Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = portable biomedical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4345 KiB  
Article
Single-Thermocouple Suspended Microfluidic Thermal Sensor with Improved Heat Retention for the Development of Multifunctional Biomedical Detection
by Lin Qin, Xiasheng Wang, Chenxi Wu, Yuan Ju, Hao Zhang, Xin Cheng, Yuanlin Xia, Cao Xia, Yubo Huang and Zhuqing Wang
Sensors 2025, 25(15), 4532; https://doi.org/10.3390/s25154532 - 22 Jul 2025
Viewed by 259
Abstract
Thermal sensors are widely used in medical, industrial and other fields, where the requirements for high sensitivity and portability continues to increase. Here we propose a suspended bridge structure fabricated using MEMS, which effectively shrinks the size and reduces heat loss. This study [...] Read more.
Thermal sensors are widely used in medical, industrial and other fields, where the requirements for high sensitivity and portability continues to increase. Here we propose a suspended bridge structure fabricated using MEMS, which effectively shrinks the size and reduces heat loss. This study reviews current sensor-related theories of heat conduction, convective heat transfer and thermal radiation. Heat loss models for suspended and non-suspended bridge structures are established, and finite element analysis is conducted to evaluate their thermal performance. The thermal performance of the suspended bridge structure is further validated through infrared temperature measurements on the manufactured sensor device. Theoretical calculations demonstrate that the proposed suspension bridge structure reduces heat loss by 88.64% compared with traditional designs. Benefiting from this improved heat retention, which was also confirmed by infrared thermography, the thermal sensor fabricated based on the suspension bridge structure achieves an ultra-high sensitivity of 0.38 V/W and a fast response time of less than 200 ms, indicating a high accuracy in thermal characterization. The correlation coefficient obtained for the sensor output voltage and input power of the sensor is approximately 1.0. Based on this design, multiple microfluidic channels with suspended bridge structures can be integrated to realize multi-component detection, which is important for the development of multifunctional biomedical detection. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

14 pages, 2816 KiB  
Article
A Colorimetric/Ratiometric Fluorescent Probe Based on Aggregation-Induced Emission Effect for Detecting Hypochlorous Acid in Real Samples and Bioimaging Applications
by Junliang Chen, Pingping Xiong, Huawei Niu, Weiwei Cao, Wenfen Zhang and Shusheng Zhang
Foods 2025, 14(14), 2491; https://doi.org/10.3390/foods14142491 - 16 Jul 2025
Viewed by 318
Abstract
Hypochlorous acid (HClO) serves as a biological mediator and is widely utilized as a disinfectant in food processing and water treatment. However, excessive HClO residues in food and environmental water raise concerns due to the potential formation of carcinogenic chlorinated byproducts and disinfection [...] Read more.
Hypochlorous acid (HClO) serves as a biological mediator and is widely utilized as a disinfectant in food processing and water treatment. However, excessive HClO residues in food and environmental water raise concerns due to the potential formation of carcinogenic chlorinated byproducts and disinfection byproducts (DBPs). Despite its importance, traditional methods for HClO detection often involve complex sample preparation, sophisticated instrumentation, and skilled operators. Herein, we report an aggregation-induced emission (AIE) small molecule fluorescent probe (NYV) that integrates colorimetric and ratiometric fluorescence responses for the detection of HClO. This probe exhibits high sensitivity, with a detection limit of 0.35 μM, a rapid response time of 1 min, and a wide linear range (0–142.5 μM), along with anti-interference capabilities, making it suitable for real-time monitoring. Furthermore, we have developed a portable solid-state sensor based on probe NYV for the rapid visual detection of HClO. The potential applications of this probe in real sample analysis and bioimaging experiments are demonstrated. Our findings contribute to the development of innovative fluorescent probes for HClO detection, with broad applications in food safety, environmental monitoring, and biomedical research on oxidative stress and ferroptosis. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

