Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = post-fire flexural properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 20161 KB  
Article
Utilization of Mill Scale Waste as Natural Fine Aggregate Replacement in Mortar: Evaluation of Physical, Mechanical, Durability, and Post-Fire Properties
by Apinun Siriwattanakarn, Ampol Wongsa, Nawapak Eua-Anant, Vanchai Sata, Piti Sukontasukkul and Prinya Chindaprasirt
Recycling 2025, 10(1), 20; https://doi.org/10.3390/recycling10010020 - 5 Feb 2025
Cited by 1 | Viewed by 1580
Abstract
The current paper presents the findings from experiments focused on using mill scale waste (MSW) as a natural fine aggregate (NFA) replacement in making cement mortar, aiming to recycle this material. Mortars were prepared by mixing with ordinary Portland cement, NFA, and water. [...] Read more.
The current paper presents the findings from experiments focused on using mill scale waste (MSW) as a natural fine aggregate (NFA) replacement in making cement mortar, aiming to recycle this material. Mortars were prepared by mixing with ordinary Portland cement, NFA, and water. NFA was replaced with 5%, 10%, 15%, and 20%vol of MSW. The physical and mechanical properties of mortars including compressive and flexural strengths, density, porosity, water absorption, ultrasonic pulse velocity, thermal conductivity, durability properties, and characteristics after being subjected to elevated temperatures at 400, 700, and 1000 °C were investigated after 28 days of curing. The results showed that 15% MSW exhibited optimum compressive and flexural strengths. Also, the MSW mortar showed reduced workability and thermal conductivity, while the porosity slightly increased. The addition of MSW enhanced chloride resistance and mortar’s residual compressive strength after exposure to various temperatures. These findings confirmed that MSW can be used as a sustainable fine aggregate to produce mortar with optimum physical, mechanical, durability, and post-fire properties. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

23 pages, 4356 KB  
Article
Effects of High Temperature and Water Re-Curing on the Flexural Behavior and Mechanical Properties of Steel–Basalt Hybrid Fiber-Reinforced Concrete
by Zinnur Çelik and Yunus Urtekin
Appl. Sci. 2025, 15(3), 1587; https://doi.org/10.3390/app15031587 - 4 Feb 2025
Cited by 2 | Viewed by 1086
Abstract
Fiber-reinforced concrete (FRC) has become increasingly important in recent decades due to its superior mechanical properties, especially flexural strength and toughness, compared to normal concrete. FRC has also received significant attention because of its superior fire resistance performance compared to non-fiber concrete. In [...] Read more.
Fiber-reinforced concrete (FRC) has become increasingly important in recent decades due to its superior mechanical properties, especially flexural strength and toughness, compared to normal concrete. FRC has also received significant attention because of its superior fire resistance performance compared to non-fiber concrete. In recent years, studies on the mechanical performance, fire design, and post-fire repair of thermally damaged fibrous and non-fibrous concrete have gained importance. In particular, there are very few studies in the literature on the mechanical performance and flexural behavior of steel and basalt hybrid fiber concretes after high temperature and water re-curing. This study aims to determine the mechanical properties and toughness of concrete containing steel fiber (SF) and basalt fiber (BF) after ambient and high temperature (400 °C, 600 °C, and 800 °C). Additionally, this study aimed to examine the changes in fire-damaged FRCs as a result of water re-curing. In this context, high temperature and water re-curing were carried out on non-fibrous concrete (control) and four different fiber compositions: in the first mixture, only steel fibers were used, and in the other two mixtures, basalt fibers were substituted at 25% and 50% rates instead of steel fibers. Furthermore, in the fifth mixture, basalt fibers were replaced by polypropylene fibers (PPFs) to make a comparison with the steel and basalt hybrid fiber-reinforced mixture. This study examined the effects of different fiber compositions on the ultrasonic pulse velocity (UPV) and compressive and flexural strength of the specimens at ambient temperature and after exposure to elevated temperatures and water re-curing. Additionally, the load–deflection curves and toughness of the mixtures were determined. The study results showed that different fiber compositions varied in their healing effect at different stages. The hybrid use of SF and BF can improve the flexural strength before elevated temperature and particularly after 600 °C. However, it caused a decrease in the recovery rates, especially after re-curing with water in terms of toughness. Water re-curing provided remarkable improvement in terms of mechanical and toughness properties. This improvement was more evident in steel–polypropylene fiber-reinforced concretes. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

