Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = porous microchannel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4154 KiB  
Article
Femtosecond Laser-Modulated Oxygen Vacancies in LiFePO4 Thick Electrodes for Rapid Ion Transport
by Xiaowei Han, Lu Chen, Hongshui Wang, Ban Chen, Tai Yang, Donghui Wang and Chunyong Liang
Coatings 2025, 15(7), 738; https://doi.org/10.3390/coatings15070738 - 20 Jun 2025
Viewed by 430
Abstract
Although thick electrodes hold significant potential for enhancing battery energy density, their practical application is limited by restricted ion transport kinetics. Constructing porous structures within thick electrodes is a widely adopted strategy to address this limitation, but it often compromises mass retention and [...] Read more.
Although thick electrodes hold significant potential for enhancing battery energy density, their practical application is limited by restricted ion transport kinetics. Constructing porous structures within thick electrodes is a widely adopted strategy to address this limitation, but it often compromises mass retention and mechanical integrity. In this study, a microchannel structure that balances the electrochemical and mechanical properties of the electrode was identified through simulation and precisely fabricated using femtosecond laser technology. Furthermore, the ultra-short pulse duration and high pulse energy of femtosecond lasers introduce oxygen vacancies into the electrode material, thereby enhancing its electrical conductivity. The obtained electrode exhibited excellent electrochemical performance under high-rate charging and discharging conditions, achieving significantly enhanced cycling stability and capacity retention, with a capacity 1.99 times greater than that of the unstructured electrode after 100 cycles. Meanwhile, the mechanical stability of the laser-processed electrode was maintained. This study provides new insights into the structural design and processing of the thick electrode and contributes to advancements in the field of energy storage. Full article
Show Figures

Graphical abstract

17 pages, 5286 KiB  
Article
Enhancing the Design of Microdevices: The Role of Computational Fluid Dynamics and Experimental Investigation
by Behrouz Pirouz, Hana Javadi Nejad, Anna Selene Chirillo, Seyed Navid Naghib and Patrizia Piro
Micromachines 2025, 16(3), 316; https://doi.org/10.3390/mi16030316 - 9 Mar 2025
Cited by 1 | Viewed by 2834
Abstract
The growing use of microfluidic-based devices necessitates an analysis of flow characteristics through both experimental methods and computational fluid dynamic (CFD) simulations. CFD simulations facilitate the investigation of various devices, including medical sensors, by providing detailed insights into flow behavior. In this study, [...] Read more.
The growing use of microfluidic-based devices necessitates an analysis of flow characteristics through both experimental methods and computational fluid dynamic (CFD) simulations. CFD simulations facilitate the investigation of various devices, including medical sensors, by providing detailed insights into flow behavior. In this study, we conducted experimental and CFD analysis of the microfluidic flow in three devices: a COVID-19 rapid test kit, a blood glucose kit, and a PDMS kit. Our findings revealed that the changes in wall adhesion (contact angles) during the capillary flow could cause significant deviation from theoretical flow speed predictions. A hemodynamic analysis of the blood glucose kit and PDMS kit showed that capillary filling decreased in length, and flow speed could depend on the microchannel diameter. CFD results indicated the prominent role of porosity in the simulation of porous media material such as the COVID-19 test kit, as well as surface tension coefficients and wall adhesion (contact angles) in blood glucose kits and PDMS kits. Therefore, considering adaptive dynamic contact angles in CFD simulation software such as Ansys-Fluent 2024 could result in a more accurate prediction than simplified theoretical techniques, which is useful for sensor optimization and development. Full article
Show Figures

