Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,015)

Search Parameters:
Keywords = price ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 790 KiB  
Article
How Does the Power Generation Mix Affect the Market Value of US Energy Companies?
by Silvia Bressan
J. Risk Financial Manag. 2025, 18(8), 437; https://doi.org/10.3390/jrfm18080437 - 6 Aug 2025
Abstract
To remain competitive in the decarbonization process of the economy worldwide, energy companies must preserve their market value to attract new investors and remain resilient throughout the transition to net zero. This article examines the market value of US energy companies during the [...] Read more.
To remain competitive in the decarbonization process of the economy worldwide, energy companies must preserve their market value to attract new investors and remain resilient throughout the transition to net zero. This article examines the market value of US energy companies during the period 2012–2024 in relation to their power generation mix. Panel regression analyses reveal that Tobin’s q and price-to-book ratios increase significantly for solar and wind power, while they experience moderate increases for natural gas power. In contrast, Tobin’s q and price-to-book ratios decline for nuclear and coal power. Furthermore, accounting-based profitability, measured by the return on assets (ROA), does not show significant variation with any type of power generation. The findings suggest that market investors prefer solar, wind, and natural gas power generation, thereby attributing greater value (that is, demanding lower risk compensation) to green companies compared to traditional ones. These insights provide guidance to executives, investors, and policy makers on how the power generation mix can influence strategic decisions in the energy sector. Full article
(This article belongs to the Special Issue Linkage Between Energy and Financial Markets)
Show Figures

Figure 1

23 pages, 2216 KiB  
Article
Development of Financial Indicator Set for Automotive Stock Performance Prediction Using Adaptive Neuro-Fuzzy Inference System
by Tamás Szabó, Sándor Gáspár and Szilárd Hegedűs
J. Risk Financial Manag. 2025, 18(8), 435; https://doi.org/10.3390/jrfm18080435 - 5 Aug 2025
Abstract
This study investigates the predictive performance of financial indicators in forecasting stock prices within the automotive sector using an adaptive neuro-fuzzy inference system (ANFIS). In light of the growing complexity of global financial markets and the increasing demand for automated, data-driven forecasting models, [...] Read more.
This study investigates the predictive performance of financial indicators in forecasting stock prices within the automotive sector using an adaptive neuro-fuzzy inference system (ANFIS). In light of the growing complexity of global financial markets and the increasing demand for automated, data-driven forecasting models, this research aims to identify those financial ratios that most accurately reflect price dynamics in this specific industry. The model incorporates four widely used financial indicators, return on assets (ROA), return on equity (ROE), earnings per share (EPS), and profit margin (PM), as inputs. The analysis is based on real financial and market data from automotive companies, and model performance was assessed using RMSE, nRMSE, and confidence intervals. The results indicate that the full model, including all four indicators, achieved the highest accuracy and prediction stability, while the exclusion of ROA or ROE significantly deteriorated model performance. These findings challenge the weak-form efficiency hypothesis and underscore the relevance of firm-level fundamentals in stock price formation. This study’s sector-specific approach highlights the importance of tailoring predictive models to industry characteristics, offering implications for both financial modeling and investment strategies. Future research directions include expanding the indicator set, increasing the sample size, and testing the model across additional industry domains. Full article
(This article belongs to the Section Economics and Finance)
Show Figures

Figure 1

17 pages, 1152 KiB  
Article
PortRSMs: Learning Regime Shifts for Portfolio Policy
by Bingde Liu and Ryutaro Ichise
J. Risk Financial Manag. 2025, 18(8), 434; https://doi.org/10.3390/jrfm18080434 - 5 Aug 2025
Viewed by 63
Abstract
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties [...] Read more.
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties over short periods and maintaining sensitivity to sudden shocks in price sequences. PortRSMs also performs cross-asset regime fusion through hypergraph attention mechanisms, providing a more comprehensive state space for describing changes in asset correlations and co-integration. Experiments conducted on two different trading frequencies in the stock markets of the United States and Hong Kong show the superiority of PortRSMs compared to other approaches in terms of profitability, risk–return balancing, robustness, and the ability to handle sudden market shocks. Specifically, PortRSMs achieves up to a 0.03 improvement in the annual Sharpe ratio in the U.S. market, and up to a 0.12 improvement for the Hong Kong market compared to baseline methods. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance, 2nd Edition)
Show Figures