30 pages, 4441 KB  
Review
A Review on the Effect of Synthetic Fibres, Including Macro Fibres, on the Thermal Behaviour of Fibre-Reinforced Concrete
by Peyman Mehrabi, Ulrike Dackermann, Rafat Siddique and Maria Rashidi
Buildings 2024, 14(12), 4006; https://doi.org/10.3390/buildings14124006 - 17 Dec 2024
Cited by 2 | Viewed by 2189
Abstract
The mechanical properties of concrete degrade rapidly when exposed to elevated temperatures. Adding fibres to concrete can enhance its thermal stability and residual mechanical characteristics under high-temperature conditions. Various types of fibres, including steel, synthetic and natural fibres, are available for this purpose. [...] Read more.
The mechanical properties of concrete degrade rapidly when exposed to elevated temperatures. Adding fibres to concrete can enhance its thermal stability and residual mechanical characteristics under high-temperature conditions. Various types of fibres, including steel, synthetic and natural fibres, are available for this purpose. This paper provides a comprehensive review of the impact of synthetic fibres on the performance of fibre-reinforced concrete at high temperatures. It evaluates conventional synthetic fibres, including polypropylene (PP), polyethylene (PE), and polyvinyl alcohol (PVA) fibres, as well as newly emerging macro fibres that improve concrete’s fire resistance properties. The novelty of this review lies in its focus on macro fibres as a promising alternative to conventional synthetic fibres. The findings reveal that PE fibres significantly influence the residual mechanical properties of fibre-reinforced concrete at high temperatures. Although PVA fibres may reduce compressive strength at elevated temperatures, they help reduce micro-cracking and increase flexibility and flexural strength. Finally, this review demonstrates that while conventional synthetic fibres are effective in limiting fire-induced damage, macro fibres offer enhanced benefits, including improved toughness, energy absorption, durability, corrosion resistance, and post-cracking capacity. This study provides valuable insights for developing fibre-reinforced concrete with superior high-temperature performance. Steel fibres offer superior strength but are prone to corrosion and spalling, while PP fibres effectively reduce explosive spalling but provide limited strength improvement. PE fibres enhance flexural performance, and PVA fibres improve tensile strength and shrinkage control, although their performance decreases at high temperatures. Macro fibres stand out for their post-cracking capacity and toughness, offering a lightweight alternative with better overall durability. Full article
Show Figures

Figure 1

23 pages, 5146 KB  
Article
Flame Retardancy and Thermal Stability of Rigid Polyurethane Foams Filled with Walnut Shells and Mineral Fillers
by Sylwia Makowska, Karolina Miedzińska, Agnė Kairytė, Jurga Šeputytė-Jucikė and Krzysztof Strzelec
Materials 2024, 17(18), 4629; https://doi.org/10.3390/ma17184629 - 21 Sep 2024
Cited by 3 | Viewed by 1765
Abstract
Recently, the influence of the concept of environmental sustainability has increased, which includes environmentally friendly measures related to reducing the consumption of petrochemical fuels and converting post-production feedstocks into raw materials for the synthesis of polymeric materials, the addition of which would improve [...] Read more.
Recently, the influence of the concept of environmental sustainability has increased, which includes environmentally friendly measures related to reducing the consumption of petrochemical fuels and converting post-production feedstocks into raw materials for the synthesis of polymeric materials, the addition of which would improve the performance of the final product. In this regard, the development of bio-based polyurethane foams can be carried out by, among other things, modifying polyurethane foams with vegetable or waste fillers. This paper investigates the possibility of using walnut shells (WS) and the mineral fillers vermiculite (V) and perlite (P) as a flame retardant to increase fire safety and thermal stability at higher temperatures. The effects of the fillers in amounts of 10 wt.% on selected properties of the polyurethane composites, such as rheological properties (dynamic viscosity and processing times), mechanical properties (compressive strength, flexural strength, and hardness), insulating properties (thermal conductivity), and flame retardant properties (e.g., ignition time, limiting oxygen index, and peak heat release) were investigated. It has been shown that polyurethane foams containing fillers have better performance properties compared to unmodified polyurethane foams. Full article
(This article belongs to the Special Issue Advances in Bio-Polymer and Polymer Composites)
Show Figures

