Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = prosaposin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 2555 KiB  
Review
Prosaposin: A Multifaceted Protein Orchestrating Biological Processes and Diseases
by Xin Li and Liang Guo
Cells 2025, 14(15), 1131; https://doi.org/10.3390/cells14151131 - 22 Jul 2025
Viewed by 430
Abstract
Prosaposin (PSAP), a multifunctional protein, plays a central role in various biological processes and diseases. It is the precursor of lysosomal activating protein, which is important for lipid metabolism and glucose metabolism. PSAP is implicated in cell signaling, neuroprotection, immunomodulation, and tumorigenesis. In [...] Read more.
Prosaposin (PSAP), a multifunctional protein, plays a central role in various biological processes and diseases. It is the precursor of lysosomal activating protein, which is important for lipid metabolism and glucose metabolism. PSAP is implicated in cell signaling, neuroprotection, immunomodulation, and tumorigenesis. In neurological disorders, PSAP acts as a neurotrophic factor influencing nerve cell survival and synapse growth, and its dysfunction is associated with a variety of diseases. It modulates immune responses and macrophage functions, affecting inflammation and immune cell activities. The role of PSAP in cancers is complex, because it promotes or inhibits tumor growth depending on the context and it serves as a potential biomarker for various malignancies. This review examines current research on the functional and pathological roles of PSAP, emphasizing the importance of PSAP in Gaucher disease, neurodegenerative diseases, cardiovascular diseases, and cancer. In order to develop targeted therapies for various diseases, it is essential to understand the mechanisms of action of PSAP in different biological processes. Full article
Show Figures

Figure 1

12 pages, 10758 KiB  
Article
Prosaposin/Saposin Expression in the Developing Rat Olfactory and Vomeronasal Epithelia
by Kai Kitamura, Kyoko Saito, Takeshi Homma, Aimi Fuyuki, Sawa Onouchi and Shouichiro Saito
J. Dev. Biol. 2024, 12(4), 29; https://doi.org/10.3390/jdb12040029 - 6 Nov 2024
Viewed by 1585
Abstract
Prosaposin is a glycoprotein widely conserved in vertebrates, and it acts as a precursor for saposins that accelerate hydrolysis in lysosomes or acts as a neurotrophic factor without being processed into saposins. Neurogenesis in the olfactory neuroepithelia, including the olfactory epithelium (OE) and [...] Read more.
Prosaposin is a glycoprotein widely conserved in vertebrates, and it acts as a precursor for saposins that accelerate hydrolysis in lysosomes or acts as a neurotrophic factor without being processed into saposins. Neurogenesis in the olfactory neuroepithelia, including the olfactory epithelium (OE) and the vomeronasal epithelium (VNE), is known to occur throughout an animal’s life, and mature olfactory neurons (ORNs) and vomeronasal receptor neurons (VRNs) have recently been revealed to express prosaposin in the adult olfactory organ. In this study, the expression of prosaposin in the rat olfactory organ during postnatal development was examined. In the OE, prosaposin immunoreactivity was observed in mature ORNs labeled using olfactory marker protein (OMP) from postnatal day (P) 0. Immature ORNs showed no prosaposin immunoreactivity throughout the examined period. In the VNE, OMP-positive VRNs were mainly observed in the basal region of the VNE on P10 and showed an adult-like distribution from P20. On the other hand, prosaposin immunoreactivity was observed in VRNs from P0, suggesting that not only mature VRNs but also immature VRNs express prosaposin. This study raises the possibility that prosaposin is required for the normal development of the olfactory organ and has different roles in the OE and the VNE. Full article
Show Figures