Figure 1

13 pages, 4856 KiB  
Article
Preparation and Characterization of Ni-Mn-Ga-Cu Shape Memory Alloy with Micron-Scale Pores
by Kunyu Wang, Zhiqiang Wang, Yunlong Li, Jie Zhu and Zhiyi Ding
Metals 2024, 14(10), 1155; https://doi.org/10.3390/met14101155 - 10 Oct 2024
Viewed by 1610
Abstract
Porous Ni-Mn-Ga shape memory alloys (SMAs) were prepared by powder metallurgy using NaCl as a pore-forming agent with an average pore size of 20–30 μm. The microstructure, phase transformation, superelasticity, and elastocaloric properties of the porous alloys were investigated. The prepared porous alloy [...] Read more.
Porous Ni-Mn-Ga shape memory alloys (SMAs) were prepared by powder metallurgy using NaCl as a pore-forming agent with an average pore size of 20–30 μm. The microstructure, phase transformation, superelasticity, and elastocaloric properties of the porous alloys were investigated. The prepared porous alloy had a uniform pore distribution and interconnected microchannels were formed. Cu doping can effectively improve the toughness of a porous alloy, thus improving the superelasticity. It was found that porous Ni-Mn-Ga-Cu SMAs have a flat stress plateau, which exhibits a maximum elongation of 5% with partially recoverable strain and a critical stress for martensite transformation as low as about 160 MPa. In addition, an adiabatic temperature change of 0.6 K was obtained for the prepared porous alloy at a strain of 1.2% at about 150 MPa. This work confirms that the introduction of porous structures into polycrystalline Ni-Mn-Ga SMAs is an effective way to reduce costs and improve performance, and provides opportunities for engineering applications. Full article
Show Figures

Figure 1

26 pages, 881 KiB  
Article
Lattice Boltzmann Model for Rarefied Gaseous Mixture Flows in Three-Dimensional Porous Media Including Knudsen Diffusion
by Michel Ho, Jean-Michel Tucny, Sami Ammar, Sébastien Leclaire, Marcelo Reggio and Jean-Yves Trépanier
Fluids 2024, 9(10), 237; https://doi.org/10.3390/fluids9100237 - 9 Oct 2024
Cited by 4 | Viewed by 4053
Abstract
Numerical modeling of gas flows in rarefied regimes is crucial in understanding fluid behavior in microscale applications. Rarefied regimes are characterized by a decrease in molecular collisions, and they lead to unusual phenomena such as gas phase separation, which is not acknowledged in [...] Read more.
Numerical modeling of gas flows in rarefied regimes is crucial in understanding fluid behavior in microscale applications. Rarefied regimes are characterized by a decrease in molecular collisions, and they lead to unusual phenomena such as gas phase separation, which is not acknowledged in hydrodynamic equations. In this work, numerical investigation of miscible gaseous mixtures in the rarefied regime is performed using a modified lattice Boltzmann model. Slip boundary conditions are adapted to arbitrary geometries. A ray-tracing algorithm-based wall function is implemented to model the non-equilibrium effects in the transition flow regime. The molecular free flow defined by the Knudsen diffusion coefficient is integrated through an effective and asymmetrical binary diffusion coefficient. The numerical model is validated with mass flow measurements through microchannels of different cross-section shapes from the near-continuum to the transition regimes, and gas phase separation is studied within a staggered arrangement of spheres. The influence of porosity and mixture composition on the gas separation effect are analyzed. Numerical results highlight the increase in the degree of gas phase separation with the rarefaction rate and the molecular mass ratio. The various simulations also indicate that geometrical features in porous media have a greater impact on gaseous mixtures’ effective permeability at highly rarefied regimes. Finally, a permeability enhancement factor based on the lightest species of the gaseous mixture is derived. Full article
(This article belongs to the Special Issue Rarefied Gas Flows: From Micro-Nano Scale to Hypersonic Regime)
Show Figures

