Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = precursor of magnetic reversal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6192 KB  
Article
Application of Rice Husk-Derived SBA-15 Bifunctionalized with C18 and Sulfonic Groups for Solid-Phase Extraction of Tropane, Pyrrolizidine, and Opium Alkaloids in Gluten-Free Bread
by Fernando L. Vera-Baquero, Judith Gañán, Natalia Casado, Damián Pérez-Quintanilla, Sonia Morante-Zarcero and Isabel Sierra
Foods 2025, 14(7), 1156; https://doi.org/10.3390/foods14071156 - 26 Mar 2025
Cited by 1 | Viewed by 1059
Abstract
Rice husk (RH), a globally abundant agri-food waste, presents a promising renewable silicon source for producing SBA-15 mesoporous silica-based materials. This study aimed to synthesize and bifunctionalize SBA-15 using RH as a silica precursor, incorporating sulfonic and octadecyl groups to create a mixed-mode [...] Read more.
Rice husk (RH), a globally abundant agri-food waste, presents a promising renewable silicon source for producing SBA-15 mesoporous silica-based materials. This study aimed to synthesize and bifunctionalize SBA-15 using RH as a silica precursor, incorporating sulfonic and octadecyl groups to create a mixed-mode sorbent, RH-SBA-15-SO3H-C18, with reversed-phase and cation exchange properties. The material’s structure and properties were characterized using advanced techniques, including X-ray diffraction, infrared spectroscopy, N2 adsorption–desorption isotherms, nuclear magnetic resonance, and electron microscopy. These analyses confirmed an ordered mesoporous structure with a high specific surface area of 238 m2/g, pore volume of 0.45 cm3/g, pore diameter of 32 Å, and uniform pore distribution, highlighting its exceptional textural qualities. This sorbent was effectively utilized in solid-phase extraction to purify 29 alkaloids from three families—tropane, pyrrolizidine, and opium—followed by an analysis using ultra-high performance liquid chromatography coupled to ion-trap tandem mass spectrometry. The developed analytical method was validated and applied to gluten-free bread samples, revealing tropane and opium alkaloids, some at concentrations exceeding regulatory limits. These findings demonstrate that RH-derived RH-SBA-15-SO3H-C18 is a viable, efficient alternative to commercial sorbents for monitoring natural toxins in food, offering a sustainable solution for repurposing agri-food waste while addressing food safety challenges. Full article
(This article belongs to the Special Issue Detection and Characterization of Natural Toxins in Food Matrices)
Show Figures

Figure 1

20 pages, 7234 KB  
Article
Predictability of Magnetic Field Reversals
by Daniil Tolmachev, Roman Chertovskih, Simon Ranjith Jeyabalan and Vladislav Zheligovsky
Mathematics 2024, 12(3), 490; https://doi.org/10.3390/math12030490 - 3 Feb 2024
Cited by 3 | Viewed by 7712
Abstract
Geomagnetic field measurements indicate that at present we may be on the brink of the Earth’s magnetic field reversal, potentially resulting in all the accompanying negative consequences for the mankind. Mathematical modelling is necessary in order to find precursors for reversals and excursions [...] Read more.
Geomagnetic field measurements indicate that at present we may be on the brink of the Earth’s magnetic field reversal, potentially resulting in all the accompanying negative consequences for the mankind. Mathematical modelling is necessary in order to find precursors for reversals and excursions of the magnetic field. With this purpose in mind, following the Podvigina scenario for the emergence of the reversals, we have studied convective flows not far (in the parameter space) from their onset and the onset of magnetic field generation, and found a flow demonstrating reversals of polarity of some harmonics comprising the magnetic field. We discuss a simulated regime featuring patterns of behaviour that apparently indicate future reversals of certain harmonics of the magnetic field. It remains to be seen whether reversal precursors similar to the observed ones exist and might be applicable for the much more complex geomagnetic dynamo. Full article
(This article belongs to the Special Issue Applications of Mathematics to Fluid Dynamics)
Show Figures

Figure 1

12 pages, 3965 KB  
Article
Morphological Studies of Composite Spin Crossover@SiO2 Nanoparticles
by Yue Zan, Lionel Salmon and Azzedine Bousseksou
Nanomaterials 2021, 11(12), 3169; https://doi.org/10.3390/nano11123169 - 23 Nov 2021
Cited by 9 | Viewed by 2460
Abstract
Spin crossover (SCO) iron (II) 1,2,4-triazole-based coordination compounds in the form of composite SCO@SiO2 nanoparticles were prepared using a reverse microemulsion technique. The thickness of the silica shell and the morphology of the as obtained core@shell nanoparticles were studied by modifying the [...] Read more.
Spin crossover (SCO) iron (II) 1,2,4-triazole-based coordination compounds in the form of composite SCO@SiO2 nanoparticles were prepared using a reverse microemulsion technique. The thickness of the silica shell and the morphology of the as obtained core@shell nanoparticles were studied by modifying the polar phase/surfactant ratio (ω), as well as the quantity and the insertion phase (organic, aqueous and micellar phases) of the tetraethylorthosilicate (TEOS) precursor, the quantity of ammonia and the reaction temperature. The morphology of the nanoparticles was monitored by transmission electron microscopy (TEM/HRTEM) while their composition probed by combined elemental analyses, thermogravimetry and EDX analyses. We report that not only the particle size can be controlled but also the size of the silica shell, allowing for interesting perspectives in post-synthetic modification of the shell. The evolution of the spin crossover properties associated with the change in morphology was investigated by variable temperature optical and magnetic measurements. Full article
(This article belongs to the Special Issue Micro/Nano Emulsions: Fabrication and Applications)
Show Figures