Figure 1

17 pages, 3189 KiB  
Article
Functional Insights into the Sphingolipids C1P, S1P, and SPC in Human Fibroblast-like Synoviocytes by Proteomic Analysis
by Thomas Timm, Christiane Hild, Gerhard Liebisch, Markus Rickert, Guenter Lochnit and Juergen Steinmeyer
Int. J. Mol. Sci. 2024, 25(15), 8363; https://doi.org/10.3390/ijms25158363 - 31 Jul 2024
Cited by 5 | Viewed by 1678
Abstract
The (patho)physiological function of the sphingolipids ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), and sphingosylphosphorylcholine (SPC) in articular joints during osteoarthritis (OA) is largely unknown. Therefore, we investigated the influence of these lipids on protein expression by fibroblast-like synoviocytes (FLSs) from OA knees. Cultured human FLSs [...] Read more.
The (patho)physiological function of the sphingolipids ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), and sphingosylphosphorylcholine (SPC) in articular joints during osteoarthritis (OA) is largely unknown. Therefore, we investigated the influence of these lipids on protein expression by fibroblast-like synoviocytes (FLSs) from OA knees. Cultured human FLSs (n = 7) were treated with 1 of 3 lipid species—C1P, S1P, or SPC—IL-1β, or with vehicle. The expression of individual proteins was determined by tandem mass tag peptide labeling followed by high-resolution electrospray ionization (ESI) mass spectrometry after liquid chromatographic separation (LC-MS/MS/MS). The mRNA levels of selected proteins were analyzed using RT-PCR. The 3sphingolipids were quantified in the SF of 18 OA patients using LC-MS/MS. A total of 4930 proteins were determined using multiplex MS, of which 136, 9, 1, and 0 were regulated both reproducibly and significantly by IL-1β, C1P, S1P, and SPC, respectively. In the presence of IL-1ß, all 3 sphingolipids exerted ancillary effects. Only low SF levels of C1P and SPC were found. In conclusion, the 3 lipid species regulated proteins that have not been described in OA. Our results indicate that charged multivesicular body protein 1b, metal cation symporter ZIP14, glutamine-fructose-6-P transaminase, metallothionein-1F and -2A, ferritin, and prosaposin are particularly interesting proteins due to their potential to affect inflammatory, anabolic, catabolic, and apoptotic mechanisms. Full article
(This article belongs to the Special Issue Proteomics and Its Applications in Disease 3.0)
Show Figures

Figure 1

18 pages, 1582 KiB  
Article
Deficiency of Glucocerebrosidase Activity beyond Gaucher Disease: PSAP and LIMP-2 Dysfunctions
by Eleonora Pavan, Paolo Peruzzo, Silvia Cattarossi, Natascha Bergamin, Andrea Bordugo, Annalisa Sechi, Maurizio Scarpa, Jessica Biasizzo, Fabiana Colucci and Andrea Dardis
Int. J. Mol. Sci. 2024, 25(12), 6615; https://doi.org/10.3390/ijms25126615 - 16 Jun 2024
Cited by 4 | Viewed by 4785
Abstract
Glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the breakdown of glucosylceramide in the presence of its activator saposin C (SapC). SapC arises from the proteolytical cleavage of prosaposin (encoded by PSAP gene), which gives rise to four saposins. GCase is targeted to [...] Read more.
Glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the breakdown of glucosylceramide in the presence of its activator saposin C (SapC). SapC arises from the proteolytical cleavage of prosaposin (encoded by PSAP gene), which gives rise to four saposins. GCase is targeted to the lysosomes by LIMP-2, encoded by SCARB2 gene. GCase deficiency causes Gaucher Disease (GD), which is mainly due to biallelic pathogenetic variants in the GCase-encoding gene, GBA1. However, impairment of GCase activity can be rarely caused by SapC or LIMP-2 deficiencies. We report a new case of LIMP-2 deficiency and a new case of SapC deficiency (missing all four saposins, PSAP deficiency), and measured common biomarkers of GD and GCase activity. Glucosylsphingosine and chitotriosidase activity in plasma were increased in GCase deficiencies caused by PSAP and GBA1 mutations, whereas SCARB2-linked deficiency showed only Glucosylsphingosine elevation. GCase activity was reduced in fibroblasts and leukocytes: the decrease was sharper in GBA1- and SCARB2-mutant fibroblasts than PSAP-mutant ones; LIMP-2-deficient leukocytes displayed higher residual GCase activity than GBA1-mutant ones. Finally, we demonstrated that GCase mainly undergoes proteasomal degradation in LIMP-2-deficient fibroblasts and lysosomal degradation in PSAP-deficient fibroblasts. Thus, we analyzed the differential biochemical profile of GCase deficiencies due to the ultra-rare PSAP and SCARB2 biallelic pathogenic variants in comparison with the profile observed in GBA1-linked GCase deficiency. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