38 pages, 3752 KiB  
Review
Recent Advances in Metal–Organic Framework-Based Nanozymes for Intelligent Microbial Biosensing: A Comprehensive Review of Biomedical and Environmental Applications
by Alemayehu Kidanemariam and Sungbo Cho
Biosensors 2025, 15(7), 437; https://doi.org/10.3390/bios15070437 - 7 Jul 2025
Viewed by 620
Abstract
Metal–organic framework (MOF)-based nanozymes represent a groundbreaking frontier in advanced microbial biosensing, offering unparalleled catalytic precision and structural tunability to mimic natural enzymes with superior stability and specificity. By engineering the structural features and forming composites, MOFs are precisely tailored to amplify nanozymatic [...] Read more.
Metal–organic framework (MOF)-based nanozymes represent a groundbreaking frontier in advanced microbial biosensing, offering unparalleled catalytic precision and structural tunability to mimic natural enzymes with superior stability and specificity. By engineering the structural features and forming composites, MOFs are precisely tailored to amplify nanozymatic activity, enabling the highly sensitive, rapid, and cost-effective detection of a broad spectrum of microbial pathogens critical to biomedical diagnostics and environmental monitoring. These advanced biosensors surpass traditional enzyme systems in robustness and reusability, integrating seamlessly with smart diagnostic platforms for real-time, on-site microbial identification. This review highlights cutting-edge developments in MOF nanozyme design, composite engineering, and signal transduction integration while addressing pivotal challenges such as biocompatibility, complex matrix interference, and scalable manufacturing. Looking ahead, the convergence of multifunctional MOF nanozymes with portable technologies and optimized in vivo performance will drive transformative breakthroughs in early disease detection, antimicrobial resistance surveillance, and environmental pathogen control, establishing a new paradigm in next-generation smart biosensing. Full article
(This article belongs to the Special Issue Microbial Biosensor: From Design to Applications—2nd Edition)
Show Figures

Graphical abstract

15 pages, 3790 KiB  
Article
A Smart Rehabilitation Glove Based on Shape-Memory Alloys for Stroke Recovery
by Yutong Xie, Songrhon Sun, Yiwen Liu, Fei Xiao, Weijie Li, Shukun Wu, Xiaorong Cai, Xifan Ding and Xuejun Jin
Appl. Sci. 2025, 15(13), 7266; https://doi.org/10.3390/app15137266 - 27 Jun 2025
Viewed by 364
Abstract
Stroke-induced hand dysfunction substantially impairs patients’ quality of life, creating an urgent need for portable, adaptive rehabilitation devices. This study introduces a smart rehabilitation glove actuated by shape-memory alloy (SMA) wires, leveraging their high power-to-weight ratio, controllable strain recovery, and reversible phase transformation [...] Read more.
Stroke-induced hand dysfunction substantially impairs patients’ quality of life, creating an urgent need for portable, adaptive rehabilitation devices. This study introduces a smart rehabilitation glove actuated by shape-memory alloy (SMA) wires, leveraging their high power-to-weight ratio, controllable strain recovery, and reversible phase transformation to overcome the limitations of conventional motor-driven or pneumatic gloves. The glove incorporates SMA-based actuation units achieving 50 mm contraction (5% strain) within 7 s, enabling finger flexion to ~34° for personalized rehabilitation protocols. A mobile application provides wireless regulation of SMA actuation modes and facilitates real-time telemedicine consultations. The prototype demonstrates an ultra-lightweight, compact design enabled by SMA’s intrinsic properties, offering a promising solution for home-based post-stroke rehabilitation. This work establishes the transformative potential of SMAs in wearable biomedical technologies. Full article
(This article belongs to the Special Issue Smart Materials and Multifunctional Mechanical Metamaterials)
Show Figures