Figure 1

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 223
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 - 2 Aug 2025
Viewed by 252
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Graphical abstract

16 pages, 263 KiB  
Article
Hospitality in Crisis: Evaluating the Downside Risks and Market Sensitivity of Hospitality REITs
by Davinder Malhotra and Raymond Poteau
Int. J. Financial Stud. 2025, 13(3), 140; https://doi.org/10.3390/ijfs13030140 - 1 Aug 2025
Viewed by 223
Abstract
This study evaluates the risk-adjusted performance of Hospitality REITs using multi-factor asset pricing models and downside risk measures with the aim of assessing their diversification potential and crisis sensitivity. Unlike prior studies that examine REITs in aggregate, this study isolates Hospitality REITs to [...] Read more.
This study evaluates the risk-adjusted performance of Hospitality REITs using multi-factor asset pricing models and downside risk measures with the aim of assessing their diversification potential and crisis sensitivity. Unlike prior studies that examine REITs in aggregate, this study isolates Hospitality REITs to explore their unique cyclical and macroeconomic sensitivities. This study looks at the risk-adjusted performance of Hospitality Real Estate Investment Trusts (REITs) in relation to more general REIT indexes and the S&P 500 Index. The study reveals that monthly returns of Hospitality REITs increasingly move in tandem with the stock markets during financial crises, which reduces their historical function as portfolio diversifiers. Investing in Hospitality REITs exposes one to the hospitality sector; however, these investments carry notable risks and provide little protection, particularly during economic upheavals. Furthermore, the study reveals that Hospitality REITs underperform on a risk-adjusted basis relative to benchmark indexes. The monthly returns of REITs show significant volatility during the post-COVID-19 era, which causes return-to-risk ratios to be below those of benchmark indexes. Estimates from multi-factor models indicate negative alpha values across conditional models, indicating that macroeconomic variables cause unremunerated risks. This industry shows great sensitivity to market beta and size and value determinants. Hospitality REITs’ susceptibility comes from their showing the most possibility for exceptional losses across asset classes under Value at Risk (VaR) and Conditional Value at Risk (CvaR) downside risk assessments. The findings have implications for investors and portfolio managers, suggesting that Hospitality REITs may not offer consistent diversification benefits during downturns but can serve a tactical role in procyclical investment strategies. Full article
19 pages, 2005 KiB  
Article
Research on the Implementation Effects, Multi-Objective Scheme Selection, and Element Regulation of China’s Carbon Market
by Yue Ma, Ling Miao and Lianyong Feng
Sustainability 2025, 17(15), 6955; https://doi.org/10.3390/su17156955 - 31 Jul 2025
Viewed by 342
Abstract
With the proposal of China’s “dual carbon” goal, the carbon market has become a vital tool for controlling carbon emissions. This study constructs a system dynamics model encompassing carbon trading, the economy, energy, population, and the environment, and conducts simulation analysis against the [...] Read more.
With the proposal of China’s “dual carbon” goal, the carbon market has become a vital tool for controlling carbon emissions. This study constructs a system dynamics model encompassing carbon trading, the economy, energy, population, and the environment, and conducts simulation analysis against the backdrop of China’s national carbon market’s implementation. The results indicate that the implementation of China’s national carbon market significantly promotes carbon emissions reduction, albeit at the cost of some economic development in the short term. However, the suppressive effect of the carbon market on carbon emissions is stronger than its negative impact on economic growth. The effects of carbon reduction strengthen with increases in carbon price, quota auction, CCER price, penalty severity, and the quota reduction rate and weaken with a higher CCER offset ratio. A moderate reduction in the tightening quota reduction rate is more conducive to achieving coordinated development across the multiple objectives of carbon reduction, economic development, and energy structure. Under the constraints of multiple objectives involving carbon reduction, economic development, and energy structure, the reasonable range for carbon prices is between CNY 77.9 and CNY 118.9 per ton, with the maximum quota auction of 23.4%. Additionally, the reasonable range for the quota reduction rates is between 0.84% and 2.18%, with the penalty severity set at 7. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

