription quantitative polymerase chain reaction (RT-qPCR) were used to confirm whether TGGR exerts antidepressant effects by regulating this pathway. The results showed that TGGR has a regulatory impact on related proteins in the AMPK pathway, and the regulatory effect of TGGR on proteins was inhibited after the administration of related pathway inhibitors. In summary, total ginsenosides may regulate the AMPK signaling pathway and activate the sirtuin 1 (SIRT1) peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) pathway to have therapeutic effects on depression. Full article
(This article belongs to the Special Issue Pathophysiology and Pharmacology in Psychiatry)
Show Figures

Figure 1

18 pages, 5486 KiB  
Article
Nicotinamide Riboside Ameliorates Fructose-Induced Lipid Metabolism Disorders in Mice by Activating Browning of WAT, and May Be Also Related to the Regulation of Gut Microbiota
by Huaqi Zhang, Xuenuo Zhao, Li Zhang, Dan Sun, Yanzhen Ma, Yixian Bai, Xue Bai, Xi Liang and Hui Liang
Nutrients 2024, 16(22), 3920; https://doi.org/10.3390/nu16223920 - 17 Nov 2024
Cited by 2 | Viewed by 1946
Abstract
Objectives: This study aims to observe the preventive effect of nicotinamide riboside (NR) on fructose-induced lipid metabolism disorders and explore its mechanism. Methods: Male C57BL/6J mice were fed a 20% fructose solution and given 400 mg/kg NR daily by gavage for 10 weeks. [...] Read more.
Objectives: This study aims to observe the preventive effect of nicotinamide riboside (NR) on fructose-induced lipid metabolism disorders and explore its mechanism. Methods: Male C57BL/6J mice were fed a 20% fructose solution and given 400 mg/kg NR daily by gavage for 10 weeks. Results: The results indicated that NR supplementation significantly reduced the body weight, liver weight, white adipose tissue (WAT) weight, serum, and hepatic lipid levels. NR upregulated the protein expression levels of sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), PR domain containing 16 (PRDM16), uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor-gamma coactiva-tor-1-alpha (PGC-1α), nuclear respiratory factor 1-encoding gene (NRF1), mitochondrial transcription factor A (TFAM), cluster of differentiation 137 (CD137), transmembrane protein 26 (TMEM26), and T-box 1 (TBX1). Moreover, NR enhanced the Actinobacteria and Enterorhabdus abundance. Spearman’s correlation analysis revealed that significant correlations exist between Firmicutes, Bacteroidetes, and Erysipelotrichaceae with browning-related indicators. Conclusions: In conclusion, NR could alleviate lipid metabolic abnormalities induced by fructose through activating SIRT1/AMPK-mediated browning of WAT. The mechanism by which NR improves fructose-induced lipid metabolism disorders may also be associated with the modulation of intestinal flora. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

12 pages, 1195 KiB  
Article
Protein Kinase C Isozyme Immaturity/Deficiency in Cord Blood Monocytes and Neutrophils
by Khalida Perveen and Antonio Ferrante
Int. J. Mol. Sci. 2024, 25(21), 11665; https://doi.org/10.3390/ijms252111665 - 30 Oct 2024
Viewed by 893
Abstract
Reduced/deficient expression of Protein Kinase C (PKC)ζ in Cord blood (CB) T cells is associated with allergy development in children and a propensity to maintain an immature T-helper (Th)2 cytokine profile. In addition, other PKC isozymes are also low in CBTCs. Since previous [...] Read more.
Reduced/deficient expression of Protein Kinase C (PKC)ζ in Cord blood (CB) T cells is associated with allergy development in children and a propensity to maintain an immature T-helper (Th)2 cytokine profile. In addition, other PKC isozymes are also low in CBTCs. Since previous studies have reported that cord blood/neonatal monocyte and neutrophil functions are significantly lower than cells from adults, it was of interest to see if the CBTC PKC levels were reflected in CB monocytes and neutrophils. Compared to adult blood, CB expresses low levels of PKCα, β2, ε, θ, μ, ζ and λ/ι in monocytes and PKCα, β2, η, θ, μ, ζ and λ/ι in neutrophils. The T-cell PKCζ levels were positively correlated with levels in CB monocytes but not in neutrophils. However, neither the monocytes nor the neutrophil PKCζ were associated with T-cell development towards a Th1 or Th2 cytokine propensity, based on the production of interferon-gamma and interleukin-4 in response to phytohemagglutinin and phorbol myristate acetate. The results demonstrate that some newborn babies display a deficiency in PKC isozymes in monocytes and neutrophils, as reported for T cells. However, unlike T cells, the PKCζ levels of the phagocytes did not correlate with regulation of development towards a Th1 or Th2 cytokine phenotype. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Allergy and Asthma: 3rd Edition)
Show Figures