Figure 1

14 pages, 3939 KiB  
Article
Design and Validation of Low-Cost, Portable Impedance Analyzer System for Biopotential Electrode Evaluation and Skin/Electrode Impedance Measurement
by Jaydeep Panchal, Moon Inder Singh, Mandeep Singh and Karmjit Singh Sandha
Sensors 2025, 25(12), 3688; https://doi.org/10.3390/s25123688 - 12 Jun 2025
Viewed by 598
Abstract
This paper presents a novel, low-cost, portable impedance analyzer system designed for biopotential electrode evaluation and skin/electrode impedance measurement, critical for enhancing bioelectrical signal quality in healthcare applications. In contrast with conventional systems that depend on external PCs or host devices for data [...] Read more.
This paper presents a novel, low-cost, portable impedance analyzer system designed for biopotential electrode evaluation and skin/electrode impedance measurement, critical for enhancing bioelectrical signal quality in healthcare applications. In contrast with conventional systems that depend on external PCs or host devices for data acquisition, visualization, and analysis, this design integrates all functionalities into a single, compact platform powered by the Analog Devices AD5933 impedance converter and a Raspberry Pi 4. The design incorporates custom analog circuitry to extend the measurement range from 10 Hz to 100 kHz and supports a wide impedance spectrum through switchable feedback resistors. Validated against a benchtop impedance analyzer, the system demonstrates high accuracy with normalized root-mean-square errors (NRMSEs) of 1.41% and 3.77% for the impedance magnitude and phase of passive components, respectively, and 1.43% and 1.29% for the biopotential electrode evaluation and skin/electrode impedance measurement. This cost-effective solution, with a total cost of USD 159, addresses the accessibility challenges faced by smaller research labs and healthcare facilities, offering a compact, low-power platform for reliable impedance analysis in biomedical applications. Full article
(This article belongs to the Special Issue Integrated Sensor Systems for Medical Applications)
Show Figures

Figure 1

28 pages, 2905 KiB  
Review
Gel-Based Self-Powered Nanogenerators: Materials, Mechanisms, and Emerging Opportunities
by Aditya Narayan Singh and Kyung-Wan Nam
Gels 2025, 11(6), 451; https://doi.org/10.3390/gels11060451 - 12 Jun 2025
Viewed by 818
Abstract
With the rapid rise in Internet of Things (IoT) and artificial intelligence (AI) technologies, there is an increasing need for portable, wearable, and self-powered flexible sensing devices. In such scenarios, self-powered nanogenerators have emerged as promising energy harvesters capable of converting ambient mechanical [...] Read more.
With the rapid rise in Internet of Things (IoT) and artificial intelligence (AI) technologies, there is an increasing need for portable, wearable, and self-powered flexible sensing devices. In such scenarios, self-powered nanogenerators have emerged as promising energy harvesters capable of converting ambient mechanical stimuli into electrical energy, enabling the development of autonomous flexible sensors and sustainable systems. This review highlights recent advances in nanogenerator technologies—particularly those based on piezoelectric and triboelectric effects—with a focus on soft, flexible, and gel-based polymer materials. Key mechanisms of energy conversion are discussed alongside strategies to enhance performance through material innovation, structural design, and device integration. Special attention is given to the role of gel-type composites, which offer unique advantages such as mechanical tunability, self-healing ability, and biocompatibility, making them highly suitable for next-generation wearable, biomedical, and environmental sensing applications. We also explore the evolving landscape of energy applications, from microscale sensors to large-area systems, and identify critical challenges and opportunities for future research. By synthesizing progress across materials, mechanisms, and application domains, this review aims to guide the rational design of high-performance, sustainable nanogenerators for the next era of energy technologies. Full article
Show Figures

Figure 1

18 pages, 3235 KiB  
Review
Recent Optical Coherence Tomography (OCT) Innovations for Increased Accessibility and Remote Surveillance
by Brigid C. Devine, Alan B. Dogan and Warren M. Sobol
Bioengineering 2025, 12(5), 441; https://doi.org/10.3390/bioengineering12050441 - 23 Apr 2025
Viewed by 1528
Abstract
Optical Coherence Tomography (OCT) has revolutionized the diagnosis and management of retinal diseases, offering high-resolution, cross-sectional imaging that aids in early detection and continuous monitoring. However, traditional OCT devices are limited to clinical settings and require a technician to operate, which poses accessibility [...] Read more.
Optical Coherence Tomography (OCT) has revolutionized the diagnosis and management of retinal diseases, offering high-resolution, cross-sectional imaging that aids in early detection and continuous monitoring. However, traditional OCT devices are limited to clinical settings and require a technician to operate, which poses accessibility challenges such as a lack of appointment availability, patient and family burden of frequent transportation, and heightened healthcare costs, especially when treatable pathology is undetected. With the increasing global burden of retinal conditions such as age-related macular degeneration (AMD) and diabetic retinopathy, there is a critical need for improved accessibility in the detection of retinal diseases. Advances in biomedical engineering have led to innovations such as portable models, community-based systems, and artificial intelligence-enabled image analysis. The SightSync OCT is a community-based, technician-free device designed to enhance accessibility while ensuring secure data transfer and high-quality imaging (6 × 6 mm resolution, 80,000 A-scans/s). With its compact design and potential for remote interpretation, SightSync widens the possibility for community-based screening for vision-threatening retinal diseases. By integrating innovations in OCT imaging, the future of monitoring for retinal disease can be transformed to reduce barriers to care and improve patient outcomes. This article discusses the evolution of OCT technology, its role in the diagnosis and management of retinal diseases, and how novel engineering solutions like SightSync OCT are transforming accessibility in retinal imaging. Full article
Show Figures