25 pages, 946 KiB  
Article
Short-Term Forecasting of the JSE All-Share Index Using Gradient Boosting Machines
by Mueletshedzi Mukhaninga, Thakhani Ravele and Caston Sigauke
Economies 2025, 13(8), 219; https://doi.org/10.3390/economies13080219 - 28 Jul 2025
Viewed by 517
Abstract
This study applies Gradient Boosting Machines (GBMs) and principal component regression (PCR) to forecast the closing price of the Johannesburg Stock Exchange (JSE) All-Share Index (ALSI), using daily data from 2009 to 2024, sourced from the Wall Street Journal. The models are evaluated [...] Read more.
This study applies Gradient Boosting Machines (GBMs) and principal component regression (PCR) to forecast the closing price of the Johannesburg Stock Exchange (JSE) All-Share Index (ALSI), using daily data from 2009 to 2024, sourced from the Wall Street Journal. The models are evaluated under three training–testing split ratios to assess short-term forecasting performance. Forecast accuracy is assessed using standard error metrics: mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute scaled error (MASE). Across all test splits, the GBM consistently achieves lower forecast errors than PCR, demonstrating superior predictive accuracy. To validate the significance of this performance difference, the Diebold–Mariano (DM) test is applied, confirming that the forecast errors from the GBM are statistically significantly lower than those of PCR at conventional significance levels. These findings highlight the GBM’s strength in capturing nonlinear relationships and complex interactions in financial time series, particularly when using features such as the USD/ZAR exchange rate, oil, platinum, and gold prices, the S&P 500 index, and calendar-based variables like month and day. Future research should consider integrating additional macroeconomic indicators and exploring alternative or hybrid forecasting models to improve robustness and generalisability across different market conditions. Full article
Show Figures

Figure 1

24 pages, 2758 KiB  
Article
A Techno-Economic Analysis of Integrating an Urban Biorefinery Process Within a Wastewater Treatment Plant to Produce Sustainable Wood Adhesives
by Blake Foret, William M. Chirdon, Rafael Hernandez, Dhan Lord B. Fortela, Emmanuel Revellame, Daniel Gang, Jalel Ben Hmida, William E. Holmes and Mark E. Zappi
Sustainability 2025, 17(15), 6679; https://doi.org/10.3390/su17156679 - 22 Jul 2025
Viewed by 404
Abstract
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal [...] Read more.
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal wastewater treatment works. The utilization of biosolids (particularly microbial proteins) from wastewater treatment operations could generate a sustainable bio-adhesive for the wood industry, reduce carbon footprint, mitigate health concerns related to the use of carcinogenic components, and support a more circular economic option for wastewater treatment. A techno-economic analysis for three 10 MGD wastewater treatment operations producing roughly 11,300 dry pounds of biosolids per day, in conjunction with co-feedstock defatted soy flour protein at varying ratios (i.e., 0%, 15%, and 50% wet weight), was conducted. Aspen Capital Cost Estimator V12 was used to design and estimate installed equipment additions for wastewater treatment plant integration into an urban biorefinery process. Due to the mechanical attributes and market competition, the chosen selling prices of each adhesive per pound were set for analysis as USD 0.75 for Plant Option P1, USD 0.85 for Plant Option P2, and USD 1.00 for Plant Option P3. Over a 20-year life, each plant option demonstrated economic viability with high NPVs of USD 107.9M, USD 178.7M, and USD 502.2M and internal rates of return (IRRs) of 24.0%, 29.0%, and 44.2% respectively. The options examined have low production costs of USD 0.14 and USD 0.19 per pound, minimum selling prices of USD 0.42–USD 0.51 per pound, resulting in between 2- and 4-year payback periods. Sensitivity analysis shows the effects biosolid production fluctuations, raw material market price, and adhesive selling price have on economics. The results proved profitable even with large variations in the feedstock and raw material prices, requiring low market selling prices to reach the hurdle rate of examination. This technology is economically enticing, and the positive environmental impact of waste utilization encourages further development and analysis of the bio-adhesive process. Full article
Show Figures