Figure 1

23 pages, 21120 KB  
Article
Post-Heat Flexural Properties of Siloxane-Modified Epoxy/Phenolic Composites Reinforced by Glass Fiber
by Yundong Ji, Xinchen Zhang, Changzeng Wang, Shuxin Li and Dongfeng Cao
Polymers 2024, 16(5), 708; https://doi.org/10.3390/polym16050708 - 5 Mar 2024
Cited by 5 | Viewed by 2103
Abstract
The post-heat mechanical property is one of the important indices for the fire-resistance evaluation of fiber-reinforced polymers. At present, the primary approach to improving the post-heat mechanical property of a material involves incorporating inorganic fillers; yet, the enhancement is limited, and is accompanied [...] Read more.
The post-heat mechanical property is one of the important indices for the fire-resistance evaluation of fiber-reinforced polymers. At present, the primary approach to improving the post-heat mechanical property of a material involves incorporating inorganic fillers; yet, the enhancement is limited, and is accompanied by a reduction in room-temperature performance and processability. This study prepares glass-fiber-reinforced composites with elevated mechanical properties after heat through utilizing two variants of epoxy resins modified with polysiloxane, phenolic resin, kaolin, and graphite. In comparison to the phenolic samples, the phenylpropylsiloxane-modified epoxy resulted in a 115% rise in post-heat flexural strength and a 70% increase in the room-temperature flexural strength of phenolic composites. On the other hand, dimethylsiloxane-modified epoxy leads to a 117% improvement in post-heat flexural strength but a 44% decrease in the room-temperature flexural strength of phenolic composites. Macroscopic/microscopic morphologies and a residual structure model of the composites after heat reveal that, during high temperature exposure, the pyrolysis products of polysiloxane promote interactions between carbon elements and fillers, thus preserving more residues and improving the dimensional stability as well as the density of materials. Consequently, a notable enhancement is observed in both the post-heat flexural strength and the mass of carbon residue after the incorporation of polysiloxane and fillers into the materials. The pyrolysis products of polysiloxane-modified epoxy play a vital role in enhancing the post-heat flexural strength by promoting carbon retention, carbon fixation, and interactions with fillers, offering novel pathways for the development of advanced composites with superior fire-resistance properties. Full article
(This article belongs to the Collection Polymers and Polymer Composites: Structure-Property Relationship)
Show Figures