18 pages, 7528 KiB  
Article
Experimental Analysis of Tear Fluid and Its Processing for the Diagnosis of Multiple Sclerosis
by Vladimíra Tomečková, Soňa Tkáčiková, Ivan Talian, Gabriela Fabriciová, Andrej Hovan, Daria Kondrakhova, Katarína Zakutanská, Miriama Skirková, Vladimír Komanický and Natália Tomašovičová
Sensors 2023, 23(11), 5251; https://doi.org/10.3390/s23115251 - 1 Jun 2023
Cited by 10 | Viewed by 3788
Abstract
A pilot analysis of the tear fluid of patients with multiple sclerosis (MS) collected by glass microcapillary was performed using various experimental methods: liquid chromatography–mass spectrometry, Raman spectroscopy, infrared spectroscopy, and atomic-force microscopy. Infrared spectroscopy found no significant difference between the tear fluid [...] Read more.
A pilot analysis of the tear fluid of patients with multiple sclerosis (MS) collected by glass microcapillary was performed using various experimental methods: liquid chromatography–mass spectrometry, Raman spectroscopy, infrared spectroscopy, and atomic-force microscopy. Infrared spectroscopy found no significant difference between the tear fluid of MS patients and the control spectra; all three significant peaks were located at around the same positions. Raman analysis showed differences between the spectra of the tear fluid of MS patients and the spectra of healthy subjects, which indicated a decrease in tryptophan and phenylalanine content and changes in the relative contributions of the secondary structures of the polypeptide chains of tear proteins. Atomic-force microscopy exhibited a surface fern-shaped dendrite morphology of the tear fluid of patients with MS, with less roughness on both oriented silicon (100) and glass substrates compared to the tear fluid of control subjects. The results of liquid chromatography–mass spectrometry showed downregulation of glycosphingolipid metabolism, sphingolipid metabolism, and lipid metabolism. Proteomic analysis identified upregulated proteins in the tear fluid of patients with MS such as cystatine, phospholipid transfer protein, transcobalamin-1, immunoglobulin lambda variable 1–47, lactoperoxidase, and ferroptosis suppressor protein 1; and downregulated proteins such as haptoglobin, prosaposin, cytoskeletal keratin type I pre-mRNA-processing factor 17, neutrophil gelatinase-associated lipocalin, and phospholipase A2. This study showed that the tear proteome in patients with MS is modified and can reflect inflammation. Tear fluid is not a commonly used biological material in clinico-biochemical laboratories. Experimental proteomics has the potential to become a promising contemporary tool for personalized medicine, and it might be applied in clinical practice by providing a detailed analysis of the tear-fluid proteomic profile of patients with MS. Full article
Show Figures