Figure 1

13 pages, 4034 KiB  
Article
Structural Changes in High-Entropy Alloys CoCrFeNi and CoCrFeMnNi, Irradiated by He Ions at a Temperature of 700 °C
by Igor Ivanov, Bauyrzhan Amanzhulov, Vladimir Uglov, Sergey Zlotski, Alisher Kurakhmedov, Mikhail Koloberdin, Asset Sapar, Yerulan Ungarbayev and Maxim Zdorovets
Materials 2024, 17(17), 4383; https://doi.org/10.3390/ma17174383 - 5 Sep 2024
Cited by 1 | Viewed by 1164
Abstract
High-entropy alloys (HEA) are promising structural materials that will successfully resist high-temperature irradiation with helium ions and radiation-induced swelling in new generations of nuclear reactors. In this paper, changes in the elemental and phase composition, surface morphology, and structure of CoCrFeNi and CoCrFeMnNi [...] Read more.
High-entropy alloys (HEA) are promising structural materials that will successfully resist high-temperature irradiation with helium ions and radiation-induced swelling in new generations of nuclear reactors. In this paper, changes in the elemental and phase composition, surface morphology, and structure of CoCrFeNi and CoCrFeMnNi HEAs irradiated with He2+ ions at a temperature of 700 °C were studied. Structural studies were mainly conducted using the X-ray diffraction method. The formation of a porous surface structure with many microchannels (open blisters) was observed. The average diameter of the blisters in CoCrFeMnNi is around 1.3 times smaller than in CoCrFeNi. It was shown that HEAs’ elemental and phase compositions are stable under high-temperature irradiation. It was revealed that, in the region of the peak of implanted helium, high-temperature irradiation leads to the growth of tensile macrostresses in CoCrFeNi by 3.6 times and the formation of compressive macrostresses (−143 MPa) in CoCrFeMnNi; microstresses in the HEAs increase by 2.4 times; and the dislocation density value increases by 4.3 and 7.5 times for CoCrFeNi and CoCrFeMnNi, respectively. The formation of compressive macrostresses and a higher value of dislocation density indicate that the CoCrFeMnNi HEA tends to have greater radiation resistance compared to CoCrFeNi. Full article
Show Figures

Figure 1

16 pages, 4845 KiB  
Article
Fabrication of Porous Collagen Scaffolds Containing Embedded Channels with Collagen Membrane Linings
by Neda Fakhri, Arezoo Khalili, Terry Sachlos and Pouya Rezai
Micromachines 2024, 15(8), 1031; https://doi.org/10.3390/mi15081031 - 14 Aug 2024
Cited by 2 | Viewed by 1637
Abstract
Tissues and organs contain an extracellular matrix (ECM). In the case of blood vessels, endothelium cells are anchored to a specialized basement membrane (BM) embedded inside the interstitial matrix (IM). We introduce a multi-structural collagen-based scaffold with embedded microchannels that mimics in vivo [...] Read more.
Tissues and organs contain an extracellular matrix (ECM). In the case of blood vessels, endothelium cells are anchored to a specialized basement membrane (BM) embedded inside the interstitial matrix (IM). We introduce a multi-structural collagen-based scaffold with embedded microchannels that mimics in vivo structures within vessels. Our scaffold consists of two parts, each containing two collagen layers, i.e., a 3D porous collagen layer analogous to IM lined with a thin 2D collagen film resembling the BM. Enclosed microchannels were fabricated using contact microprinting. Microchannel test structures with different sizes ranging from 300 to 800 µm were examined for their fabrication reproducibility. The heights and perimeters of the fabricated microchannels were ~20% less than their corresponding values in the replication PDMS mold; however, microchannel widths were significantly closer to their replica dimensions. The stiffness, permeability, and pore size properties of the 2D and 3D collagen layers were measured. The permeability of the 2D collagen film was negligible, making it suitable for mimicking the BM of large blood vessels. A leakage test at various volumetric flow rates applied to the microchannels showed no discharge, thereby verifying the reliability of the proposed integrated 2D/3D collagen parts and the contact printing method used for bonding them in the scaffold. In the future, multi-cell culturing will be performed within the 3D porous collagen and against the 2D membrane inside the microchannel, hence preparing this scaffold for studying a variety of blood vessel–tissue interfaces. Also, thicker collagen scaffold tissues will be fabricated by stacking several layers of the proposed scaffold. Full article
Show Figures