Figure 1

23 pages, 8914 KB  
Article
Incorporation of Steel Fibers to Enhance Performance of Sustainable Concrete Made with Waste Brick Aggregates: Experimental and Regression-Based Approaches
by Ekkachai Yooprasertchai, Alireza Bahrami, Panumas Saingam, Qudeer Hussain, Ali Ejaz and Panuwat Joyklad
Buildings 2023, 13(11), 2820; https://doi.org/10.3390/buildings13112820 - 10 Nov 2023
Cited by 13 | Viewed by 1711
Abstract
Each year, an enormous amount of construction waste is produced worldwide. The reuse of construction waste in construction works is a sustainable solution. The present research work utilized recycled brick aggregates in the production of concrete. The resulting concrete exhibited substandard splitting tensile, [...] Read more.
Each year, an enormous amount of construction waste is produced worldwide. The reuse of construction waste in construction works is a sustainable solution. The present research work utilized recycled brick aggregates in the production of concrete. The resulting concrete exhibited substandard splitting tensile, flexural, and compressive properties. Steel fibers were used to improve these substandard properties of recycled brick aggregate concrete. The volume fractions of 1%, 2%, and 3% for steel fibers were mixed in concrete, whereas recycled brick aggregates were obtained from solid fired-clay bricks, hollow fired-clay bricks, and cement–clay interlocking bricks. The compressive strength was enhanced by up to 35.53% and 66.67% for natural and recycled brick aggregate concrete, respectively. Strengthened flexural specimens demonstrated up to 8765.69% increase in the energy dissipation. Specimens strengthened with steel fibers showed substantially improved splitting tensile, flexural, and compressive responses. Separate equations were proposed to predict the peak compressive strength, strain at peak compressive strength, elastic modulus, and post-peak modulus of recycled brick aggregate concrete. The proposed regression equations were utilized in combination with an existing compressive stress–strain model. A close agreement was observed between experimental and predicted compressive stress–strain curves of recycled brick aggregate concrete. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 4149 KB  
Article
Effect of Fireproof Coatings on the Post-Fire Behavior of CFRP Composite Sheets
by Xuhong Qiang, Kaihao Wang, Xu Jiang, Yi Xiao and Yibo E
Appl. Sci. 2023, 13(18), 10369; https://doi.org/10.3390/app131810369 - 16 Sep 2023
Cited by 9 | Viewed by 2645
Abstract
This study examines the effect of two self-developed novel fireproof coatings on the fire resistance of carbon fiber-reinforced polymer (CFRP) composite sheets. The post-fire flexural properties were chosen as important indicators of fire resistance. This research involves two distinct fire conditions, the standard [...] Read more.
This study examines the effect of two self-developed novel fireproof coatings on the fire resistance of carbon fiber-reinforced polymer (CFRP) composite sheets. The post-fire flexural properties were chosen as important indicators of fire resistance. This research involves two distinct fire conditions, the standard fire condition and the large-space fire condition, to simulate general interior fires and large-space fires. The post-fire flexural performance of CFRP sheets coated with two different self-developed fireproof coatings was evaluated through three-point bending tests after fire exposure. The experimental findings demonstrated a significant reduction of up to 80% in the post-fire flexural properties of CFRP sheets without fireproof coatings. However, CFRP sheets coated with fireproof coatings exhibited a substantial enhancement in their post-fire flexural properties. Under the large-space fire condition, the fire-resistance duration of CFRP sheets coated with fireproof coatings of at least 25 mm thickness exceeded 2 h, satisfying the requirements of GB50016-2014 fire-resistance class III (columns), class I (beams), and class I (floor slabs), respectively. Under the standard fire condition, CFRP sheets covered by fireproof coatings of 35 mm thickness exhibited a fire-resistance duration of 0.75 h, meeting the requirements of GB50016-2014 fire-resistance class IV (columns), class IV (beams), and class III (floor slabs), respectively. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 7044 KB  
Article
Flexural Toughness Test and Inversion Research on a Thermal Conductivity Formula on Steel Fiber-Reinforced Concrete Components Post-Fire
by Huayun Li, Bingguang Chen, Kaicheng Zhu and Xiaolin Gong
Materials 2022, 15(15), 5103; https://doi.org/10.3390/ma15155103 - 22 Jul 2022
Cited by 9 | Viewed by 2007
Abstract
Steel fibers are widely used because they can effectively improve the tensile, compressive and flexural properties of concrete structures. The selection of steel fiber dosage and aspect ratio at high temperature has an important impact on the flexural toughness of concrete components post-fire. [...] Read more.
Steel fibers are widely used because they can effectively improve the tensile, compressive and flexural properties of concrete structures. The selection of steel fiber dosage and aspect ratio at high temperature has an important impact on the flexural toughness of concrete components post-fire. In this paper, discussions are made on the simulated fire test in compliance with the ISO 834 standard to study the steel fiber-reinforced concrete (SFRC) components post-fire. The research reveals the influence of two commonly used steel fiber aspect ratios (50, 70) and steel fiber dosages (30 kg/m3, 40 kg/m3, 45 kg/m3) on the changes of the internal temperature field, the initial crack flexural strength and the flexural toughness of the SFRC components under a single-side fire. Moreover, combined with the four-point flexural test of the SFRC components post fire, the research also describes the damage of high temperatures to the flexural toughness of SFRC components, and suggests a calculation formula for SFRC thermal conductivity by way of the numerical inversion method. The results of this study have verified that the incorporation of steel fiber into concrete helps to reduce its internal thermal stress difference and improve the crack resistance and fire resistance of the concrete. Moreover, under high temperature conditions, the concrete component added with the steel fiber in an aspect ratio of 70 and a dosage of 45 kg/m3 increased their initial crack flexural strength by 56.8%, higher than that of plain concrete components, and the loss of equivalent flexural strength and flexural toughness of SFRC post fire was only 45.2% and 13.6%, respectively. The proposed calculation formula of thermal conductivity can provide a reference for a numerical simulation study of the temperature field of SFRC components in a high temperature environment. Full article
(This article belongs to the Special Issue Advanced Steel Composites in Construction Engineering)
Show Figures

