Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = procollagen type 1 amino-terminal propeptide (P1NP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1467 KiB  
Article
The Temporal Change in Ionised Calcium, Parathyroid Hormone and Bone Metabolism Following Ingestion of a Plant-Sourced Marine Mineral + Protein Isolate in Healthy Young Adults
by Marta Kozior, Olusoji Aboyeji Demehin, Michelle Mary Ryan, Shane O’Connell and Philip Michael Jakeman
Nutrients 2024, 16(18), 3110; https://doi.org/10.3390/nu16183110 - 14 Sep 2024
Viewed by 1651
Abstract
Background: An increase in plant-sourced (PS) nutrient intake is promoted in support of a sustainable diet. PS dietary minerals and proteins have bioactive properties that can affect bone health and the risk of fracture. Methods: In a group randomised, cross-over design, this study [...] Read more.
Background: An increase in plant-sourced (PS) nutrient intake is promoted in support of a sustainable diet. PS dietary minerals and proteins have bioactive properties that can affect bone health and the risk of fracture. Methods: In a group randomised, cross-over design, this study evaluated the post-ingestion temporal pattern of change in arterialised ionised calcium (iCa), parathyroid hormone (PTH), C-terminal crosslinked telopeptide of type I collagen (CTX) and procollagen type 1 amino-terminal propeptide (P1NP) for 4 h following ingestion of a novel supplement (SUPP) containing a PS marine multi-mineral + PS protein isolate. A diurnally matched intake of mineral water was used as a control (CON). Results: Compared to baseline, the change in iCa concentration was 0.022 (95% CI, 0.006 to 0.038, p = 0.011) mmol/l greater in SUPP than CON, resulting in a −4.214 (95% CI, −8.244 to −0.183, p = 0.042) pg/mL mean reduction in PTH, a −0.64 (95% CI, −0.199 to −0.008, p = 0.029) ng/mL decrease in the biomarker of bone resorption, CTX, and no change in the biomarker of bone formation, P1NP. Conclusions: When used as a dietary supplement, or incorporated into a food matrix, the promotion of PS marine multi-mineral and PS protein isolates may contribute to a more sustainable diet and overall bone health. Full article
(This article belongs to the Special Issue Mineral Nutrition on Human Health and Disease)
Show Figures

Figure 1

11 pages, 466 KiB  
Article
Impact of Intravenous Iron Substitution on Serum Phosphate Levels and Bone Turnover Markers—An Open-Label Pilot Study
by Alexandra Struppe, Jakob E. Schanda, Andreas Baierl, Paul Watzl and Christian Muschitz
Nutrients 2023, 15(12), 2693; https://doi.org/10.3390/nu15122693 - 9 Jun 2023
Cited by 3 | Viewed by 2554
Abstract
The association between intravenous iron substitution therapy and hypophosphatemia was previously reported in patients with iron deficiency anemia. However, the extent of hypophosphatemia is thought to depend on the type of iron supplementation. We hypothesized that the intravenous application of ferric carboxymaltose and [...] Read more.
The association between intravenous iron substitution therapy and hypophosphatemia was previously reported in patients with iron deficiency anemia. However, the extent of hypophosphatemia is thought to depend on the type of iron supplementation. We hypothesized that the intravenous application of ferric carboxymaltose and iron sucrose leads to a different longitudinal adaptation in serum phosphate levels. In this open-label pilot study, a total of 20 patients with inflammatory bowel diseases or iron deficiency anemia were randomly assigned to one of two study groups (group 1: ferric carboxymaltose, n = 10; group 2: iron sucrose, n = 10). Serum values were controlled before iron substitution therapy, as well as 2, 4, and 12 weeks after the last drug administration. The primary objective of the study was the longitudinal evaluation of serum phosphate levels after iron substitution therapy with ferric carboxymaltose and iron sucrose. The secondary objective was the longitudinal investigation of calcium, 25-hydroxyvitamin D (25(OH)D), intact parathyroid hormone, procollagen type 1 amino-terminal propeptide (P1NP), beta-CrossLaps (CTX), hemoglobin (Hb), iron, ferritin, and transferrin saturation levels. Two weeks after drug administration, phosphate levels were significantly lower (p < 0.001) in group 1 and ferritin levels were significantly higher (p < 0.001) in group 1. Phosphate levels (0.8–1.45 mmol/L) were below the therapeutic threshold and ferritin levels (10–200 ng/mL for women and 30–300 ng/mL for men) were above the therapeutic threshold in group 1. P1NP (15–59 µg/L) and CTX (<0.57 ng/mL) levels were above the therapeutic threshold in group 2. Four weeks after drug administration, significant differences were still observed between both study groups for phosphate (p = 0.043) and ferritin (p = 0.0009). All serum values except for Hb were within the therapeutic thresholds. Twelve weeks after drug administration, no differences were observed in all serum values between both study groups. Hb values were within the therapeutic threshold in both study groups. Serum 25(OH)D levels did not differ between both study groups throughout the whole study period and remained within the therapeutic threshold. Full article
(This article belongs to the Special Issue Vitamin D Deficiency and Supplementation in Human Metabolic Diseases)
Show Figures