Figure 1

15 pages, 3015 KiB  
Article
Noise Reduction in LED-Based Photoacoustic Imaging
by Takahiro Kono, Kazuma Hashimoto, Keisuke Fukuda, Uma Maheswari Rajagopalan, Kae Nakamura and Jun Yamada
Photonics 2025, 12(4), 398; https://doi.org/10.3390/photonics12040398 - 18 Apr 2025
Viewed by 466
Abstract
Photoacoustic tomography (PAT), also known as optoacoustic tomography, has been emerging as a biomedical imaging modality that can provide cross-sectional or three-dimensional (3D) visualization of biological tissues such as blood vessels and lymphatic vessels in vivo at high resolution. The principle behind the [...] Read more.
Photoacoustic tomography (PAT), also known as optoacoustic tomography, has been emerging as a biomedical imaging modality that can provide cross-sectional or three-dimensional (3D) visualization of biological tissues such as blood vessels and lymphatic vessels in vivo at high resolution. The principle behind the visualization involves the light being absorbed by the tissues which results in the generation of ultrasound. Depending on the strength of ultrasound and its decay rate, it could be used to visualize the absorber location. In general, pulsed lasers such as the Q-switched Nd-YAG and OPO lasers that provide high-energy widths in the range of a few nanoseconds operating at low repetition rates are commonly used as a light source in photoacoustic imaging. However, such lasers are expensive and occupy ample space. Therefore, PAT systems that use LED as the source instead of lasers, which have the advantage of being obtainable at low cost and portable, are gaining attention. However, LED light sources have significantly low energy, and the photoacoustic signals generated have a low signal-to-noise ratio (SNR). Therefore, in LED-based systems, one way to strengthen the signal and improve the SNR is to significantly increase the repetition rate of LED pulses and use signal processing, which can be achieved using a high-power LED along M-sequence signal decoding. M-sequence signal decoding is effective, especially under high repetition rates, thus improving the SNR. However, power supplies for high-power LEDs have a circuit jitter, resulting in random temporal fluctuations in the emitted light. Such jitters, in turn, would affect the M-sequence-based signal decoding. Therefore, we propose a new decoding algorithm which compensates for LED jitter in the M-sequence signal processing. We show that the proposed new signal processing method can significantly improve the SNR of the photoacoustic signals. Full article
(This article belongs to the Special Issue Emerging Trends in Biomedical Optical Imaging)
Show Figures

