Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = prostate apoptosis response-4 (Par-4)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1305 KiB  
Article
The Tumor Suppressor Par-4 Regulates Adipogenesis by Transcriptional Repression of PPARγ
by James Sledziona, Ravshan Burikhanov, Nathalia Araujo, Jieyun Jiang, Nikhil Hebbar and Vivek M. Rangnekar
Cells 2024, 13(17), 1495; https://doi.org/10.3390/cells13171495 - 5 Sep 2024
Cited by 1 | Viewed by 1940
Abstract
Prostate apoptosis response-4 (Par-4, also known as PAWR) is a ubiquitously expressed tumor suppressor protein that induces apoptosis selectively in cancer cells, while leaving normal cells unaffected. Our previous studies indicated that genetic loss of Par-4 promoted hepatic steatosis, adiposity, and insulin-resistance in [...] Read more.
Prostate apoptosis response-4 (Par-4, also known as PAWR) is a ubiquitously expressed tumor suppressor protein that induces apoptosis selectively in cancer cells, while leaving normal cells unaffected. Our previous studies indicated that genetic loss of Par-4 promoted hepatic steatosis, adiposity, and insulin-resistance in chow-fed mice. Moreover, low plasma levels of Par-4 are associated with obesity in human subjects. The mechanisms underlying obesity in rodents and humans are multi-faceted, and those associated with adipogenesis can be functionally resolved in cell cultures. We therefore used pluripotent mouse embryonic fibroblasts (MEFs) or preadipocyte cell lines responsive to adipocyte differentiation cues to determine the potential role of Par-4 in adipocytes. We report that pluripotent MEFs from Par-4−/− mice underwent rapid differentiation to mature adipocytes with an increase in lipid droplet accumulation relative to MEFs from Par-4+/+ mice. Knockdown of Par-4 in 3T3-L1 pre-adipocyte cultures by RNA-interference induced rapid differentiation to mature adipocytes. Interestingly, basal expression of PPARγ, a master regulator of de novo lipid synthesis and adipogenesis, was induced during adipogenesis in the cell lines, and PPARγ induction and adipogenesis caused by Par-4 loss was reversed by replenishment of Par-4. Mechanistically, Par-4 downregulates PPARγ expression by directly binding to its upstream promoter, as judged by chromatin immunoprecipitation and luciferase-reporter studies. Thus, Par-4 transcriptionally suppresses the PPARγ promoter to regulate adipogenesis. Full article
(This article belongs to the Special Issue The Role of PPARs in Disease - Volume III)
Show Figures

Figure 1

15 pages, 2768 KiB  
Article
Enhancing the Conformational Stability of the cl-Par-4 Tumor Suppressor via Site-Directed Mutagenesis
by Samjhana Pandey, Krishna K. Raut, Andrea M. Clark, Antoine Baudin, Lamya Djemri, David S. Libich, Komala Ponniah and Steven M. Pascal
Biomolecules 2023, 13(4), 667; https://doi.org/10.3390/biom13040667 - 12 Apr 2023
Cited by 2 | Viewed by 2614
Abstract
Intrinsically disordered proteins play important roles in cell signaling, and dysregulation of these proteins is associated with several diseases. Prostate apoptosis response-4 (Par-4), an approximately 40 kilodalton proapoptotic tumor suppressor, is a predominantly intrinsically disordered protein whose downregulation has been observed in various [...] Read more.
Intrinsically disordered proteins play important roles in cell signaling, and dysregulation of these proteins is associated with several diseases. Prostate apoptosis response-4 (Par-4), an approximately 40 kilodalton proapoptotic tumor suppressor, is a predominantly intrinsically disordered protein whose downregulation has been observed in various cancers. The caspase-cleaved fragment of Par-4 (cl-Par-4) is active and plays a role in tumor suppression by inhibiting cell survival pathways. Here, we employed site-directed mutagenesis to create a cl-Par-4 point mutant (D313K). The expressed and purified D313K protein was characterized using biophysical techniques, and the results were compared to that of the wild-type (WT). We have previously demonstrated that WT cl-Par-4 attains a stable, compact, and helical conformation in the presence of a high level of salt at physiological pH. Here, we show that the D313K protein attains a similar conformation as the WT in the presence of salt, but at an approximately two times lower salt concentration. This establishes that the substitution of a basic residue for an acidic residue at position 313 alleviates inter-helical charge repulsion between dimer partners and helps to stabilize the structural conformation. Full article
Show Figures