Figure 1

26 pages, 18474 KiB  
Article
Neuropeptide FF Promotes Neuronal Survival and Enhances Synaptic Protein Expression Following Ischemic Injury
by In-Ae Choi, Ji Hee Yun, Jongmin Lee and Dong-Hee Choi
Int. J. Mol. Sci. 2024, 25(21), 11580; https://doi.org/10.3390/ijms252111580 - 28 Oct 2024
Cited by 1 | Viewed by 1238
Abstract
This study explores the neuroprotective effects of neuropeptide FF (NPFF, FLFQPQRFamide) in the context of ischemic injury. Based on transcriptomic analysis in stroke models treated with 5-Aza-dC and task-specific training, we identified significant gene expression changes, particularly involving NPFF. To further explore NPFF’s [...] Read more.
This study explores the neuroprotective effects of neuropeptide FF (NPFF, FLFQPQRFamide) in the context of ischemic injury. Based on transcriptomic analysis in stroke models treated with 5-Aza-dC and task-specific training, we identified significant gene expression changes, particularly involving NPFF. To further explore NPFF’s role in promoting neuronal recovery, recombinant NPFF protein (rNPFF) was used in primary mixed cortical cultures subjected to oxygen-glucose deprivation and reoxygenation. Our results demonstrated that rNPFF significantly reduced lactate dehydrogenase release, indicating decreased cellular damage. It also significantly increased the expression of TUJ1 and MAP2, markers of neuronal survival and dendritic integrity. Additionally, rNPFF significantly upregulated key synaptic proteins, including GAP43, PSD95, and synaptophysin, which are essential for synaptic repair and plasticity. Post-injury rNPFF treatment led to a significant upregulation of pro-brain-derived neurotrophic factor (BDNF) and mature BDNF, which play critical roles in neuronal survival, growth, and synaptic plasticity. Moreover, rNPFF activated the protein kinase Cε isoform, Sirtuin 1, and peroxisome proliferator-activated receptor gamma pathways, which are crucial for regulating cellular stress responses, synaptic plasticity, and energy homeostasis, further promoting neuronal survival and recovery. These findings suggest that rNPFF may play a pivotal role in enhancing neuronal survival and synaptic plasticity after ischemic injury, highlighting its potential as a therapeutic target for stroke recovery. Full article
(This article belongs to the Special Issue Current Insights on Neuroprotection)
Show Figures