Figure 1

50 pages, 7835 KiB  
Article
Enhancing Connected Health Ecosystems Through IoT-Enabled Monitoring Technologies: A Case Study of the Monit4Healthy System
by Marilena Ianculescu, Victor-Ștefan Constantin, Andreea-Maria Gușatu, Mihail-Cristian Petrache, Alina-Georgiana Mihăescu, Ovidiu Bica and Adriana Alexandru
Sensors 2025, 25(7), 2292; https://doi.org/10.3390/s25072292 - 4 Apr 2025
Cited by 5 | Viewed by 1273
Abstract
The Monit4Healthy system is an IoT-enabled health monitoring solution designed to address critical challenges in real-time biomedical signal processing, energy efficiency, and data transmission. The system’s modular design merges wireless communication components alongside a number of physiological sensors, including galvanic skin response, electromyography, [...] Read more.
The Monit4Healthy system is an IoT-enabled health monitoring solution designed to address critical challenges in real-time biomedical signal processing, energy efficiency, and data transmission. The system’s modular design merges wireless communication components alongside a number of physiological sensors, including galvanic skin response, electromyography, photoplethysmography, and EKG, to allow for the remote gathering and evaluation of health information. In order to decrease network load and enable the quick identification of abnormalities, edge computing is used for real-time signal filtering and feature extraction. Flexible data transmission based on context and available bandwidth is provided through a hybrid communication approach that includes Bluetooth Low Energy and Wi-Fi. Under typical monitoring scenarios, laboratory testing shows reliable wireless connectivity and ongoing battery-powered operation. The Monit4Healthy system is appropriate for scalable deployment in connected health ecosystems and portable health monitoring due to its responsive power management approaches and structured data transmission, which improve the resiliency of the system. The system ensures the reliability of signals whilst lowering latency and data volume in comparison to conventional cloud-only systems. Limitations include the requirement for energy profiling, distinctive hardware miniaturizing, and sustained real-world validation. By integrating context-aware processing, flexible design, and effective communication, the Monit4Healthy system complements existing IoT health solutions and promotes better integration in clinical and smart city healthcare environments. Full article
Show Figures

Figure 1

12 pages, 10567 KiB  
Article
A Low-Power, Auto-DC-Suppressed Photoplethysmography Readout System with Differential Current Mirrors and Wide Common-Mode Input Range Successive Approximation Register Analog-to-Digital Converter
by Chanyoung Son, Seok-Tae Koh and Hyuntak Jeon
Micromachines 2025, 16(4), 398; https://doi.org/10.3390/mi16040398 - 29 Mar 2025
Viewed by 447
Abstract
This paper presents a low-power photoplethysmography (PPG) readout system designed for wearable health monitoring. The system employs a differential current mirror (DCM) to convert single-ended PPG currents into differential voltages, inherently suppressing DC components. A wide common-mode input range (WCMIR) SAR ADC processes [...] Read more.
This paper presents a low-power photoplethysmography (PPG) readout system designed for wearable health monitoring. The system employs a differential current mirror (DCM) to convert single-ended PPG currents into differential voltages, inherently suppressing DC components. A wide common-mode input range (WCMIR) SAR ADC processes the differential signals, ensuring accurate analog-to-digital conversion. The DCM eliminates the need for DC cancelation loops, simplifying the design and reducing power consumption. Implemented in a 0.18 µm CMOS process, the system occupies only 0.30 mm2, making it suitable for multi-channel applications. The system achieves over 60 dB DC dynamic range and consumes only 9.6 µW, demonstrating its efficiency for portable devices. The simulation results validate its ability to process PPG signals across various conditions, offering a scalable solution for advanced biomedical sensing platforms. Full article
(This article belongs to the Special Issue Micro/Nano Sensors: Fabrication and Applications)
Show Figures

Figure 1

15 pages, 6222 KiB  
Article
Biological Decontamination by Microplasma
by Marius Gabriel Blajan, Alexandra Ciorita, Emanoil Surducan, Vasile Surducan and Kazuo Shimizu
Appl. Sci. 2025, 15(5), 2527; https://doi.org/10.3390/app15052527 - 26 Feb 2025
Cited by 1 | Viewed by 806
Abstract
Dielectric-barrier-discharge microplasma has various applications such as flow control, surface treatment, air treatment, or biomedical applications. Microplasma was used for the inactivation of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Bacterial strains spread on Petri dishes containing Nutrient Agar were [...] Read more.
Dielectric-barrier-discharge microplasma has various applications such as flow control, surface treatment, air treatment, or biomedical applications. Microplasma was used for the inactivation of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Bacterial strains spread on Petri dishes containing Nutrient Agar were treated with microplasma and, after incubation, inhibition zones were observed. By comparison, the experiments carried out with the already-grown bacteria on the Petri dish did not show any inhibitory response. Environmental air was used as discharge gas. The reactive oxygen and nitrogen species mainly carry out the inactivation process. A negative pulse voltage energized the microplasma electrodes. The microplasma treatment was the most potent against S. aureus, followed by E. coli, and P. aeruginosa, which was the least susceptible bacteria from the tested strains. An increase in the inhibitory efficiency was observed with the increase in discharge voltage from −1.5 kV to −1.7 kV. This research proved the efficiency of microplasma in biological decontamination and provides valuable insights of the inactivation of bacteria carried out with a technology that is suitable for easy integration and portability. Full article
Show Figures