Figure 1

25 pages, 12958 KiB  
Article
Prostate Apoptosis Response-4 (Par-4): A Novel Target in Pyronaridine-Induced Apoptosis in Glioblastoma (GBM) Cells
by Jeevan Ghosalkar, Vinay Sonawane, Tejal Pisal, Swati Achrekar, Radha Pujari, Ashish Chugh, Padma Shastry and Kalpana Joshi
Cancers 2022, 14(13), 3198; https://doi.org/10.3390/cancers14133198 - 29 Jun 2022
Cited by 9 | Viewed by 3252
Abstract
Glioblastoma (GBM) is an aggressive form of brain tumor with a median survival of approximately 12 months. With no new drugs in the last few decades and limited success in clinics for known therapies, drug repurposing is an attractive choice for its treatment. [...] Read more.
Glioblastoma (GBM) is an aggressive form of brain tumor with a median survival of approximately 12 months. With no new drugs in the last few decades and limited success in clinics for known therapies, drug repurposing is an attractive choice for its treatment. Here, we examined the efficacy of pyronaridine (PYR), an anti-malarial drug in GBM cells. PYR induced anti-proliferative activity in GBM cells with IC50 ranging from 1.16 to 6.82 µM. Synergistic activity was observed when PYR was combined with Doxorubicin and Ritonavir. Mechanistically, PYR triggered mitochondrial membrane depolarization and enhanced the ROS levels causing caspase-3 mediated apoptosis. PYR significantly decreased markers associated with proliferation, EMT, hypoxia, and stemness and upregulated the expression of E-cadherin. Interestingly, PYR induced the expression of intracellular as well as secretory Par-4, a tumor suppressor in GBM cells, which was confirmed using siRNA. Notably, Par-4 levels in plasma samples of GBM patients were significantly lower than normal healthy volunteers. Thus, our study demonstrates for the first time that PYR can be repurposed against GBM with a novel mechanism of action involving Par-4. Herewith, we discuss the role of upregulated Par-4 in a highly interconnected signaling network thereby advocating its importance as a therapeutic target. Full article
(This article belongs to the Special Issue Drug Repurposing for Cancer Therapy)
Show Figures

Figure 1

13 pages, 2498 KiB  
Article
Structural Analysis of the cl-Par-4 Tumor Suppressor as a Function of Ionic Environment
by Krishna K. Raut, Komala Ponniah and Steven M. Pascal
Biomolecules 2021, 11(3), 386; https://doi.org/10.3390/biom11030386 - 5 Mar 2021
Cited by 4 | Viewed by 2664
Abstract
Prostate apoptosis response-4 (Par-4) is a proapoptotic tumor suppressor protein that has been linked to a large number of cancers. This 38 kilodalton (kDa) protein has been shown to be predominantly intrinsically disordered in vitro. In vivo, Par-4 is cleaved by caspase-3 at [...] Read more.
Prostate apoptosis response-4 (Par-4) is a proapoptotic tumor suppressor protein that has been linked to a large number of cancers. This 38 kilodalton (kDa) protein has been shown to be predominantly intrinsically disordered in vitro. In vivo, Par-4 is cleaved by caspase-3 at Asp-131 to generate the 25 kDa functionally active cleaved Par-4 protein (cl-Par-4) that inhibits NF-κB-mediated cell survival pathways and causes selective apoptosis in tumor cells. Here, we have employed circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) to assess the effects of various monovalent and divalent salts upon the conformation of cl-Par-4 in vitro. We have previously shown that high levels of sodium can induce the cl-Par-4 fragment to form highly compact, highly helical tetramers in vitro. Spectral characteristics suggest that most or at least much of the helical content in these tetramers are non-coiled coils. Here, we have shown that potassium produces a similar effect as was previously reported for sodium and that magnesium salts also produce a similar conformation effect, but at an approximately five times lower ionic concentration. We have also shown that anion identity has far less influence than does cation identity. The degree of helicity induced by each of these salts suggests that the “Selective for Apoptosis in Cancer cells” (SAC) domain—the region of Par-4 that is most indispensable for its apoptotic function—is likely to be helical in cl-Par-4 under the studied high salt conditions. Furthermore, we have shown that under medium-strength ionic conditions, a combination of high molecular weight aggregates and smaller particles form and that the smaller particles are also highly helical, resembling at least in secondary structure, the tetramers found at high salt. Full article
(This article belongs to the Special Issue The Amazing World of IDPs in Human Diseases II)
Show Figures