Figure 1

13 pages, 995 KiB  
Article
The Synergistic Effect of Intradialytic Concurrent Training and Melatonin Supplementation on Oxidative Stress and Inflammation in Hemodialysis Patients: A Double-Blind Randomized Controlled Trial
by Houssem Marzougui, Imen Ben Dhia, Ines Mezghani, Rami Maaloul, Salma Toumi, Khawla Kammoun, Mohamed Nejib Chaabouni, Fatma Ayadi, Mohamed Ben Hmida, Mouna Turki and Omar Hammouda
Antioxidants 2024, 13(11), 1290; https://doi.org/10.3390/antiox13111290 - 25 Oct 2024
Cited by 1 | Viewed by 1640
Abstract
Background: This study aimed to investigate the effects of intradialytic concurrent (resistance–endurance) training combined with melatonin (MEL) supplementation on oxidative stress, inflammation, and cellular damage in hemodialysis (HD) patients. Methods: Thirty-two HD patients were randomly assigned to three groups: Exercise (EX)-MEL, EX-Placebo (PLA), [...] Read more.
Background: This study aimed to investigate the effects of intradialytic concurrent (resistance–endurance) training combined with melatonin (MEL) supplementation on oxidative stress, inflammation, and cellular damage in hemodialysis (HD) patients. Methods: Thirty-two HD patients were randomly assigned to three groups: Exercise (EX)-MEL, EX-Placebo (PLA), and Control (C)-PLA. Participants in the EX-MEL and EX-PLA groups underwent 12 weeks of concurrent training. Before nocturnal sleep, they ingested either 3 mg of MEL (EX-MEL) or a placebo (EX-PLA and C-PLA). Blood samples were collected at baseline and after 12 weeks of intervention to assess lipid peroxidation [malondialdehyde (MDA)], antioxidant biomarkers [ferric-reducing antioxidant power (FRAP), reduced glutathione (GSH), total thiol (THIOL)], total bilirubin (TBIL), uric acid (UA), biomarkers of muscle and liver damage [aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), creatine kinase (CK), lactate dehydrogenase (LDH), and Gamma-glutamyltransferase (Gamma-GT)], and inflammation [C-reactive protein (CRP)]. Results: EX-MEL demonstrated a decrease in MDA (p < 0.05) and CRP (p < 0.05), and an increase in FRAP (p < 0.05) pre- and post-training. Both EX-MEL and EX-PLA showed an increase in GSH (p < 0.001, and p < 0.05, respectively) and THIOL (p < 0.01, and p < 0.05, respectively) pre- and post-training. No significant changes were observed in TBIL, UA, ASAT, ALAT, CK, LDH, or Gamma-GT pre- and post-training across all groups. Conclusion: Concurrent training combined with MEL supplementation enhances oxidant–antioxidant balance and reduces inflammation in HD patients more effectively than intradialytic concurrent training alone. Full article
Show Figures

Figure 1

14 pages, 3697 KiB  
Article
Efficacy and Potential Mechanisms of Naringin in Atopic Dermatitis
by Seung-Ah Yoo, Ki-Chan Kim and Ji-Hyun Lee
Int. J. Mol. Sci. 2024, 25(20), 11064; https://doi.org/10.3390/ijms252011064 - 15 Oct 2024
Cited by 4 | Viewed by 2101
Abstract
Atopic dermatitis (AD) is one of the most prevalent chronic inflammatory skin diseases. Topical treatments are recommended for all patients regardless of severity, making it essential to develop an effective topical AD treatment with minimal side effects; We investigated the efficacy of topical [...] Read more.
Atopic dermatitis (AD) is one of the most prevalent chronic inflammatory skin diseases. Topical treatments are recommended for all patients regardless of severity, making it essential to develop an effective topical AD treatment with minimal side effects; We investigated the efficacy of topical application of naringin in AD and explored the possible mechanisms using an AD mouse model induced by 1-chloro-2,4-dinitrobenzene (DNCB). Clinical, histological, and immunological changes related to AD and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling proteins in the skin tissues were measured as outcomes; Naringin treatment resulted in a significant improvement in dermatitis severity score and reduced epidermal thickness and mast cell count in the skin (p < 0.05). Naringin also demonstrated the ability to inhibit DNCB-induced changes in interleukin (IL) 4, chemokine (C-C motif) ligand (CCL) 17, CCL22, IL1β, interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) levels by quantitative real-time polymerase chain reaction (qRT-PCR) and IL13 by enzyme-linked immunosorbent assay (ELISA) (p < 0.05). Western blot results exhibited the decreased JAK1, JAK2, STAT1, STAT3, phospho-STAT3, and STAT6 expression in the naringin-treated groups (p < 0.05); The findings of this study suggest that topical naringin may effectively improve the symptoms of AD and could be used as a therapeutic agent for AD. Full article
Show Figures