Figure 1

11 pages, 809 KiB  
Article
Role of Prosaposin and Extracellular Sulfatase Sulf-1 Detection in Pleural Effusions as Diagnostic Biomarkers of Malignant Mesothelioma
by Lorenzo Zallocco, Roberto Silvestri, Federica Ciregia, Alessandra Bonotti, Riccardo Marino, Rudy Foddis, Antonio Lucacchini, Laura Giusti and Maria Rosa Mazzoni
Biomedicines 2022, 10(11), 2803; https://doi.org/10.3390/biomedicines10112803 - 3 Nov 2022
Cited by 1 | Viewed by 2219
Abstract
Malignant pleural mesothelioma is an aggressive malignancy with poor prognosis. Unilateral pleural effusion is frequently the initial clinical sign requiring therapeutic thoracentesis, which also offers a diagnostic opportunity. Detection of soluble biomarkers can support diagnosis, but few show good diagnostic accuracy. Here, we [...] Read more.
Malignant pleural mesothelioma is an aggressive malignancy with poor prognosis. Unilateral pleural effusion is frequently the initial clinical sign requiring therapeutic thoracentesis, which also offers a diagnostic opportunity. Detection of soluble biomarkers can support diagnosis, but few show good diagnostic accuracy. Here, we studied the expression levels and discriminative power of two putative biomarkers, prosaposin and extracellular sulfatase SULF-1, identified by proteomic and transcriptomic analysis, respectively. Pleural effusions from a total of 44 patients (23 with mesothelioma, 8 with lung cancer, and 13 with non-malignant disease) were analyzed for prosaposin and SULF-1 by enzyme-linked immunosorbent assay. Pleural effusions from mesothelioma patients had significantly higher levels of prosaposin and SULF-1 than those from non-malignant disease patients. Receiver-operating characteristic (ROC) analysis showed that both biomarkers have good discriminating power as pointed out by an AUC value of 0.853 (p = 0.0005) and 0.898 (p < 0.0001) for prosaposin and SULF-1, respectively. Combining data ensued a model predicting improvement of the diagnostic performance (AUC = 0.916, p < 0.0001). In contrast, prosaposin couldn’t discriminate mesothelioma patients from lung cancer patients while ROC analysis of SULF-1 data produced an AUC value of 0.821 (p = 0.0077) but with low sensitivity. In conclusion, prosaposin and SULF-1 levels determined in pleural effusion may be promising biomarkers for differential diagnosis between mesothelioma and non-malignant pleural disease. Instead, more patients need to be enrolled before granting the possible usefulness of these soluble proteins in differentiating mesothelioma pleural effusions from those linked to lung cancer. Full article
(This article belongs to the Special Issue State-of-the-Art Cancer Biology and Therapeutics in Italy)
Show Figures

Figure 1

15 pages, 2480 KiB  
Article
Decreased Prosaposin and Progranulin in the Cingulate Cortex Are Associated with Schizophrenia Pathophysiology
by Yachao He, Xiaoqun Zhang, Ivana Flais and Per Svenningsson
Int. J. Mol. Sci. 2022, 23(19), 12056; https://doi.org/10.3390/ijms231912056 - 10 Oct 2022
Cited by 1 | Viewed by 3753
Abstract
Prosaposin (PSAP) and progranulin (PGRN) are two lysosomal proteins that interact and modulate the metabolism of lipids, particularly sphingolipids. Alterations in sphingolipid metabolism have been found in schizophrenia. Genetic associations of PSAP and PGRN with schizophrenia have been reported. To further clarify the [...] Read more.
Prosaposin (PSAP) and progranulin (PGRN) are two lysosomal proteins that interact and modulate the metabolism of lipids, particularly sphingolipids. Alterations in sphingolipid metabolism have been found in schizophrenia. Genetic associations of PSAP and PGRN with schizophrenia have been reported. To further clarify the role of PSAP and PGRN in schizophrenia, we examined PSAP and PGRN levels in postmortem cingulate cortex tissue from healthy controls along with patients who had suffered from schizophrenia, bipolar disorder, or major depressive disorder. We found that PSAP and PGRN levels are reduced specifically in schizophrenia patients. To understand the role of PSAP in the cingulate cortex, we used an AAV strategy to knock down PSAP in neurons located in this region. Neuronal PSAP knockdown led to the downregulation of neuronal PGRN levels and behavioral abnormalities. Cingulate-PSAP-deficient mice exhibited increased anxiety-like behavior and impaired prepulse inhibition, as well as intact locomotion, working memory, and a depression-like state. The behavioral changes were accompanied by increased early growth response protein 1 (EGR-1) and activity-dependent cytoskeleton-associated protein (ARC) levels in the sensorimotor cortex and hippocampus, regions implicated in circuitry dysfunction in schizophrenia. In conclusion, PSAP and PGRN downregulation in the cingulate cortex is associated with schizophrenia pathophysiology. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Schizophrenia and Novel Targets 2.0)
Show Figures