Figure 1

17 pages, 1552 KiB  
Article
pH-Induced Folding of the Caspase-Cleaved Par-4 Tumor Suppressor: Evidence of Structure Outside of the Coiled Coil Domain
by Andrea M. Clark, Komala Ponniah, Meghan S. Warden, Emily M. Raitt, Andrea C. Yawn and Steven M. Pascal
Biomolecules 2018, 8(4), 162; https://doi.org/10.3390/biom8040162 - 4 Dec 2018
Cited by 9 | Viewed by 5062
Abstract
Prostate apoptosis response-4 (Par-4) is a 38 kDa largely intrinsically disordered tumor suppressor protein that functions in cancer cell apoptosis. Par-4 down-regulation is often observed in cancer while up-regulation is characteristic of neurodegenerative conditions such as Alzheimer’s disease. Cleavage of Par-4 by caspase-3 [...] Read more.
Prostate apoptosis response-4 (Par-4) is a 38 kDa largely intrinsically disordered tumor suppressor protein that functions in cancer cell apoptosis. Par-4 down-regulation is often observed in cancer while up-regulation is characteristic of neurodegenerative conditions such as Alzheimer’s disease. Cleavage of Par-4 by caspase-3 activates tumor suppression via formation of an approximately 25 kDa fragment (cl-Par-4) that enters the nucleus and inhibits Bcl-2 and NF-ƙB, which function in pro-survival pathways. Here, we have investigated the structure of cl-Par-4 using biophysical techniques including circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and intrinsic tyrosine fluorescence. The results demonstrate pH-dependent folding of cl-Par-4, with high disorder and aggregation at neutral pH, but a largely folded, non-aggregated conformation at acidic pH. Full article
(This article belongs to the Collection Intrinsically Disordered Proteins)
Show Figures

Figure 1

16 pages, 3056 KiB  
Article
TNF-α and IFN-γ Together Up-Regulates Par-4 Expression and Induce Apoptosis in Human Neuroblastomas
by Ganesh V. Shelke, Jayashree C. Jagtap, Dae-Kyum Kim, Reecha D. Shah, Gowry Das, Mruthyunjaya Shivayogi, Radha Pujari and Padma Shastry
Biomedicines 2018, 6(1), 4; https://doi.org/10.3390/biomedicines6010004 - 26 Dec 2017
Cited by 14 | Viewed by 6053
Abstract
The objective of this study was to examine the combined effect of Interferon-gamma (IFN-γ) and Tumor Necrosis factor-alpha (TNF-α) on cytotoxicity and expression of prostate apoptosis response-4 (Par-4) and Par-4 interacting proteins B-cell lymphoma (Bcl-2), nuclear factor kappa-light-chain-enhancer of activated B cells/p65 subunit [...] Read more.
The objective of this study was to examine the combined effect of Interferon-gamma (IFN-γ) and Tumor Necrosis factor-alpha (TNF-α) on cytotoxicity and expression of prostate apoptosis response-4 (Par-4) and Par-4 interacting proteins B-cell lymphoma (Bcl-2), nuclear factor kappa-light-chain-enhancer of activated B cells/p65 subunit (NF-κB/p65), Ak mouse strain thymoma (Akt) in human neuroblastoma (NB) cells. Materials and methods included human neuroblastoma cell lines-SK-N-MC, SK-N-SH, and SH-SY5Y, which were treated with IFN-γ and TNF-α individually, or in combination, and were assessed for viability by tetrazolium (MTT) assay. Apoptosis was monitored by hypodiploid population (by flow cytometry), DNA fragmentation, Poly (ADP-ribose) polymerase (PARP) cleavage, and caspase-8 activity. Transcript level of Par-4 was measured by RT-PCR. Protein levels of Par-4 and suppressor of cytokine signaling 3 (SOCS-3) were assessed by immunoblotting. Cellular localization of Par-4 and p65 was examined by immunofluorescence. Unbiased transcript analysis for IFN-γ, TNF-α, and Par-4 were analyzed from three independent clinical datasets from neuroblastoma patients. In terms of results, SK-N-MC cells treated with a combination of, but not individually with, IFN-γ and TNF-α induced apoptosis characterized by hypodiploidy, DNA fragmentation, PARP cleavage, and increased caspase-8 activity. Apoptosis was associated with up-regulation of Par-4 mRNA and protein expression. Immunofluorescence studies revealed that Par-4 was localized exclusively in cytoplasm in SK-N-MC cells cultured for 24 h. but showed nuclear localization at 48 h. Treatment with IFN-γ and TNF-α together enhanced the intensity of nuclear Par-4. In gene expression, data from human neuroblastoma patients, levels of IFN-γ, and TNF-α have strong synergy with Par-4 expression and provide good survival advantage. The findings also demonstrated that apoptosis was associated with reduced level of pro-survival proteins–Bcl-2 and Akt and NF-κB/p65. Furthermore, the apoptotic effect induced by IFN-γ-induced Signal Transducer and Activator of Transcription-1(STAT-1), and could be due to down-regulation of suppressor of cytokine signaling-3 (SOCS3). The study concludes that a combinatorial approach using IFN-γ and TNF-α can be explored to maximize the effect in chemotherapy in neuroblastoma, and implies a role for Par-4 in the process. Full article
(This article belongs to the Special Issue Immuno-Active Cancer Therapeutics)
Show Figures

Graphical abstract

Back to TopTop