Figure 1

14 pages, 991 KiB  
Review
Advances in Targeted Therapy: Addressing Resistance to BTK Inhibition in B-Cell Lymphoid Malignancies
by Andres Bravo-Gonzalez, Maryam Alasfour, Deborah Soong, Jose Noy and Georgios Pongas
Cancers 2024, 16(20), 3434; https://doi.org/10.3390/cancers16203434 - 10 Oct 2024
Viewed by 3843
Abstract
B-cell lymphoid malignancies are a heterogeneous group of hematologic cancers, where Bruton’s tyrosine kinase (BTK) inhibitors have received FDA approval for several subtypes. The first-in-class covalent BTK inhibitor, Ibrutinib, binds to the C481 amino acid residue to block the BTK enzyme and prevent [...] Read more.
B-cell lymphoid malignancies are a heterogeneous group of hematologic cancers, where Bruton’s tyrosine kinase (BTK) inhibitors have received FDA approval for several subtypes. The first-in-class covalent BTK inhibitor, Ibrutinib, binds to the C481 amino acid residue to block the BTK enzyme and prevent the downstream signaling. Resistance to covalent BTK inhibitors (BTKi) can occur through mutations at the BTK binding site (C481S) but also other BTK sites and the phospholipase C gamma 2 (PLCγ2) resulting in downstream signaling. To bypass the C481S mutation, non-covalent BTKi, such as Pirtobrutinib, were developed and are active against both wild-type and the C481S mutation. In this review, we discuss the molecular and genetic mechanisms which contribute to acquisition of resistance to covalent and non-covalent BTKi. In addition, we discuss the new emerging class of BTK degraders, which utilize the evolution of proteolysis-targeting chimeras (PROTACs) to degrade the BTK protein and constitute an important avenue of overcoming resistance. The moving landscape of resistance to BTKi and the development of new therapeutic strategies highlight the ongoing advances being made towards the pursuit of a cure for B-cell lymphoid malignancies. Full article
(This article belongs to the Special Issue Molecular Insights into Drug Resistance in Cancer)
Show Figures

Figure 1

16 pages, 7113 KiB  
Article
Differential Effects of Three Medium-Chain Fatty Acids on Mitochondrial Quality Control and Skeletal Muscle Maturation
by Ryoichi Nishida, Shota Nukaga, Isao Kawahara, Yoshihiro Miyagawa, Kei Goto, Chie Nakashima, Yi Luo, Takamitsu Sasaki, Kiyomu Fujii, Hitoshi Ohmori, Ruiko Ogata, Shiori Mori, Rina Fujiwara-Tani and Hiroki Kuniyasu
Antioxidants 2024, 13(7), 821; https://doi.org/10.3390/antiox13070821 - 9 Jul 2024
Cited by 4 | Viewed by 2433
Abstract
Nutritional interventions are one focus of sarcopenia treatment. As medium-chain fatty acids (MCFAs) are oxidized in the mitochondria and produce energy through oxidative phosphorylation (OXPHOS), they are key parts of nutritional interventions. We investigated the in vitro effects of three types of MCFA, [...] Read more.
Nutritional interventions are one focus of sarcopenia treatment. As medium-chain fatty acids (MCFAs) are oxidized in the mitochondria and produce energy through oxidative phosphorylation (OXPHOS), they are key parts of nutritional interventions. We investigated the in vitro effects of three types of MCFA, caprylic acid (C8), capric acid (C10), and lauric acid (C12), in skeletal muscle cells. Compared with C10 and C12, C8 promoted mitophagy through the phosphatase and tensin homolog (PTEN)-induced kinase 1-Parkin pathway and increased the expression of peroxisome proliferator-activated receptor gamma coactivator 1-α and dynamin-related protein 1 to reduce mitochondrial oxidative stress and promote OXPHOS. Furthermore, the expression of myogenic differentiation 1 and myosin heavy chain increased in myotubes, thus promoting muscle differentiation and maturation. These results suggest that C8 improves mitochondrial quality and promotes skeletal muscle maturation; in contrast, C10 and C12 poorly promoted mitochondrial quality control and oxidative stress and suppressed energy production. Future animal experiments are required to establish the usefulness of C8 for nutritional interventions for sarcopenia. Full article
Show Figures