Figure 1

17 pages, 4380 KiB  
Article
Stroke Detection and Monitoring by Means of a Multifrequency Microwave Inversion Approach
by Alessandro Fedeli, Valentina Schenone, Claudio Estatico and Andrea Randazzo
Electronics 2025, 14(3), 543; https://doi.org/10.3390/electronics14030543 - 29 Jan 2025
Cited by 1 | Viewed by 1097
Abstract
In the area of biomedical diagnostics, microwave imaging techniques have been recently proposed for performing brain stroke detection and monitoring. Indeed, theoretically, these techniques make it possible to meet the timeliness requirements of such a diagnosis with portable systems. Moreover, relying on the [...] Read more.
In the area of biomedical diagnostics, microwave imaging techniques have been recently proposed for performing brain stroke detection and monitoring. Indeed, theoretically, these techniques make it possible to meet the timeliness requirements of such a diagnosis with portable systems. Moreover, relying on the use of microwaves, they are noninvasive and allow continuous monitoring of critical patients. In this paper, the microwave imaging problem is solved by exploiting multifrequency data by an inexact-Newton method formulated in the framework of non-constant exponent Lebesgue spaces. First, the method is numerically validated with three-dimensional head models affected by anatomically-realistic strokes. Then, a further assessment through experimental data obtained with a cylindrical phantom is conducted. A quite accurate reconstruction of the variations of dielectric properties inside the patient’s head due to the insurgence of stroke is obtained in both numerical and experimental cases, showing the potentiality of the proposed approach. Full article
(This article belongs to the Special Issue Electromagnetic Imaging from Radio Frequency to Sub-millimeter Waves)
Show Figures

Figure 1

18 pages, 16317 KiB  
Article
A Novel Low-Power Differential Input Current Summing Second-Generation Voltage Conveyor
by Riccardo Olivieri, Davide Colaiuda, Gianluca Barile, Vincenzo Stornelli and Giuseppe Ferri
J. Low Power Electron. Appl. 2025, 15(1), 7; https://doi.org/10.3390/jlpea15010007 - 29 Jan 2025
Viewed by 1014
Abstract
This paper presents a novel transistor-level design of a modified second-generation voltage conveyor (VCII), which incorporates two differential current inputs (Y+ and Y−) and gives a voltage output at terminal X that mirrors the sum of these currents. The circuit operation is based [...] Read more.
This paper presents a novel transistor-level design of a modified second-generation voltage conveyor (VCII), which incorporates two differential current inputs (Y+ and Y−) and gives a voltage output at terminal X that mirrors the sum of these currents. The circuit operation is based on current mirrors that maintain the X terminal in a stable “quiescent” state when no differential current is applied at Y+ and Y−. When a current flows into one of the two inputs, the sum is mirrored into X, providing a summed current measurement. This design, developed in a standard 0.35 μm CMOS transistors technology, ensures circuit high accuracy and robustness. The low power consumption of 24.6 μW makes it well-suited for portable biomedical applications as in environmental fields. Full article
Show Figures