Figure 1

13 pages, 1139 KiB  
Article
Saposin C, Key Regulator in the Alpha-Synuclein Degradation Mediated by Lysosome
by Clara Ruz, Francisco J. Barrero, Javier Pelegrina, Sara Bandrés-Ciga, Francisco Vives and Raquel Duran
Int. J. Mol. Sci. 2022, 23(19), 12004; https://doi.org/10.3390/ijms231912004 - 9 Oct 2022
Cited by 4 | Viewed by 2832
Abstract
Lysosomal dysfunction has been proposed as one of the most important pathogenic molecular mechanisms in Parkinson disease (PD). The most significant evidence lies in the GBA gene, which encodes for the lysosomal enzyme β-glucocerebrosidase (β-GCase), considered the main genetic risk factor for sporadic [...] Read more.
Lysosomal dysfunction has been proposed as one of the most important pathogenic molecular mechanisms in Parkinson disease (PD). The most significant evidence lies in the GBA gene, which encodes for the lysosomal enzyme β-glucocerebrosidase (β-GCase), considered the main genetic risk factor for sporadic PD. The loss of β-GCase activity results in the formation of α-synuclein deposits. The present study was aimed to determine the activity of the main lysosomal enzymes and the cofactors Prosaposin (PSAP) and Saposin C in PD and healthy controls, and their contribution to α-synuclein (α-Syn) aggregation. 42 PD patients and 37 age-matched healthy controls were included in the study. We first analyzed the β-GCase, β-galactosidase (β-gal), β-hexosaminidase (Hex B) and Cathepsin D (CatD) activities in white blood cells. We also measured the GBA, β-GAL, β-HEX, CTSD, PSAP, Saposin C and α-Syn protein levels by Western-blot. We found a 20% reduced β-GCase and β-gal activities in PD patients compared to controls. PSAP and Saposin C protein levels were significantly lower in PD patients and correlated with increased levels of α-synuclein. CatD, in contrast, showed significantly increased activity and protein levels in PD patients compared to controls. Increased CTSD protein levels in PD patients correlated, intriguingly, with a higher concentration of α-Syn. Our findings suggest that lysosomal dysfunction in sporadic PD is due, at least in part, to an alteration in Saposin C derived from reduced PSAP levels. That would lead to a significant decrease in the β-GCase activity, resulting in the accumulation of α-syn. The accumulation of monohexosylceramides might act in favor of CTSD activation and, therefore, increase its enzymatic activity. The evaluation of lysosomal activity in the peripheral blood of patients is expected to be a promising approach to investigate pathological mechanisms and novel therapies aimed to restore the lysosomal function in sporadic PD. Full article
(This article belongs to the Special Issue Pathogenesis of Diseases of the Central Nervous System)
Show Figures