Figure 1

16 pages, 1188 KB  
Article
Inhibitory Effect of Apomorphine on Focal and Nonfocal Plasticity in the Human Motor Cortex
by Shane M. Fresnoza, Giorgi Batsikadze, Lynn Elena Müller, Constanze Rost, Michael Chamoun, Walter Paulus, Min-Fang Kuo and Michael A. Nitsche
Pharmaceutics 2021, 13(5), 718; https://doi.org/10.3390/pharmaceutics13050718 - 13 May 2021
Cited by 6 | Viewed by 2611
Abstract
Dopamine is crucial for neuroplasticity, which is considered to be the neurophysiological foundation of learning and memory. The specific effect of dopamine on plasticity such as long-term potentiation (LTP) and long-term depression (LTD) is determined by receptor subtype specificity, concentration level, and the [...] Read more.
Dopamine is crucial for neuroplasticity, which is considered to be the neurophysiological foundation of learning and memory. The specific effect of dopamine on plasticity such as long-term potentiation (LTP) and long-term depression (LTD) is determined by receptor subtype specificity, concentration level, and the kind of plasticity induction technique. In healthy human subjects, the dopamine precursor levodopa (L-DOPA) exerts a dosage-dependent non-linear effect on motor cortex plasticity. Low and high dosage L-DOPA impaired or abolished plasticity, while medium-dose preserved and reversed plasticity in previous studies. Similar dosage-dependent effects were also observed for selective D1-like and D2-like receptor activation that favor excitatory and inhibitory plasticity, respectively. However, such a dosage-dependent effect has not been explored for a nonselective dopamine agonist such as apomorphine in humans. To this aim, nonfocal and focal motor cortex plasticity induction using paired associative stimulation (PAS) and transcranial direct current stimulation (tDCS) were performed respectively in healthy participants under 0.1, 0.2, 0.3 mg apomorphine or placebo drug. Transcranial magnetic stimulation-elicited motor-evoked potentials were used to monitor motor cortical excitability alterations. We hypothesized that, similar to L-DOPA, apomorphine will affect motor cortex plasticity. The results showed that apomorphine with the applied dosages has an inhibitory effect for focal and nonfocal LTP-like and LTD-like plasticity, which was either abolished, diminished or reversed. The detrimental effect on plasticity induction under all dosages of apomorphine suggests a predominantly presynaptic mechanism of action of these dosages. Full article
Show Figures

Figure 1

10 pages, 1139 KB  
Article
Advances in the Dereplication of Aroma Precursors from Grape Juice by Pretreatment with Lead Acetate and Combined HILIC- and RP-HPLC Methods
by Michele D’Ambrosio
Foods 2019, 8(1), 28; https://doi.org/10.3390/foods8010028 - 15 Jan 2019
Cited by 4 | Viewed by 4408
Abstract
Glycosidic aroma precursors (GAPs) contribute to the varietal flavor of wine. Researchers have applied various sample preparation and analytical methods in attempts to achieve their separation and identification. However, mass spectrometric methods still fail to unequivocally define their structures. We have previously reported [...] Read more.
Glycosidic aroma precursors (GAPs) contribute to the varietal flavor of wine. Researchers have applied various sample preparation and analytical methods in attempts to achieve their separation and identification. However, mass spectrometric methods still fail to unequivocally define their structures. We have previously reported the separation of GAPs in their natural form and elucidated their structures by nuclear magnetic resonance (NMR) spectroscopy. In this study, we confirm the effectiveness of our established procedure and present methodological improvements. Grape juice was treated with lead (II) acetate and repeatedly chromatographed to give seven pure GAPs. Their chemical structures were characterized by MSn fragmentations and 1D- and 2D-NMR spectra. Ten GAPs were analyzed by both hydrophilic interaction liquid chromatography (HILIC) and reversed phase high performance liquid chromatography (RP-HPLC) to compare the two chromatograms. A selection of known phenols was treated with lead (II) acetate in order to check its binding properties. Full article
(This article belongs to the Special Issue Wine Composition and Quality Analysis)
Show Figures