Figure 1

12 pages, 10206 KiB  
Proceeding Paper
Portable Biomedical System for Acquisition, Display and Analysis of Cardiac Signals (SCG, ECG, ICG and PPG)
by Valery Sofía Zúñiga Gómez, Adonis José Pabuena García, Breiner David Solorzano Ramos, Saúl Antonio Pérez Pérez, Jean Pierre Coll Velásquez, Pablo Daniel Bonaveri and Carlos Gabriel Díaz Sáenz
Eng. Proc. 2025, 83(1), 19; https://doi.org/10.3390/engproc2025083019 - 23 Jan 2025
Viewed by 1099
Abstract
This study introduces a mechatronic biomedical device engineered for concurrent acquisition and analysis of four cardiac non-invasive signals: Electrocardiogram (ECG), Phonocardiogram (PCG), Impedance Cardiogram (ICG), and Photoplethysmogram (PPG). The system enables assessment of individual and simultaneous waveforms, allowing for detailed scrutiny of cardiac [...] Read more.
This study introduces a mechatronic biomedical device engineered for concurrent acquisition and analysis of four cardiac non-invasive signals: Electrocardiogram (ECG), Phonocardiogram (PCG), Impedance Cardiogram (ICG), and Photoplethysmogram (PPG). The system enables assessment of individual and simultaneous waveforms, allowing for detailed scrutiny of cardiac electrical and mechanical dynamics, encompassing heart rate variability, systolic time intervals, pre-ejection period (PEP), and aortic valve opening and closing timings (ET) through an application programmed with MATLAB App Designer, which applies derivative filters, smoothing, and FIR digital filters and evaluates the delay of each one, allowing the synchronization of all signals. These metrics are indispensable for deriving critical hemodynamic indices such as Stroke Volume (SV) and Cardiac Output (CO), paramount in the diagnostic armamentarium against cardiovascular pathologies. The device integrates an assembly of components including five electrodes, operational and instrumental amplifiers, infrared opto-couplers, accelerometers, and advanced filtering subsystems, synergistically tailored for precision and fidelity in signal processing. Rigorous validation utilizing a cohort of healthy subjects and benchmarking against established commercial instrumentation substantiates an accuracy threshold below 4.3% and an Interclass Correlation Coefficient (ICC) surpassing 0.9, attesting to the instrument’s exceptional reliability and robustness in quantification. These findings underscore the clinical potency and technical prowess of the developed device, empowering healthcare practitioners with an advanced toolset for refined diagnosis and management of cardiovascular disorders. Full article
Show Figures

Figure 1

24 pages, 19605 KiB  
Review
Field-Programmable Gate Array (FPGA)-Based Lock-In Amplifier System with Signal Enhancement: A Comprehensive Review on the Design for Advanced Measurement Applications
by Jose Alejandro Galaviz-Aguilar, Cesar Vargas-Rosales, Francisco Falcone and Carlos Aguilar-Avelar
Sensors 2025, 25(2), 584; https://doi.org/10.3390/s25020584 - 20 Jan 2025
Cited by 1 | Viewed by 2690
Abstract
Lock-in amplifiers (LIAs) are critical tools in precision measurement, particularly for applications involving weak signals obscured by noise. Advances in signal processing algorithms and hardware synthesis have enabled accurate signal extraction, even in extremely noisy environments, making LIAs indispensable in sensor applications for [...] Read more.
Lock-in amplifiers (LIAs) are critical tools in precision measurement, particularly for applications involving weak signals obscured by noise. Advances in signal processing algorithms and hardware synthesis have enabled accurate signal extraction, even in extremely noisy environments, making LIAs indispensable in sensor applications for healthcare, industry, and other services. For instance, the electrical impedance measurement of the human body, organs, tissues, and cells, known as bioelectrical impedance, is commonly used in biomedical and healthcare applications because it is non-invasive and relatively inexpensive. Also, due to its portability and miniaturization capabilities, it has great potential for the development of new point-of-care and portable testing devices. In this document, we highlight existing techniques for high-frequency resolution and precise phase detection in LIA reference signals from field-programmable gate array (FPGA) designs. A comprehensive review is presented under the key requirements and techniques for single- and dual-phase digital LIA architectures, where relevant insights are provided to address the LIAs’ digital precision in measurement system configurations. Furthermore, the document highlights a novel method to enhance the spurious-free dynamic range (SFDR), thereby advancing the precision and effectiveness of LIAs in complex measurement environments. Finally, we summarize the diverse applications of impedance measurement, highlighting the wide range of fields that can benefit from the design of high performance in modern measurement technologies. Full article
(This article belongs to the Special Issue Feature Review Papers in Physical Sensors)
Show Figures

Figure 1

Back to TopTop