Figure 1

13 pages, 1788 KiB  
Review
GPR37 Receptors and Megalencephalic Leukoencephalopathy with Subcortical Cysts
by Adrià Pla-Casillanis, Laura Ferigle, Marta Alonso-Gardón, Efren Xicoy-Espaulella, Ekaitz Errasti-Murugarren, Daniela Marazziti and Raúl Estévez
Int. J. Mol. Sci. 2022, 23(10), 5528; https://doi.org/10.3390/ijms23105528 - 16 May 2022
Cited by 7 | Viewed by 3417
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of vacuolating leukodystrophy (white matter disorder), which is mainly caused by defects in MLC1 or glial cell adhesion molecule (GlialCAM) proteins. In addition, autoantibodies to GlialCAM are involved in the pathology of multiple [...] Read more.
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of vacuolating leukodystrophy (white matter disorder), which is mainly caused by defects in MLC1 or glial cell adhesion molecule (GlialCAM) proteins. In addition, autoantibodies to GlialCAM are involved in the pathology of multiple sclerosis. MLC1 and GLIALCAM genes encode for membrane proteins of unknown function, which has been linked to the regulation of different ion channels and transporters, such as the chloride channel VRAC (volume regulated anion channel), ClC-2 (chloride channel 2), and connexin 43 or the Na+/K+-ATPase pump. However, the mechanisms by which MLC proteins regulate these ion channels and transporters, as well as the exact function of MLC proteins remain obscure. It has been suggested that MLC proteins might regulate signalling pathways, but the mechanisms involved are, at present, unknown. With the aim of answering these questions, we have recently described the brain GlialCAM interactome. Within the identified proteins, we could validate the interaction with several G protein-coupled receptors (GPCRs), including the orphan GPRC5B and the proposed prosaposin receptors GPR37L1 and GPR37. In this review, we summarize new aspects of the pathophysiology of MLC disease and key aspects of the interaction between GPR37 receptors and MLC proteins. Full article
(This article belongs to the Special Issue GPR37 and Related Receptors: Disease Regulation)
Show Figures

Figure 1

13 pages, 323 KiB  
Review
Mouse Mutants of Gpr37 and Gpr37l1 Receptor Genes: Disease Modeling Applications
by Marzia Massimi, Chiara Di Pietro, Gina La Sala and Rafaele Matteoni
Int. J. Mol. Sci. 2022, 23(8), 4288; https://doi.org/10.3390/ijms23084288 - 13 Apr 2022
Cited by 5 | Viewed by 3678
Abstract
The vertebrate G protein–coupled receptor 37 and G protein–coupled receptor 37-like 1 (GPR37 and GPR37L1) proteins have amino acid sequence homology to endothelin and bombesin-specific receptors. The prosaposin glycoprotein, its derived peptides, and analogues have been reported to interact with and activate both [...] Read more.
The vertebrate G protein–coupled receptor 37 and G protein–coupled receptor 37-like 1 (GPR37 and GPR37L1) proteins have amino acid sequence homology to endothelin and bombesin-specific receptors. The prosaposin glycoprotein, its derived peptides, and analogues have been reported to interact with and activate both putative receptors. The GPR37 and GPR37L1 genes are highly expressed in human and rodent brains. GPR37 transcripts are most abundant in oligodendrocytes and in the neurons of the substantia nigra and hippocampus, while the GPR37L1 gene is markedly expressed in cerebellar Bergmann glia astrocytes. The human GPR37 protein is a substrate of parkin, and its insoluble form accumulates in brain samples from patients of inherited juvenile Parkinson’s disease. Several Gpr37 and Gpr37l1 mouse mutant strains have been produced and applied to extensive in vivo and ex vivo analyses of respective receptor functions and involvement in brain and other organ pathologies. The genotypic and phenotypic characteristics of the different mouse strains so far published are reported and discussed, and their current and proposed applications to human disease modeling are highlighted. Full article
(This article belongs to the Special Issue GPR37 and Related Receptors: Disease Regulation)
8 pages, 1214 KiB  
Case Report
Phenotype Expansion for Atypical Gaucher Disease Due to Homozygous Missense PSAP Variant in a Large Consanguineous Pakistani Family
by Khurram Liaqat, Shabir Hussain, Anushree Acharya, Abdul Nasir, Thashi Bharadwaj, Muhammad Ansar, Sulman Basit, Isabelle Schrauwen, Wasim Ahmad and Suzanne M. Leal
Genes 2022, 13(4), 662; https://doi.org/10.3390/genes13040662 - 9 Apr 2022
Cited by 7 | Viewed by 3077
Abstract
Atypical Gaucher disease is caused by variants in the PSAP gene. Saposin C is one of four homologous proteins derived from sequential cleavage of the saposin precursor protein, prosaposin. It is an essential activator for glucocerebrosidase, which is deficient in Gaucher disease. Although [...] Read more.
Atypical Gaucher disease is caused by variants in the PSAP gene. Saposin C is one of four homologous proteins derived from sequential cleavage of the saposin precursor protein, prosaposin. It is an essential activator for glucocerebrosidase, which is deficient in Gaucher disease. Although atypical Gaucher disease due to deficiency of saposin C is rare, it exhibits vast phenotypic heterogeneity. Here, we report on a Pakistani family that exhibits features of Gaucher disease, i.e., prelingual profound sensorineural hearing impairment, vestibular dysfunction, hepatosplenomegaly, kyphosis, and thrombocytopenia. The family was investigated using exome and Sanger sequencing. A homozygous missense variant c.1076A>C: p.(Glu359Ala) in exon 10 of the PSAP gene was observed in all affected family members. In conclusion, we identified a new likely pathogenic missense variant in PSAP in a large consanguineous Pakistani family with atypical Gaucher disease. Gaucher disease due to a deficiency of saposin C has not been previously reported within the Pakistani population. Genetic screening of patients with the aforementioned phenotypes could ensure adequate follow-up and the prevention of further complications. Our finding expands the genetic and phenotypic spectrum of atypical Gaucher disease due to a saposin C deficiency. Full article
(This article belongs to the Special Issue Genetic Basis of Sensory and Neurological Disorders)
Show Figures