Figure 1

46 pages, 3679 KiB  
Article
More or Less Openness? The Credit Cycle, Housing, and Policy
by Maria Elisa Farias and David R. Godoy
Economies 2025, 13(7), 207; https://doi.org/10.3390/economies13070207 - 18 Jul 2025
Viewed by 319
Abstract
Housing prices have recently risen sharply in many countries, primarily linked to the global credit cycle. Although various factors play a role, the ability of developing countries to navigate this cycle and maintain autonomous monetary policies is crucial. This paper introduces a dynamic [...] Read more.
Housing prices have recently risen sharply in many countries, primarily linked to the global credit cycle. Although various factors play a role, the ability of developing countries to navigate this cycle and maintain autonomous monetary policies is crucial. This paper introduces a dynamic macroeconomic model featuring a housing production sector within an imperfect banking framework. It captures key housing and economic dynamics in advanced and emerging economies. The analysis shows domestic liquidity policies, such as bank capital requirements, reserve ratios, and currency devaluation, can stabilize investment and production. However, their effectiveness depends on foreign interest rates and liquidity. Stabilizing housing prices and risk-free bonds is more effective in high-interest environments, while foreign liquidity shocks have asymmetric impacts. They can boost or lower the effectiveness of domestic policy, depending on the country’s level of financial development. These findings have several policy implications. For example, foreign capital controls would be adequate in the short term but not in the long term. Instead, governments would try to promote the development of local financial markets. Controlling debt should be a target for macroprudential policy as well as promoting saving instruments other than real estate, especially during low interest rates. Full article
Show Figures

Figure 1

32 pages, 8548 KiB  
Article
A Comprehensive Study of the Macro-Scale Performance of Graphene Oxide Enhanced Low Carbon Concrete
by Thusitha Ginigaddara, Pasadi Devapura, Vanissorn Vimonsatit, Michael Booy, Priyan Mendis and Rish Satsangi
Constr. Mater. 2025, 5(3), 47; https://doi.org/10.3390/constrmater5030047 - 18 Jul 2025
Viewed by 365
Abstract
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and [...] Read more.
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and tensile strength, drying shrinkage, and elastic modulus. Scanning Electron Microscopy (SEM), energy-dispersive spectroscopy (EDS), Thermogravimetric analysis (TGA) and proton nuclear magnetic resonance (1H-NMR) was employed to examine microstructural evolution and early age water retention, confirming GO’s role in accelerating cement hydration and promoting C-S-H formation. Optimal performance was achieved at 0.05% GO (by binder weight), resulting in a 25% increase in 28-day compressive strength without compromising workability. This outcome is attributed to a tailored, non-invasive mixing strategy, wherein GO was pre-dispersed during synthesis and subsequently blended without the use of invasive mixing methods such as high shear mixing or ultrasonication. Fourier-transform infrared (FTIR) spectroscopy further validated the chemical compatibility of GO and PCE and confirmed the compatibility and efficiency of the admixture. Sustainability metrics, including embodied carbon and strength-normalized cost indices (USD/MPa), indicated that, although GO increased material cost, the overall cost-performance ratio remained competitive at breakeven GO prices. Enhanced efficiency also led to lower net embodied CO2 emissions. By integrating mechanical, microstructural, and environmental analyses, this study demonstrates GO’s multifunctional benefits and provides a robust basis for its industrial implementation in sustainable infrastructure. Full article
Show Figures

Figure 1

34 pages, 2697 KiB  
Article
Pricing and Emission Reduction Strategies of Heterogeneous Automakers Under the “Dual-Credit + Carbon Cap-and-Trade” Policy Scenario
by Chenxu Wu, Yuxiang Zhang, Junwei Zhao, Chao Wang and Weide Chun
Mathematics 2025, 13(14), 2262; https://doi.org/10.3390/math13142262 - 13 Jul 2025
Viewed by 299
Abstract
Against the backdrop of increasingly severe global climate change, the automotive industry, as a carbon-intensive sector, has found its low-carbon transformation crucial for achieving the “double carbon” goals. This paper constructs manufacturer decision-making models under an oligopolistic market scenario for the single dual-credit [...] Read more.
Against the backdrop of increasingly severe global climate change, the automotive industry, as a carbon-intensive sector, has found its low-carbon transformation crucial for achieving the “double carbon” goals. This paper constructs manufacturer decision-making models under an oligopolistic market scenario for the single dual-credit policy and the “dual-credit + carbon cap-and-trade” policy, revealing the nonlinear impacts of new energy vehicle (NEV) credit trading prices, carbon trading prices, and credit ratio requirements on manufacturers’ pricing, emission reduction effort levels, and profits. The results indicate the following: (1) Under the “carbon cap-and-trade + dual-credit” policy, manufacturers can balance emission reduction costs and NEV production via the carbon trading market to maximize profits, with lower emission reduction effort levels than under the single dual-credit policy. (2) A rise in credit trading prices prompts hybrid manufacturers (producing both fuel vehicles and NEVs) to increase NEV production and reduce fuel vehicle output; higher NEV credit ratio requirements raise fuel vehicle production costs and prices, suppressing consumer demand. (3) An increase in carbon trading prices raises production costs for both fuel vehicles and NEVs, leading to decreased market demand; hybrid manufacturers reduce emission reduction efforts, while others transfer costs through price hikes to boost profits. (4) Hybrid manufacturers face high carbon emission costs due to excessive actual fuel consumption, driving them to enhance emission reduction efforts and promote low-carbon technological innovation. Full article
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Elemental and Isotopic Fingerprints of Potatoes
by Cezara Voica, Ioana Feher, Romulus Puscas, Andreea Maria Iordache and Gabriela Cristea
Foods 2025, 14(14), 2440; https://doi.org/10.3390/foods14142440 - 10 Jul 2025
Viewed by 413
Abstract
Nowadays, food traceability represents an important issue in the current context of trade agreements, which influence global food prices. Many consumers prefer to pay a higher price for a traditional cultivation regime of a certain food product that comes from a certain region, [...] Read more.
Nowadays, food traceability represents an important issue in the current context of trade agreements, which influence global food prices. Many consumers prefer to pay a higher price for a traditional cultivation regime of a certain food product that comes from a certain region, appreciating the taste of the respective foodstuff. The potato is now the world’s fourth most important food crop in terms of human consumption, after wheat, maize, and rice. In this context, 100 potato samples from the Romanian market were collected. While 68 samples came from Romania, the rest of the 32 were from abroad (Hungary, France, Greece, Italy, Germany, Egypt, and Poland). The countries selected for potato sample analysis are among the main exporters of potatoes to the Romanian market. The samples were investigated by their multi-elemental and isotopic (2H, 18O and 13C) fingerprints, using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Isotope Ratio Mass Spectrometry (IRMS). Then, to distinguish the geographical origin, the experimental results were statistically processed using linear discriminant analysis (LDA). The best markers that emphasize Romanian potatoes were identified to be δ13Cbulk, δ2Hwater, and Sr. Full article
Show Figures

Graphical abstract

23 pages, 504 KiB  
Article
Non-Performing Loans and Their Impact on Investor Confidence: A Signaling Theory Perspective—Evidence from U.S. Banks
by Richard Arhinful, Bright Akwasi Gyamfi, Leviticus Mensah and Hayford Asare Obeng
J. Risk Financial Manag. 2025, 18(7), 383; https://doi.org/10.3390/jrfm18070383 - 10 Jul 2025
Viewed by 706
Abstract
Bank operations are contingent upon investor confidence, particularly during periods of economic distress. If investor confidence drops, a bank faces difficulties obtaining money, higher borrowing costs, and lower stock values. Non-performing loans (NPLs) potentially jeopardize a bank’s long-term viability and short-term profitability, and [...] Read more.
Bank operations are contingent upon investor confidence, particularly during periods of economic distress. If investor confidence drops, a bank faces difficulties obtaining money, higher borrowing costs, and lower stock values. Non-performing loans (NPLs) potentially jeopardize a bank’s long-term viability and short-term profitability, and investors are naturally wary of institutions that pose a high credit risk. The purpose of the study was to explore how non-performing loans influence investor confidence in banks. A purposive sampling technique was used to identify 253 New York Stock Exchange banks in the Thomson Reuters Eikon DataStream that satisfied all the inclusion and exclusion selection criteria. The Common Correlated Effects Mean Group (CCEMG) and Generalized Method of Moments (GMM) models were used to analyze the data, providing insight into the relationship between the variables. The study discovered that NPLs had a negative and significant influence on price–earnings (P/E) and price-to-book value (P/B) ratios. Furthermore, the bank’s age was found to have a positive and significant relationship with the P/E and P/B ratio. The moderating relationship between NPLs and bank age was found to have a negative and significant influence on price–earnings (P/E) and price-to-book value (P/B) ratios. The findings underscore the importance of asset quality and institutional reputation in influencing market perceptions. Bank managers should focus on managing non-performing loans effectively and leveraging institutional credibility to sustain investor confidence, particularly during financial distress. Full article
(This article belongs to the Special Issue Financial Markets and Institutions and Financial Crises)
Show Figures

Figure 1

15 pages, 795 KiB  
Article
Optimal Dispatch of Power Grids Considering Carbon Trading and Green Certificate Trading
by Xin Shen, Xuncheng Zhu, Yuan Yuan, Zhao Luo, Xiaoshun Zhang and Yuqin Liu
Technologies 2025, 13(7), 294; https://doi.org/10.3390/technologies13070294 - 9 Jul 2025
Viewed by 278
Abstract
In the context of the intensifying global climate crisis, the power industry, as a significant carbon emitter, urgently needs to promote low-carbon transformation using market mechanisms. In this paper, a multi-objective stochastic optimization scheduling framework for regional power grids integrating carbon trading (CET) [...] Read more.
In the context of the intensifying global climate crisis, the power industry, as a significant carbon emitter, urgently needs to promote low-carbon transformation using market mechanisms. In this paper, a multi-objective stochastic optimization scheduling framework for regional power grids integrating carbon trading (CET) and green certificate trading (GCT) is proposed to coordinate the conflict between economic benefits and environmental objectives. By building a deterministic optimization model, the goal of maximizing power generation profit and minimizing carbon emissions is combined in a weighted form, and the power balance, carbon quota constraint, and the proportion of renewable energy are introduced. To deal with the uncertainty of power demand, carbon baseline, and the green certificate ratio, Monte Carlo simulation was further used to generate random parameter scenarios, and the CPLEX solver was used to optimize scheduling schemes iteratively. The simulation results show that when the proportion of green certificates increases from 0.35 to 0.45, the proportion of renewable energy generation increases by 4%, the output of coal power decreases by 12–15%, and the carbon emission decreases by 3–4.5%. At the same time, the tightening of carbon quotas (coefficient increased from 0.78 to 0.84) promoted the output of gas units to increase by 70 MWh, verifying the synergistic emission reduction effect of the “total control + market incentive” policy. Economic–environmental tradeoff analysis shows that high-cost inputs are positively correlated with the proportion of renewable energy, and carbon emissions are significantly negatively correlated with the proportion of green certificates (correlation coefficient −0.79). This study emphasizes that dynamic adjustments of carbon quota and green certificate targets can avoid diminishing marginal emission reduction efficiency, while the independent carbon price mechanism needs to enhance its linkage with economic targets through policy design. This framework provides theoretical support and a practical path for decision-makers to design a flexible market mechanism and build a multi-energy complementary system of “coal power base load protection, gas peak regulation, and renewable energy supplement”. Full article
Show Figures

Figure 1

Back to TopTop