Figure 1

22 pages, 9602 KB  
Article
Effect of Thermal Exposure on Residual Properties of Wet Layup Carbon Fiber Reinforced Epoxy Composites
by SoonKook Hong and Vistasp M. Karbhari
Polymers 2022, 14(14), 2957; https://doi.org/10.3390/polym14142957 - 21 Jul 2022
Cited by 7 | Viewed by 2962
Abstract
Ambient cured wet layup carbon fiber reinforced epoxy composites used extensively in the rehabilitation of infrastructure and in structural components can be exposed to elevated temperature regimes for extended periods of time of hours to a few days due to thermal excursions. These [...] Read more.
Ambient cured wet layup carbon fiber reinforced epoxy composites used extensively in the rehabilitation of infrastructure and in structural components can be exposed to elevated temperature regimes for extended periods of time of hours to a few days due to thermal excursions. These may be severe enough to cause a significant temperature rise without deep charring as through fires at a small distance and even high-temperature industrial processes. In such cases, it is critical to have information related to the post-event residual mechanical properties and damage states. In this paper, composites are subjected to a range of elevated temperatures up to 260 °C over periods of time up to 72 h. Exposure to elevated temperature regimes is noted to result in a competition between the mechanisms of post-cure that can increase the levels of mechanical characteristics, and the deterioration of the resin and the bond between the fibers and resin that can reduce them. Mechanical tests indicate that tensile and short beam shear properties are not affected negatively until the highest temperatures of exposure considered in this investigation. In contrast, all elevated temperature conditions cause deterioration in resin-dominated characteristics such as shear and flexure, emphasizing the weakness of this mode in layered composites formed from unidirectional fabric architectures due to resin deterioration. Transitions in failure modes are correlated through microscopy to damage progression both at the level of fiber-matrix interface integrity and through the bulk resin, especially at the inter-layer level. The changes in glass transition temperature determined through differential scanning calorimetry can be related to thresholds that indicate changes in the mechanisms of damage. Full article
(This article belongs to the Special Issue Fibre Reinforced Polymer (FRP) Composites in Structural Applications)
Show Figures

Figure 1

8 pages, 1826 KB  
Article
An Assessment of the Influence of Dental Porcelain Slurry Preparation on Flexural Strength of Different Feldspathic Porcelains
by Abdulmonem Alshihri, Nadin Al-Haj Husain, Kai Vogeler and Mutlu Özcan
Appl. Sci. 2021, 11(20), 9385; https://doi.org/10.3390/app11209385 - 9 Oct 2021
Cited by 3 | Viewed by 2307
Abstract
Chipping remains a big challenge during the clinical application of glass ceramics in dentistry. The fabrication procedure used affects the mechanical properties of dental feldspathic porcelain and is associated with technical failures. This study aimed to compare the effect of the use of [...] Read more.
Chipping remains a big challenge during the clinical application of glass ceramics in dentistry. The fabrication procedure used affects the mechanical properties of dental feldspathic porcelain and is associated with technical failures. This study aimed to compare the effect of the use of manufacturers’ liquids versus H2O on the flexural strength of glass ceramics. Specimens (n = 120, n = 15 per group) (25 × 4 × 1.2 mm) were obtained using four porcelain powders (Creation CC, IPS InLine, Noritake EX-3, and Vita VM 13). Four groups were produced using porcelain powder and modeling liquid, and four groups using distilled water. The specimens were fired, sintered, and polished. Flexural strength was measured using a universal testing machine. Statistical analyses were conducted using post hoc Tukey’s, two-way ANOVA, and Weibull analysis. Flexural strength values (mean ± SD) of the ceramic-manufacturer’s liquid mixture ranged between 67.2 ± 10.2 and 85.8 ± 12.8 MPA (NR < VT < IV < CR), while flexural strength values of the ceramic–water mixture were between 72.2 ± 6.9 and 95.2 ± 12 MPA (CR < NR < VT < IV). While the choice of the ceramic type significantly affected flexural strength, the use of water vs. manufacturers’ liquid showed in almost all cases no significance. To achieve better flexural strength results, InLine should be used with distilled water mixtures, while all ceramic powders except for Noritake can be used with the manufacturer’s liquid mixtures. Full article
(This article belongs to the Special Issue Clinical Applications for Dentistry and Oral Health)
Show Figures

Figure 1

Back to TopTop