Figure 1

17 pages, 2496 KiB  
Article
Bacillus thuringiensis Spores and Cry3A Toxins Act Synergistically to Expedite Colorado Potato Beetle Mortality
by Ivan M. Dubovskiy, Ekaterina V. Grizanova, Daria Tereshchenko, Tatiana I. Krytsyna, Tatyana Alikina, Galina Kalmykova, Marsel Kabilov and Christopher J. Coates
Toxins 2021, 13(11), 746; https://doi.org/10.3390/toxins13110746 - 21 Oct 2021
Cited by 16 | Viewed by 5851
Abstract
The insect integument (exoskeleton) is an effective physiochemical barrier that limits disease-causing agents to a few portals of entry, including the gastrointestinal and reproductive tracts. The bacterial biopesticide Bacillus thuringiensis (Bt) enters the insect host via the mouth and must thwart gut-based defences [...] Read more.
The insect integument (exoskeleton) is an effective physiochemical barrier that limits disease-causing agents to a few portals of entry, including the gastrointestinal and reproductive tracts. The bacterial biopesticide Bacillus thuringiensis (Bt) enters the insect host via the mouth and must thwart gut-based defences to make its way into the body cavity (haemocoel) and establish infection. We sought to uncover the main antibacterial defences of the midgut and the pathophysiological features of Bt in a notable insect pest, the Colorado potato beetle Leptinotarsa decemlineata (CPB). Exposing the beetles to both Bt spores and their Cry3A toxins (crystalline δ-endotoxins) via oral inoculation led to higher mortality levels when compared to either spores or Cry3A toxins alone. Within 12 h post-exposure, Cry3A toxins caused a 1.5-fold increase in the levels of reactive oxygen species (ROS) and malondialdehyde (lipid peroxidation) within the midgut – key indicators of tissue damage. When Cry3A toxins are combined with spores, gross redox imbalance and ‘oxidation stress’ is apparent in beetle larvae. The insect detoxification system is activated when Bt spores and Cry3A toxins are administered alone or in combination to mitigate toxicosis, in addition to elevated mRNA levels of candidate defence genes (pattern-recognition receptor, stress-regulation, serine proteases, and prosaposin-like protein). The presence of bacterial spores and/or Cry3A toxins coincides with subtle changes in microbial community composition of the midgut, such as decreased Pseudomonas abundance at 48 h post inoculation. Both Bt spores and Cry3A toxins have negative impacts on larval health, and when combined, likely cause metabolic derangement, due to multiple tissue targets being compromised. Full article
(This article belongs to the Special Issue The Pivotal Role of Toxins in Insects-Bacteria Interactions)
Show Figures