Figure 1

13 pages, 2497 KiB  
Article
Yohimbine Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation and Migration via FOXO3a Factor
by Leejin Lim, Hyeonhwa Kim, Jihye Jeong, Sung Hee Han, Young-Bob Yu and Heesang Song
Int. J. Mol. Sci. 2024, 25(13), 6899; https://doi.org/10.3390/ijms25136899 - 24 Jun 2024
Cited by 2 | Viewed by 1854
Abstract
Yohimbine (YHB) has been reported to possess anti-inflammatory, anticancer, and cardiac function-enhancing properties. Additionally, it has been reported to inhibit the proliferation, migration, and neointimal formation of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor (PDGF) stimulation by suppressing the phospholipase [...] Read more.
Yohimbine (YHB) has been reported to possess anti-inflammatory, anticancer, and cardiac function-enhancing properties. Additionally, it has been reported to inhibit the proliferation, migration, and neointimal formation of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor (PDGF) stimulation by suppressing the phospholipase C-gamma 1 pathway. However, the transcriptional regulatory mechanism of YHB controlling the behavior of VSMCs is not fully understood. In this study, YHB downregulated the expression of cell cycle regulatory proteins, such as proliferating cell nuclear antigen (PCNA), cyclin D1, cyclin-dependent kinase 4 (CDK4), and cyclin E, by modulating the transcription factor FOXO3a in VSMCs induced by PDGF. Furthermore, YHB decreased p-38 and mTOR phosphorylation in a dose-dependent manner. Notably, YHB significantly reduced the phosphorylation at Y397 and Y925 sites of focal adhesion kinase (FAK), and this effect was greater at the Y925 site than Y397. In addition, the expression of paxillin, a FAK-associated protein known to bind to the Y925 site of FAK, was significantly reduced by YHB treatment in a dose-dependent manner. A pronounced reduction in the migration and proliferation of VSMCs was observed following co-treatment of YHB with mTOR or p38 inhibitors. In conclusion, this study shows that YHB inhibits the PDGF-induced proliferation and migration of VSMCs by regulating the transcription factor FOXO3a and the mTOR/p38/FAK signaling pathway. Therefore, YHB may be a potential therapeutic candidate for preventing and treating cardiovascular diseases such as atherosclerosis and vascular restenosis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

12 pages, 2883 KiB  
Article
Preclinical Testing of Chronic ICA-1S Exposure: A Potent Protein Kinase C-ι Inhibitor as a Potential Carcinoma Therapeutic
by Christopher A. Apostolatos, Wishrawana S. Ratnayake, Sloan Breedy, Jacqueline Kai Chin Chuah, James Alastair Miller, Daniele Zink, Marie Bourgeois and Mildred Acevedo-Duncan
Drugs Drug Candidates 2024, 3(2), 368-379; https://doi.org/10.3390/ddc3020022 - 7 May 2024
Cited by 1 | Viewed by 2130
Abstract
Protein kinase C-iota (PKC-ι) is an oncogene overexpressed in many cancer cells including prostate, breast, ovarian, melanoma, and glioma cells. Previous in vitro studies have shown that 5-amino-1-((1R,2S,3R,4R)-2-3-dihydroxy-4-(hydroxymethyl)cyclopentyl)-1H-imidazole-4-carboxamide (ICA-1S), a PKC-ι-specific inhibitor, has low toxicity in both acute and sub-acute mouse model toxicological [...] Read more.
Protein kinase C-iota (PKC-ι) is an oncogene overexpressed in many cancer cells including prostate, breast, ovarian, melanoma, and glioma cells. Previous in vitro studies have shown that 5-amino-1-((1R,2S,3R,4R)-2-3-dihydroxy-4-(hydroxymethyl)cyclopentyl)-1H-imidazole-4-carboxamide (ICA-1S), a PKC-ι-specific inhibitor, has low toxicity in both acute and sub-acute mouse model toxicological testing and is an effective therapeutic against several cancer cell lines showing significant reductions in tumor growth when treating athymic nude mice with xenografted carcinoma cell lines. To further assess ICA-1S as a possible therapeutic agent, chronic mouse model toxicological testing was performed in vivo to provide inferences concerning the long-term effects and possible health hazards from repeated exposure over a substantial part of the animal’s lifespan. Subjects survived well after 30, 60, and 90 days of doses ranging from 50 mg/kg to 100 mg/kg. Heart, liver, kidney, and brain tissues were then analyzed for accumulations of ICA-1S including the measured assessment of aspartate transaminase (AST), alkaline phosphatase (ALK-P), gamma-glutamyl transferase (GGT), troponin, and C-reactive protein (CRP) serum levels to assess organ function. Predictive in vitro/in silico methods were used to predict compound-induced direct hepatocyte toxicity or renal proximal tubular cell (PTC) toxicity in humans based on the high-content imaging (HCI) of compound-treated cells in combination with phenotypic profiling. In conclusion, ICA-1S shows low toxicity in both acute and chronic toxicology studies, and shows promise as a potential therapeutic. Full article
(This article belongs to the Section Preclinical Research)
Show Figures

Figure 1

Back to TopTop