Figure 1

13 pages, 6957 KB  
Article
Gold Nanoparticles Grafted with PLL-b-PNIPAM: Interplay on Thermal/pH Dual-Response and Optical Properties
by Hui-Juan Li, Peng-Yun Li, Li-Ying Li, Abdul Haleem and Wei-Dong He
Molecules 2018, 23(4), 921; https://doi.org/10.3390/molecules23040921 - 16 Apr 2018
Cited by 14 | Viewed by 6168
Abstract
Narrowly distributed poly(l-lysine-b-N-isopropylacrylamide) (PLL-b-PNIPAM) was prepared through ring-opening polymerization of ε-benzyloxycarbonyl-l-lysine N-carboxy-α-amino anhydride and atom transfer radical polymerization of NIPAM, followed with the removal of ε-benzyloxycarbonyl group. Then gold nanoparticles (AuNPs) grafted [...] Read more.
Narrowly distributed poly(l-lysine-b-N-isopropylacrylamide) (PLL-b-PNIPAM) was prepared through ring-opening polymerization of ε-benzyloxycarbonyl-l-lysine N-carboxy-α-amino anhydride and atom transfer radical polymerization of NIPAM, followed with the removal of ε-benzyloxycarbonyl group. Then gold nanoparticles (AuNPs) grafted with PLL-b-PNIPAM (PNIPAM-PLL-AuNPs) were obtained by the reduction of chloroauric acid with sodium citrate in the presence of PLL-b-PNIPAM. PNIPAM-PLL-AuNPs and its precursors were thoroughly characterized by proton magnetic resonance spectroscope, Fourier transform infrared spectroscope, UV-vis spectroscope, transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, and circular dichroism. The obtained PNIPAM-PLL-AuNPs exhibited high colloid stability even at strong alkaline (pH = 12) and acidic (pH = 2) conditions. The thermal and pH dual-responsive behaviors of the grafting PLL-b-PNIPAM chains was observed to be affected by AuNPs, while not for the secondary structure of PLL chains. Correspondingly, the surface plasmon resonance (SPR) of AuNPs was found to be sensitive to both pH value and temperature. A blue shift in the SPR happened both with increasing pH value and increasing temperature. The stimuli-response was reversible in heating-cooling cycles. The gold nanoparticles with both pH and temperature response may have potential applications in biomedical areas and biosensors. Full article
(This article belongs to the Special Issue Stimuli-Responsive Polymeric Materials)
Show Figures

Graphical abstract

34 pages, 8033 KB  
Review
Structural Maturation of HIV-1 Reverse Transcriptase—A Metamorphic Solution to Genomic Instability
by Robert E. London
Viruses 2016, 8(10), 260; https://doi.org/10.3390/v8100260 - 27 Sep 2016
Cited by 13 | Viewed by 9838
Abstract
Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)—a critical enzyme of the viral life cycle—undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H [...] Read more.
Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)—a critical enzyme of the viral life cycle—undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H (RH) domains, while the second forms a non-functional polymerase and a proteolyzed RH domain. These parallel maturation pathways rely on the structural ambiguity of a metamorphic polymerase domain, for which the sequence–structure relationship is not unique. Recent nuclear magnetic resonance (NMR) studies utilizing selective labeling techniques, and structural characterization of the p66 monomer precursor have provided important insights into the details of this maturation pathway, revealing many aspects of the three major steps involved: (1) domain rearrangement; (2) dimerization; and (3) subunit-selective RH domain proteolysis. This review summarizes the major structural changes that occur during the maturation process. We also highlight how mutations, often viewed within the context of the mature RT heterodimer, can exert a major influence on maturation and dimerization. It is further suggested that several steps in the RT maturation pathway may provide attractive targets for drug development. Full article
Show Figures

Figure 1

11 pages, 412 KB  
Article
Metal-Free Polymethyl Methacrylate (PMMA) Nanoparticles by Enamine “Click” Chemistry at Room Temperature
by Lorea Buruaga and José A. Pomposo
Polymers 2011, 3(4), 1673-1683; https://doi.org/10.3390/polym3041673 - 7 Oct 2011
Cited by 29 | Viewed by 10924
Abstract
“Click” chemistry has become an efficient avenue to unimolecular polymeric nanoparticles through the self-crosslinking of individual polymer chains containing appropriate functional groups. Herein we report the synthesis of ultra-small (7 nm in size) polymethyl methacrylate (PMMA) nanoparticles (NPs) by the “metal-free” cross-linking of [...] Read more.
“Click” chemistry has become an efficient avenue to unimolecular polymeric nanoparticles through the self-crosslinking of individual polymer chains containing appropriate functional groups. Herein we report the synthesis of ultra-small (7 nm in size) polymethyl methacrylate (PMMA) nanoparticles (NPs) by the “metal-free” cross-linking of PMMA-precursor chains prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization containing b-ketoester functional groups. Intramolecular collapse was performed by the one-pot reaction of b-ketoester moieties with alkyl diamines in tetrahydrofurane at r.t. (i.e., by enamine formation). The collapsing process was followed by size exclusion chromatography and by nuclear magnetic resonance spectroscopy. The size of the resulting PMMA-NPs was determined by dynamic light scattering. Enamine “click” chemistry increases the synthetic toolbox for the efficient synthesis of metal-free, ultra-small polymeric NPs. Full article
(This article belongs to the Special Issue Click Chemistry in Polymer Science)
Show Figures

Graphical abstract

Back to TopTop