Figure 1

11 pages, 1314 KiB  
Article
Wider Angle Egg Turning during Incubation Enhances Yolk Utilization and Promotes Goose Embryo Development
by Binbin Guo, Leyan Yan, Mingming Lei, Zichun Dai and Zhendan Shi
Animals 2021, 11(9), 2485; https://doi.org/10.3390/ani11092485 - 24 Aug 2021
Cited by 10 | Viewed by 4201
Abstract
We aimed to investigate how wide-angle turning of eggs during incubation affected yolk utilization and the associated molecular mechanism, along with improved goose embryonic development. In total, 1152 eggs (mean weight: 143.33 ± 5.43 g) were divided equally and incubated in two commercial [...] Read more.
We aimed to investigate how wide-angle turning of eggs during incubation affected yolk utilization and the associated molecular mechanism, along with improved goose embryonic development. In total, 1152 eggs (mean weight: 143.33 ± 5.43 g) were divided equally and incubated in two commercial incubators with tray turning angles adjusted differently, to either 50° or 70°. Following incubation under the standard temperature and humidity level, turning eggs by 70° increased embryonic days 22 (E22), embryo mass, gosling weight at hatching, and egg hatchability, but reduced E22 yolk mass compared with those after turning eggs by 50°. Lipidomic analyses of the yolk revealed that egg turning at 70° reduced the concentrations of 17 of 1132 detected total lipids, including diglycerides, triglycerides, and phospholipids. Furthermore, the 70° egg turning upregulated the expression of genes related to lipolysis and fat digestion enzymes, such as lipase, cathepsin B, and prosaposin, as well as apolipoprotein B, apolipoprotein A4, very low-density lipoprotein receptor, low-density lipoprotein receptor-related protein 2, and thrombospondin receptor, which are genes involved in lipid transportation. Thus, a 70° egg turning angle during incubation enhances yolk utilization through the upregulation of lipolysis and fat digestion-related gene expression, thereby promoting embryonic development and improving egg hatchability and gosling quality. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

15 pages, 2070 KiB  
Article
Functional Analysis of Haplotypes in Bovine PSAP Gene and Their Relationship with Beef Cattle Production Traits
by Haidong Zhao, Mingli Wu, Xiaohua Yi, Xiaoqin Tang, Pingbo Chen, Shuhui Wang and Xiuzhu Sun
Animals 2021, 11(1), 49; https://doi.org/10.3390/ani11010049 - 29 Dec 2020
Cited by 2 | Viewed by 2567
Abstract
The purpose of this study was to explore functional variants in the prosaposin (PSAP) three prime untranslated region (3’ UTR) and clarify the relationship between the variants and morphological traits. Through Sanger sequencing, 13 variations were identified in bovine PSAP in [...] Read more.
The purpose of this study was to explore functional variants in the prosaposin (PSAP) three prime untranslated region (3’ UTR) and clarify the relationship between the variants and morphological traits. Through Sanger sequencing, 13 variations were identified in bovine PSAP in four Chinese cattle breeds, with six of them being loci in 3’ UTR. In particular, Nanyang (NY) cattle had a special genotype and haplotype distribution compared to the other three breeds. NY cattle with ACATG and GCGTG haplotypes had higher morphological traits than GTACA and GTACG haplotypes. The results of dual-luciferase reporter assay showed that ACATG and GCGTG haplotypes affected the morphological traits of NY cattle by altering the secondary structure of PSAP 3’ UTR rather than the miR-184 target sites. The findings of this study could be an evidence of a complex and varying mechanism between variants and animal morphological traits and could be used to complement candidate genes for molecular breeding. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop