Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = premature protease activation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3531 KiB  
Article
VMP1 Constitutive Expression in Mice Dampens Pancreatic and Systemic Histopathological Damage in an Experimental Model of Severe Acute Pancreatitis
by Veronica Boggio, Claudio Daniel Gonzalez, Elsa Zotta, Alejandro Ropolo and Maria Ines Vaccaro
Int. J. Mol. Sci. 2025, 26(7), 3196; https://doi.org/10.3390/ijms26073196 - 29 Mar 2025
Viewed by 541
Abstract
Acute pancreatitis (AP) an inflammatory condition caused by the premature activation of pancreatic proteases, leads to organ damage, systemic inflammation, and multi-organ failure. Severe acute pancreatitis (SAP) has high morbidity and mortality, affecting the liver, kidneys, and lungs. Autophagy maintains pancreatic homeostasis, with [...] Read more.
Acute pancreatitis (AP) an inflammatory condition caused by the premature activation of pancreatic proteases, leads to organ damage, systemic inflammation, and multi-organ failure. Severe acute pancreatitis (SAP) has high morbidity and mortality, affecting the liver, kidneys, and lungs. Autophagy maintains pancreatic homeostasis, with VMP1-mediated selective autophagy (zymophagy) preventing intracellular zymogen activation and acinar cell death. This study examines the protective role of VMP1 (Vacuole Membrane Protein 1)-induced autophagy using ElaI-VMP1 transgenic mice in a necrohemorrhagic SAP model (Hartwig’s model). ElaI-VMP1 mice show significantly reduced pancreatic injury, including lower necrosis, edema, and inflammation, compared to wild-type (WT) mice. Biochemical markers (lactate dehydrogenase-LDH-, amylase, and lipase) and histopathology confirm that VMP1 expression mitigates pancreatic damage. Increased zymophagy negatively correlates with acinar necrosis, reinforcing its protective role. Beyond the pancreas, ElaI-VMP1 mice exhibit preserved liver, kidney, and lung histology, indicating reduced systemic organ damage. The liver maintains normal architecture, kidneys show minimal tubular necrosis, and lung inflammation features are reduced compared to WT mice. Our results confirm that zymophagy functions as a protective pathophysiological mechanism against pancreatic and extrapancreatic tissue injury in SAP. Further studies on the mechanism of VMP1-mediated selective autophagy in AP are necessary to determine its relevance and possible modulation to prevent the severity of AP. Full article
(This article belongs to the Special Issue Pancreatic Diseases: Molecular Pathology and Therapeutics)
Show Figures

Figure 1

23 pages, 4097 KiB  
Review
Current Insights into Weak Seed Dormancy and Pre-Harvest Sprouting in Crop Species
by Angel J. Matilla
Plants 2024, 13(18), 2559; https://doi.org/10.3390/plants13182559 - 12 Sep 2024
Cited by 5 | Viewed by 2812
Abstract
During the domestication of crops, seed dormancy has been reduced or eliminated to encourage faster and more consistent germination. This alteration makes cultivated crops particularly vulnerable to pre-harvest sprouting, which occurs when mature crops are subjected to adverse environmental conditions, such as excessive [...] Read more.
During the domestication of crops, seed dormancy has been reduced or eliminated to encourage faster and more consistent germination. This alteration makes cultivated crops particularly vulnerable to pre-harvest sprouting, which occurs when mature crops are subjected to adverse environmental conditions, such as excessive rainfall or high humidity. Consequently, some seeds may bypass the normal dormancy period and begin to germinate while still attached to the mother plant before harvest. Grains affected by pre-harvest sprouting are characterized by increased levels of α-amylase activity, resulting in poor processing quality and immediate grain downgrading. In the agriculture industry, pre-harvest sprouting causes annual economic losses exceeding USD 1 billion worldwide. This premature germination is influenced by a complex interplay of genetic, biochemical, and molecular factors closely linked to environmental conditions like rainfall. However, the exact mechanism behind this process is still unclear. Unlike pre-harvest sprouting, vivipary refers to the germination process and the activation of α-amylase during the soft dough stage, when the grains are still immature. Mature seeds with reduced levels of ABA or impaired ABA signaling (weak dormancy) are more susceptible to pre-harvest sprouting. While high seed dormancy can enhance resistance to pre-harvest sprouting, it can lead to undesirable outcomes for most crops, such as non-uniform seedling establishment after sowing. Thus, resistance to pre-harvest sprouting is crucial to ensuring productivity and sustainability and is an agronomically important trait affecting yield and grain quality. On the other hand, seed color is linked to sprouting resistance; however, the genetic relationship between both characteristics remains unresolved. The identification of mitogen-activated protein kinase kinase-3 (MKK3) as the gene responsible for pre-harvest sprouting-1 (Phs-1) represents a significant advancement in our understanding of how sprouting in wheat is controlled at the molecular and genetic levels. In seed maturation, Viviparous-1 (Vp-1) plays a crucial role in managing pre-harvest sprouting by regulating seed maturation and inhibiting germination through the suppression of α-amylase and proteases. Vp-1 is a key player in ABA signaling and is essential for the activation of the seed maturation program. Mutants of Vp-1 exhibit an unpigmented aleurone cell layer and exhibit precocious germination due to decreased sensitivity to ABA. Recent research has also revealed that TaSRO-1 interacts with TaVp-1, contributing to the regulation of seed dormancy and resistance to pre-harvest sprouting in wheat. The goal of this review is to emphasize the latest research on pre-harvest sprouting in crops and to suggest possible directions for future studies. Full article
Show Figures

Figure 1

20 pages, 5656 KiB  
Article
Potential of Coffee Cherry Pulp Extract against Polycyclic Aromatic Hydrocarbons in Air Pollution Induced Inflammation and Oxidative Stress for Topical Applications
by Weeraya Preedalikit, Chuda Chittasupho, Pimporn Leelapornpisid, Natthachai Duangnin and Kanokwan Kiattisin
Int. J. Mol. Sci. 2024, 25(17), 9416; https://doi.org/10.3390/ijms25179416 - 30 Aug 2024
Cited by 3 | Viewed by 1958
Abstract
Airborne particulate matter (PM) contains polycyclic aromatic hydrocarbons (PAHs) as primary toxic components, causing oxidative damage and being associated with various inflammatory skin pathologies such as premature aging, atopic dermatitis, and psoriasis. Coffee cherry pulp (CCS) extract, rich in chlorogenic acid, caffeine, and [...] Read more.
Airborne particulate matter (PM) contains polycyclic aromatic hydrocarbons (PAHs) as primary toxic components, causing oxidative damage and being associated with various inflammatory skin pathologies such as premature aging, atopic dermatitis, and psoriasis. Coffee cherry pulp (CCS) extract, rich in chlorogenic acid, caffeine, and theophylline, has demonstrated strong antioxidant properties. However, its specific anti-inflammatory effects and ability to protect macrophages against PAH-induced inflammation remain unexplored. Thus, this study aimed to evaluate the anti-inflammatory properties of CCS extract on RAW 264.7 macrophage cells exposed to atmospheric PAHs, compared to chlorogenic acid (CGA), caffeine (CAF), and theophylline (THP) standards. The CCS extract was assessed for its impact on the production of nitric oxide (NO) and expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Results showed that CCS extract exhibited significant antioxidant activities and effectively inhibited protease and lipoxygenase (LOX) activities. The PAH induced the increase in intracellular reactive oxygen species, NO, TNF-α, IL-6, iNOS, and COX-2, which were markedly suppressed by CCS extract in a dose-dependent manner, comparable to the effects of chlorogenic acid, caffeine, and theophylline. In conclusion, CCS extract inhibits PAH-induced inflammation by reducing pro-inflammatory cytokines and reactive oxygen species (ROS) production in RAW 264.7 cells. This effect is likely due to the synergistic effects of its bioactive compounds. Chlorogenic acid showed strong antioxidant and anti-inflammatory activities, while caffeine and theophylline enhanced anti-inflammatory activity. CCS extract did not irritate the hen’s egg chorioallantoic membrane. Therefore, CCS extract shows its potential as a promising cosmeceutical ingredient for safely alleviating inflammatory skin diseases caused by air pollution. Full article
Show Figures

Graphical abstract

15 pages, 1398 KiB  
Article
Relationship between Modern ART Regimens and Immunosenescence Markers in Patients with Chronic HIV Infection
by Rusina Grozdeva, Daniel Ivanov, Dimitar Strashimirov, Nikol Kapincheva, Ralitsa Yordanova, Snejina Mihailova, Atanaska Georgieva, Ivailo Alexiev, Lyubomira Grigorova, Alexandra Partsuneva, Reneta Dimitrova, Anna Gancheva, Asya Kostadinova, Emilia Naseva and Nina Yancheva
Viruses 2024, 16(8), 1205; https://doi.org/10.3390/v16081205 - 26 Jul 2024
Cited by 3 | Viewed by 1819
Abstract
The increased life expectancy of PLHIV (People Living with HIV) and the successful highly combined antiretroviral therapy (cART) poses new clinical challenges regarding aging and its co-morbid condition. It is commonly believed that HIV infection “accelerates” aging. Human immunodeficiency virus type 1 (HIV-1) [...] Read more.
The increased life expectancy of PLHIV (People Living with HIV) and the successful highly combined antiretroviral therapy (cART) poses new clinical challenges regarding aging and its co-morbid condition. It is commonly believed that HIV infection “accelerates” aging. Human immunodeficiency virus type 1 (HIV-1) infection is characterized by inflammation and immune activation that persists despite cART, and that may contribute to the development of co-morbid conditions. In this regard, we aimed to compare current cART regimens in light of premature aging to evaluate differences in their ability to reduce immune activation and inflammation in virologically suppressed patients. We studied a panel of biomarkers (IFN-γ, IL-1β, IL-12p70, IL-2, IL-4, IL-5, IL-6, IL-13, IL-18, GM-CSF, TNF-α, C-reactive protein, D-dimer, soluble CD14), which could provide a non-invasive and affordable approach to monitor HIV-related chronic inflammation. The results of the current study do not provide hard evidence favoring a particular cART regimen, although they show a less favorable regimen profile containing a protease inhibitor. Our data suggest an incomplete reduction of inflammation and immune activation in terms of the effective cART. It is likely that the interest in various biomarkers related to immune activation and inflammation as predictors of clinical outcomes among PLHIV will increase in the future. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

20 pages, 11056 KiB  
Article
Premature Activation of the HIV-1 Protease Is Influenced by Polymorphisms in the Hinge Region
by Caroline O. Tabler, Sarah J. Wegman, Najwa Alhusaini, Nicole F. Lee and John C. Tilton
Viruses 2024, 16(6), 849; https://doi.org/10.3390/v16060849 - 26 May 2024
Cited by 1 | Viewed by 1879
Abstract
HIV-1 protease inhibitors are an essential component of antiretroviral therapy. However, drug resistance is a pervasive issue motivating a persistent search for novel therapies. Recent reports found that when protease activates within the host cell’s cytosol, it facilitates the pyroptotic killing of infected [...] Read more.
HIV-1 protease inhibitors are an essential component of antiretroviral therapy. However, drug resistance is a pervasive issue motivating a persistent search for novel therapies. Recent reports found that when protease activates within the host cell’s cytosol, it facilitates the pyroptotic killing of infected cells. This has led to speculation that promoting protease activation, rather than inhibiting it, could help to eradicate infected cells and potentially cure HIV-1 infection. Here, we used a nanoscale flow cytometry-based assay to characterize protease resistance mutations and polymorphisms. We quantified protease activity, viral concentration, and premature protease activation and confirmed previous findings that major resistance mutations generally destabilize the protease structure. Intriguingly, we found evidence that common polymorphisms in the hinge domain of protease can influence its susceptibility to premature activation. This suggests that viral heterogeneity could pose a considerable challenge for therapeutic strategies aimed at inducing premature protease activation in the future. Full article
(This article belongs to the Special Issue Flow Virometry: A New Tool for Studying Viruses)
Show Figures

Figure 1

14 pages, 2232 KiB  
Review
Lysosomal-Cleavable Peptide Linkers in Antibody–Drug Conjugates
by Seetharamsing Balamkundu and Chuan-Fa Liu
Biomedicines 2023, 11(11), 3080; https://doi.org/10.3390/biomedicines11113080 - 16 Nov 2023
Cited by 37 | Viewed by 12743
Abstract
Antibody–drug Conjugates (ADCs) are a powerful therapeutic modality for cancer treatment. ADCs are multi-functional biologics in which a disease-targeting antibody is conjugated to an effector payload molecule via a linker. The success of currently used ADCs has been largely attributed to the development [...] Read more.
Antibody–drug Conjugates (ADCs) are a powerful therapeutic modality for cancer treatment. ADCs are multi-functional biologics in which a disease-targeting antibody is conjugated to an effector payload molecule via a linker. The success of currently used ADCs has been largely attributed to the development of linker systems, which allow for the targeted release of cytocidal payload drugs inside cancer cells. Many lysosomal proteases are over expressed in human cancers. They can effectively cleave a variety of peptide sequences, which can be exploited for the design of ADC linker systems. As a well-established linker, valine-citrulline-p-aminobenzyl carbamate (ValCitPABC) is used in many ADCs that are already approved or under preclinical and clinical development. Although ValCitPABC and related linkers are readily cleaved by cathepsins in the lysosome while remaining reasonably stable in human plasma, many studies have shown that they are susceptible to carboxylesterase 1C (Ces1C) in mouse and rat plasma, which hinders the preclinical evaluation of ADCs. Furthermore, neutropenia and thrombocytopenia, two of the most commonly observed dose-limiting adverse effects of ADCs, are believed to result from the premature hydrolysis of ValCitPABC by human neutrophil elastase. In addition to ValCitPABC, the GGFG tetrapeptidyl-aminomethoxy linker is also cathepsin-cleavable and is used in the highly successful ADC drug, DS8201a. In addition to cathepsin-cleavable linkers, there is also growing interest in legumain-sensitive linkers for ADC development. Increasing plasma stability while maintaining lysosomal cleavability of ADC linkers is an objective of intensive current research. This review reports recent advances in the design and structure–activity relationship studies of various peptide/peptidomimetic linkers in this field. Full article
(This article belongs to the Special Issue Medical Applications of Bioactive Peptides)
Show Figures

Graphical abstract

16 pages, 4195 KiB  
Article
PAI-1 Regulation of p53 Expression and Senescence in Type II Alveolar Epithelial Cells
by Tapasi Rana, Chunsun Jiang, Sami Banerjee, Nengjun Yi, Jaroslaw W. Zmijewski, Gang Liu and Rui-Ming Liu
Cells 2023, 12(15), 2008; https://doi.org/10.3390/cells12152008 - 5 Aug 2023
Cited by 10 | Viewed by 2976
Abstract
Cellular senescence contributes importantly to aging and aging-related diseases, including idiopathic pulmonary fibrosis (IPF). Alveolar epithelial type II (ATII) cells are progenitors of alveolar epithelium, and ATII cell senescence is evident in IPF. Previous studies from this lab have shown that increased expression [...] Read more.
Cellular senescence contributes importantly to aging and aging-related diseases, including idiopathic pulmonary fibrosis (IPF). Alveolar epithelial type II (ATII) cells are progenitors of alveolar epithelium, and ATII cell senescence is evident in IPF. Previous studies from this lab have shown that increased expression of plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor, promotes ATII cell senescence through inducing p53, a master cell cycle repressor, and activating p53-p21-pRb cell cycle repression pathway. In this study, we further show that PAI-1 binds to proteasome components and inhibits proteasome activity and p53 degradation in human lung epithelial A549 cells and primary mouse ATII cells. This is associated with a senescence phenotype of these cells, manifested as increased p53 and p21 expression, decreased phosphorylated retinoblastoma protein (pRb), and increased senescence-associated beta-galactose (SA-β-gal) activity. Moreover, we find that, although overexpression of wild-type PAI-1 (wtPAI-1) or a secretion-deficient, mature form of PAI-1 (sdPAI-1) alone induces ATII cell senescence (increases SA-β-gal activity), only wtPAI-1 induces p53, suggesting that the premature form of PAI-1 is required for the interaction with the proteasome. In summary, our data indicate that PAI-1 can bind to proteasome components and thus inhibit proteasome activity and p53 degradation in ATII cells. As p53 is a master cell cycle repressor and PAI-1 expression is increased in many senescent cells, the results from this study will have a significant impact not only on ATII cell senescence/lung fibrosis but also on the senescence of other types of cells in different diseases. Full article
Show Figures

Figure 1

15 pages, 1751 KiB  
Article
Preclinical Assessment of ADAM9-Responsive Mesoporous Silica Nanoparticles for the Treatment of Pancreatic Cancer
by Etienne J. Slapak, Mouad el Mandili, Marieke S. Ten Brink, Alexander Kros, Maarten F. Bijlsma and C. Arnold Spek
Int. J. Mol. Sci. 2023, 24(13), 10704; https://doi.org/10.3390/ijms241310704 - 27 Jun 2023
Cited by 5 | Viewed by 2255
Abstract
Pancreatic adenocarcinoma (PDAC) remains largely refractory to chemotherapeutic treatment regimens and, consequently, has the worst survival rate of all cancers. The low efficacy of current treatments results largely from toxicity-dependent dose limitations and premature cessation of therapy. Recently, targeted delivery approaches that may [...] Read more.
Pancreatic adenocarcinoma (PDAC) remains largely refractory to chemotherapeutic treatment regimens and, consequently, has the worst survival rate of all cancers. The low efficacy of current treatments results largely from toxicity-dependent dose limitations and premature cessation of therapy. Recently, targeted delivery approaches that may reduce off-target toxicities have been developed. In this paper, we present a preclinical evaluation of a PDAC-specific drug delivery system based on mesoporous silica nanoparticles (MSNs) functionalized with a protease linker that is specifically cleaved by PDAC cells. Our previous work demonstrated that ADAM9 is a PDAC-enriched protease and that paclitaxel-loaded ADAM9-responsive MSNs effectively kill PDAC cells in vitro. Here, we show that paclitaxel-loaded ADAM9-MSNs result in off-target cytotoxicity in clinically relevant models, which spurred the development of optimized ADAM9-responsive MSNs (OPT-MSNs). We found that these OPT-MSNs still efficiently kill PDAC cells but, as opposed to free paclitaxel, do not induce death in neuronal or bone marrow cells. In line with these in vitro data, paclitaxel-loaded OPT-MSNs showed reduced organ damage and leukopenia in a preclinical PDAC xenograft model. However, no antitumor response was observed upon OPT-MSN administration in vivo. The poor in vivo antitumor activity of OPT-MSNs despite efficient antitumor effects in vitro highlights that although MSN-based tumor-targeting strategies may hold therapeutic potential, clinical translation does not seem as straightforward as anticipated. Full article
Show Figures

Figure 1

20 pages, 3106 KiB  
Review
The Interplay of Glycosaminoglycans and Cysteine Cathepsins in Mucopolysaccharidosis
by Alexis David, Thibault Chazeirat, Ahlame Saidi, Gilles Lalmanach and Fabien Lecaille
Biomedicines 2023, 11(3), 810; https://doi.org/10.3390/biomedicines11030810 - 7 Mar 2023
Cited by 8 | Viewed by 2961
Abstract
Mucopolysaccharidosis (MPS) consists of a group of inherited lysosomal storage disorders that are caused by a defect of certain enzymes that participate in the metabolism of glycosaminoglycans (GAGs). The abnormal accumulation of GAGs leads to progressive dysfunctions in various tissues and organs during [...] Read more.
Mucopolysaccharidosis (MPS) consists of a group of inherited lysosomal storage disorders that are caused by a defect of certain enzymes that participate in the metabolism of glycosaminoglycans (GAGs). The abnormal accumulation of GAGs leads to progressive dysfunctions in various tissues and organs during childhood, contributing to premature death. As the current therapies are limited and inefficient, exploring the molecular mechanisms of the pathology is thus required to address the unmet needs of MPS patients to improve their quality of life. Lysosomal cysteine cathepsins are a family of proteases that play key roles in numerous physiological processes. Dysregulation of cysteine cathepsins expression and activity can be frequently observed in many human diseases, including MPS. This review summarizes the basic knowledge on MPS disorders and their current management and focuses on GAGs and cysteine cathepsins expression in MPS, as well their interplay, which may lead to the development of MPS-associated disorders. Full article
(This article belongs to the Special Issue Advanced Research in Lysosomal Storage Disorders)
Show Figures

Figure 1

15 pages, 20026 KiB  
Article
Processing of Fluorescent Proteins May Prevent Detection of Prion Particles in [PSI+] Cells
by Andrew G. Matveenko, Varvara E. Ryzhkova, Natalia A. Zaytseva, Lavrentii G. Danilov, Anastasia S. Mikhailichenko, Yury A. Barbitoff and Galina A. Zhouravleva
Biology 2022, 11(12), 1688; https://doi.org/10.3390/biology11121688 - 22 Nov 2022
Cited by 4 | Viewed by 2600
Abstract
Yeast is a convenient model for studying protein aggregation as it is known to propagate amyloid prions. [PSI+] is the prion form of the release factor eRF3 (Sup35). Aggregated Sup35 causes defects in termination of translation, which results in nonsense [...] Read more.
Yeast is a convenient model for studying protein aggregation as it is known to propagate amyloid prions. [PSI+] is the prion form of the release factor eRF3 (Sup35). Aggregated Sup35 causes defects in termination of translation, which results in nonsense suppression in strains carrying premature stop codons. N-terminal and middle (M) domains of Sup35 are necessary and sufficient for maintaining [PSI+] in cells while preserving the prion strain’s properties. For this reason, Sup35NM fused to fluorescent proteins is often used for [PSI+] detection and investigation. However, we found that in such chimeric constructs, not all fluorescent proteins allow the reliable detection of Sup35 aggregates. Particularly, transient overproduction of Sup35NM-mCherry resulted in a diffuse fluorescent pattern in the [PSI+] cells, while no loss of prions and no effect on the Sup35NM prion properties could be observed. This effect was reproduced in various unrelated strain backgrounds and prion variants. In contrast, Sup35NM fused to another red fluorescent protein, TagRFP-T, allowed the detection of [PSI+] aggregates. Analysis of protein lysates showed that Sup35NM-mCherry is actively degraded in the cell. This degradation was not caused by vacuolar proteases and the ubiquitin-proteasomal system implicated in the Sup35 processing. Even though the intensity of this proteolysis was higher than that of Sup35NM-GFP, it was roughly the same as in the case of Sup35NM-TagRFP-T. Thus, it is possible that, in contrast to TagRFP-T, degradation products of Sup35NM-mCherry still preserve their fluorescent properties while losing the ability to decorate pre-existing Sup35 aggregates. This results in diffuse fluorescence despite the presence of the prion aggregates in the cell. Thus, tagging with fluorescent proteins should be used with caution, as such proteolysis may increase the rate of false-negative results when detecting prion-bearing cells. Full article
Show Figures

Figure 1

16 pages, 2298 KiB  
Article
Involvement of the p38 MAPK-NLRC4-Caspase-1 Pathway in Ionizing Radiation-Enhanced Macrophage IL-1β Production
by Ji Sue Baik, You Na Seo, Young-Choon Lee, Joo Mi Yi, Man Hee Rhee, Moon-Taek Park and Sung Dae Kim
Int. J. Mol. Sci. 2022, 23(22), 13757; https://doi.org/10.3390/ijms232213757 - 9 Nov 2022
Cited by 3 | Viewed by 2649
Abstract
Macrophages are abundant immune cells in the tumor microenvironment and are crucial in regulating tumor malignancy. We previously reported that ionizing radiation (IR) increases the production of interleukin (IL)-1β in lipopolysaccharide (LPS)-treated macrophages, contributing to the malignancy of colorectal cancer cells; however, the [...] Read more.
Macrophages are abundant immune cells in the tumor microenvironment and are crucial in regulating tumor malignancy. We previously reported that ionizing radiation (IR) increases the production of interleukin (IL)-1β in lipopolysaccharide (LPS)-treated macrophages, contributing to the malignancy of colorectal cancer cells; however, the mechanism remained unclear. Here, we show that IR increases the activity of cysteine-aspartate-specific protease 1 (caspase-1), which is regulated by the inflammasome, and cleaves premature IL-1β to mature IL-1β in RAW264.7 macrophages. Irradiated RAW264.7 cells showed increased expression of NLRC4 inflammasome, which controls the activity of caspase-1 and IL-1β production. Silencing of NLRC4 using RNA interference inhibited the IR-induced increase in IL-1β production. Activation of the inflammasome can be regulated by mitogen-activated protein kinase (MAPK)s in macrophages. In RAW264.7 cells, IR increased the phosphorylation of p38 MAPK but not extracellular signal-regulated kinase and c-Jun N-terminal kinase. Moreover, a selective inhibitor of p38 MAPK inhibited LPS-induced IL-1β production and NLRC4 inflammasome expression in irradiated RAW264.7 macrophages. Our results indicate that IR-induced activation of the p38 MAPK-NLRC4-caspase-1 activation pathway in macrophages increases IL-1β production in response to LPS. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

10 pages, 1718 KiB  
Article
Senescence-Independent Anti-Inflammatory Activity of the Senolytic Drugs Dasatinib, Navitoclax, and Venetoclax in Zebrafish Models of Chronic Inflammation
by David Hernández-Silva, Joaquín Cantón-Sandoval, Francisco Juan Martínez-Navarro, Horacio Pérez-Sánchez, Sofia de Oliveira, Victoriano Mulero, Francisca Alcaraz-Pérez and María Luisa Cayuela
Int. J. Mol. Sci. 2022, 23(18), 10468; https://doi.org/10.3390/ijms231810468 - 9 Sep 2022
Cited by 12 | Viewed by 5258
Abstract
Telomere shortening is the main molecular mechanism of aging, but not the only one. The adaptive immune system also ages, and older organisms tend to develop a chronic pro-inflammatory status with low-grade inflammation characterized by chronic activation of the innate immune system, called [...] Read more.
Telomere shortening is the main molecular mechanism of aging, but not the only one. The adaptive immune system also ages, and older organisms tend to develop a chronic pro-inflammatory status with low-grade inflammation characterized by chronic activation of the innate immune system, called inflammaging. One of the main stimuli that fuels inflammaging is a high nutrient intake, triggering a metabolic inflammation process called metainflammation. In this study, we report the anti-inflammatory activity of several senolytic drugs in the context of chronic inflammation, by using two different zebrafish models: (i) a chronic skin inflammation model with a hypomorphic mutation in spint1a, the gene encoding the serine protease inhibitor, kunitz-type, 1a (also known as hai1a) and (ii) a non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH) model with inflammation induced by a high-fat diet. Our results show that, although these models do not manifest premature aging, the senolytic drugs dasatinib, navitoclax, and venetoclax have an anti-inflammatory effect that results in the amelioration of chronic inflammation. Full article
(This article belongs to the Topic Inflammaging: The Immunology of Aging)
Show Figures

Figure 1

10 pages, 609 KiB  
Review
Beyond Inhibition: A Novel Strategy of Targeting HIV-1 Protease to Eliminate Viral Reservoirs
by Josh G. Kim and Liang Shan
Viruses 2022, 14(6), 1179; https://doi.org/10.3390/v14061179 - 28 May 2022
Cited by 11 | Viewed by 3981
Abstract
HIV-1 protease (PR) is a viral enzyme that cleaves the Gag and Gag-Pol polyprotein precursors to convert them into their functional forms, a process which is essential to generate infectious viral particles. Due to its broad substrate specificity, HIV-1 PR can also cleave [...] Read more.
HIV-1 protease (PR) is a viral enzyme that cleaves the Gag and Gag-Pol polyprotein precursors to convert them into their functional forms, a process which is essential to generate infectious viral particles. Due to its broad substrate specificity, HIV-1 PR can also cleave certain host cell proteins. Several studies have identified host cell substrates of HIV-1 PR and described the potential impact of their cleavage on HIV-1-infected cells. Of particular interest is the interaction between PR and the caspase recruitment domain-containing protein 8 (CARD8) inflammasome. A recent study demonstrated that CARD8 can sense HIV-1 PR activity and induce cell death. While PR typically has low levels of intracellular activity prior to viral budding, premature PR activation can be achieved using certain non-nucleoside reverse transcriptase inhibitors (NNRTIs), resulting in CARD8 cleavage and downstream pyroptosis. Used together with latency reversal agents, the induction of premature PR activation to trigger CARD8-mediated cell killing may help eliminate latent reservoirs in people living with HIV. This represents a novel strategy of utilizing PR as an antiviral target through premature activation rather than inhibition. In this review, we discuss the viral and host substrates of HIV-1 protease and highlight potential applications and advantages of targeting CARD8 sensing of HIV-1 PR. Full article
(This article belongs to the Special Issue Enzymes as Antiviral Targets)
Show Figures

Figure 1

16 pages, 2615 KiB  
Article
Interaction of Poliovirus Capsid Proteins with the Cellular Autophagy Pathway
by Anna Zimina, Ekaterina G. Viktorova, Seyedehmahsa Moghimi, Jules Nchoutmboube and George A. Belov
Viruses 2021, 13(8), 1587; https://doi.org/10.3390/v13081587 - 11 Aug 2021
Cited by 7 | Viewed by 4798
Abstract
The capsid precursor P1 constitutes the N-terminal part of the enterovirus polyprotein. It is processed into VP0, VP3, and VP1 by the viral proteases, and VP0 is cleaved autocatalytically into VP4 and VP2. We observed that poliovirus VP0 is recognized by an antibody [...] Read more.
The capsid precursor P1 constitutes the N-terminal part of the enterovirus polyprotein. It is processed into VP0, VP3, and VP1 by the viral proteases, and VP0 is cleaved autocatalytically into VP4 and VP2. We observed that poliovirus VP0 is recognized by an antibody against a cellular autophagy protein, LC3A. The LC3A-like epitope overlapped the VP4/VP2 cleavage site. Individually expressed VP0-EGFP and P1 strongly colocalized with a marker of selective autophagy, p62/SQSTM1. To assess the role of capsid proteins in autophagy development we infected different cells with poliovirus or encapsidated polio replicon coding for only the replication proteins. We analyzed the processing of LC3B and p62/SQSTM1, markers of the initiation and completion of the autophagy pathway and investigated the association of the viral antigens with these autophagy proteins in infected cells. We observed cell-type-specific development of autophagy upon infection and found that only the virion signal strongly colocalized with p62/SQSTM1 early in infection. Collectively, our data suggest that activation of autophagy is not required for replication, and that capsid proteins contain determinants targeting them to p62/SQSTM1-dependent sequestration. Such a strategy may control the level of capsid proteins so that viral RNAs are not removed from the replication/translation pool prematurely. Full article
(This article belongs to the Special Issue Picornaviruses)
Show Figures

Figure 1

26 pages, 3508 KiB  
Review
The Immunological Role of the Placenta in SARS-CoV-2 Infection—Viral Transmission, Immune Regulation, and Lactoferrin Activity
by Iwona Bukowska-Ośko, Marta Popiel and Paweł Kowalczyk
Int. J. Mol. Sci. 2021, 22(11), 5799; https://doi.org/10.3390/ijms22115799 - 28 May 2021
Cited by 21 | Viewed by 8933
Abstract
A pandemic of acute respiratory infections, due to a new type of coronavirus, can cause Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) and has created the need for a better understanding of the clinical, epidemiological, and pathological features of COVID-19, especially in high-risk groups, [...] Read more.
A pandemic of acute respiratory infections, due to a new type of coronavirus, can cause Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) and has created the need for a better understanding of the clinical, epidemiological, and pathological features of COVID-19, especially in high-risk groups, such as pregnant women. Viral infections in pregnant women may have a much more severe course, and result in an increase in the rate of complications, including spontaneous abortion, stillbirth, and premature birth—which may cause long-term consequences in the offspring. In this review, we focus on the mother-fetal-placenta interface and its role in the potential transmission of SARS-CoV-2, including expression of viral receptors and proteases, placental pathology, and the presence of the virus in neonatal tissues and fluids. This review summarizes the current knowledge on the anti-viral activity of lactoferrin during viral infection in pregnant women, analyzes its role in the pathogenicity of pandemic virus particles, and describes the potential evidence for placental blocking/limiting of the transmission of the virus. Full article
(This article belongs to the Special Issue Reproductive Immunology and Pregnancy)
Show Figures

Figure 1

Back to TopTop