Figure 1

17 pages, 4313 KiB  
Article
Blackcurrants Reduce the Risk of Postmenopausal Osteoporosis: A Pilot Double-Blind, Randomized, Placebo-Controlled Clinical Trial
by Briana M. Nosal, Junichi R. Sakaki, Zachary Macdonald, Kyle Mahoney, Kijoon Kim, Matthew Madore, Staci Thornton, Thi Dong Binh Tran, George Weinstock, Elaine Choung-Hee Lee and Ock K. Chun
Nutrients 2022, 14(23), 4971; https://doi.org/10.3390/nu14234971 - 23 Nov 2022
Cited by 9 | Viewed by 5843
Abstract
Beneficial effects of blackcurrant supplementation on bone metabolism in mice has recently been demonstrated, but no studies are available in humans. The current study aimed to examine the dose-dependent effects of blackcurrant in preventing bone loss and the underlying mechanisms of action in [...] Read more.
Beneficial effects of blackcurrant supplementation on bone metabolism in mice has recently been demonstrated, but no studies are available in humans. The current study aimed to examine the dose-dependent effects of blackcurrant in preventing bone loss and the underlying mechanisms of action in adult women. Forty peri- and early postmenopausal women were randomly assigned into one of three treatment groups for 6 months: (1) a placebo (control group, n = 13); (2) 392 mg/day of blackcurrant powder (low blackcurrant, BC, group, n = 16); and (3) 784 mg/day of blackcurrant powder (high BC group, n = 11). The significance of differences in outcome variables was tested by repeated-measures ANOVA with treatment and time as between- and within-subject factors, respectively. Overall, blackcurrant supplementation decreased the loss of whole-body bone mineral density (BMD) compared to the control group (p < 0.05), though the improvement of whole-body BMD remained significant only in the high BC group (p < 0.05). Blackcurrant supplementation also led to a significant increase in serum amino-terminal propeptide of type 1 procollagen (P1NP), a marker of bone formation (p < 0.05). These findings suggest that daily consumption of 784 mg of blackcurrant powder for six months mitigates the risk of postmenopausal bone loss, potentially through enhancing bone formation. Further studies of larger samples with various skeletal conditions are warranted to confirm these findings. Full article
(This article belongs to the Special Issue Antioxidant Mechanism of Bioactive Compounds and Health Benefits)
Show Figures

Figure 1

11 pages, 1862 KiB  
Article
Temporal Change in Biomarkers of Bone Turnover Following Late Evening Ingestion of a Calcium-Fortified, Milk-Based Protein Matrix in Postmenopausal Women with Osteopenia
by Manjula Hettiarachchi, Rachel Cooke, Catherine Norton and Phil Jakeman
Nutrients 2019, 11(6), 1413; https://doi.org/10.3390/nu11061413 - 23 Jun 2019
Cited by 6 | Viewed by 5325
Abstract
The diurnal rhythm of bone remodeling suggests nocturnal dietary intervention to be most effective. This study investigated the effect of bedtime ingestion of a calcium-fortified, milk-derived protein matrix (MBPM) or maltodextrin (CON) on acute (0–4 h) blood and 24-h urinary change in biomarkers [...] Read more.
The diurnal rhythm of bone remodeling suggests nocturnal dietary intervention to be most effective. This study investigated the effect of bedtime ingestion of a calcium-fortified, milk-derived protein matrix (MBPM) or maltodextrin (CON) on acute (0–4 h) blood and 24-h urinary change in biomarkers of bone remodeling in postmenopausal women with osteopenia. In CON, participants received 804 ± 52 mg calcium, 8.2 ± 3.2 µg vitamin D and 1.3 ± 0.2 g/kg BM protein per day. MBPM increased calcium intake to 1679 ± 196 mg, vitamin D to 9.2 ± 3.1 µg and protein to 1.6 ± 0.2 g/kg BM. Serum C-terminal cross-linked telopeptide of type I collagen (CTX) and procollagen type 1 amino-terminal propeptide (P1NP), and urinary N-telopeptide cross-links of type I collagen (NTX), pyridinoline (PYD) and deoxypyridinoline (DPD) was measured. Analyzed by AUC and compared to CON, a −32% lower CTX (p = 0.011, d = 0.83) and 24% (p = 0.52, d = 0.2) increase in P1NP was observed for MBPM. Mean total 24 h NTX excreted in MBPM was −10% (p = 0.035) lower than CON. Urinary PYD and DPD were unaffected by treatment. This study demonstrates the acute effects of bedtime ingestion of a calcium-fortified, milk-based protein matrix on bone remodeling. Full article
(This article belongs to the Special Issue Nutritional Status and Bone Health)
Show Figures

Figure 1

Back to TopTop