Figure 1

14 pages, 2717 KiB  
Article
Characterizing Acoustic Behavior of Silicon Microchannels Separated by a Porous Wall
by Mehrnaz Hashemiesfahan, Jo Wim Christiaens, Antonio Maisto, Pierre Gelin, Han Gardeniers and Wim De Malsche
Micromachines 2024, 15(7), 868; https://doi.org/10.3390/mi15070868 - 30 Jun 2024
Viewed by 1781
Abstract
Lateral flow membrane microdevices are widely used for chromatographic separation processes and diagnostics. The separation performance of microfluidic lateral membrane devices is determined by mass transfer limitations in the membrane, and in the liquid phase, mass transfer resistance is dependent on the channel [...] Read more.
Lateral flow membrane microdevices are widely used for chromatographic separation processes and diagnostics. The separation performance of microfluidic lateral membrane devices is determined by mass transfer limitations in the membrane, and in the liquid phase, mass transfer resistance is dependent on the channel dimensions and transport properties of the species separated by the membrane. We present a novel approach based on an active bulk acoustic wave (BAW) mixing method to enhance lateral transport in micromachined silicon devices. BAWs have been previously applied in channels for mixing and trapping cells and particles in single channels, but this is, to the best of our knowledge, the first instance of their application in membrane devices. Our findings demonstrate that optimal resonance is achieved with minimal influence of the pore configuration on the average lateral flow. This has practical implications for the design of microfluidic devices, as the channels connected through porous walls under the acoustic streaming act as 760 µm-wide channels rather than two 375 µm-wide channels in the context of matching the standing pressure wave criteria of the piezoelectric transducer. However, the roughness of the microchannel walls does seem to play a significant role in mixing. A roughened (black silicon) wall results in a threefold increase in average streaming flow in BAW mode, suggesting potential avenues for further optimization. Full article
Show Figures

Figure 1

15 pages, 9865 KiB  
Article
Reconstruction of Segmental Bone Defect in Canine Tibia Model Utilizing Bi-Phasic Scaffold: Pilot Study
by Dae-Won Haam, Chun-Sik Bae, Jong-Min Kim, Sung-Yun Hann, Chang-Min Richard Yim, Hong-Seok Moon and Daniel S. Oh
Int. J. Mol. Sci. 2024, 25(9), 4604; https://doi.org/10.3390/ijms25094604 - 23 Apr 2024
Cited by 1 | Viewed by 2178
Abstract
The reunion and restoration of large segmental bone defects pose significant clinical challenges. Conventional strategies primarily involve the combination of bone scaffolds with seeded cells and/or growth factors to regulate osteogenesis and angiogenesis. However, these therapies face inherent issues related to immunogenicity, tumorigenesis, [...] Read more.
The reunion and restoration of large segmental bone defects pose significant clinical challenges. Conventional strategies primarily involve the combination of bone scaffolds with seeded cells and/or growth factors to regulate osteogenesis and angiogenesis. However, these therapies face inherent issues related to immunogenicity, tumorigenesis, bioactivity, and off-the-shelf transplantation. The biogenic micro-environment created by implanted bone grafts plays a crucial role in initiating the bone regeneration cascade. To address this, a highly porous bi-phasic ceramic synthetic bone graft, composed of hydroxyapatite (HA) and alumina (Al), was developed. This graft was employed to repair critical segmental defects, involving the creation of a 2 cm segmental defect in a canine tibia. The assessment of bone regeneration within the synthetic bone graft post-healing was conducted using scintigraphy, micro-CT, histology, and dynamic histomorphometry. The technique yielded pore sizes in the range of 230–430 μm as primary pores, 40–70 μm as secondary inner microchannels, and 200–400 nm as tertiary submicron surface holes. These three components are designed to mimic trabecular bone networks and to provide body fluid adsorption, diffusion, a nutritional supply, communication around the cells, and cell anchorage. The overall porosity was measured at 82.61 ± 1.28%. Both micro-CT imaging and histological analysis provided substantial evidence of robust bone formation and the successful reunion of the critical defect. Furthermore, an histology revealed the presence of vascularization within the newly formed bone area, clearly demonstrating trabecular and cortical bone formation at the 8-week mark post-implantation. Full article
(This article belongs to the Special Issue Recent Development in Scaffolds for Tissue Engineering)
Show Figures

Figure 1

15 pages, 7218 KiB  
Article
Simulation and Analysis of Anodized Aluminum Oxide Membrane Degradation
by Saher Manzoor, Faheem Qasim, Muhammad Waseem Ashraf, Shahzadi Tayyaba, Nimra Tariq, Agustín L. Herrera-May and Enrique Delgado-Alvarado
Sensors 2023, 23(24), 9792; https://doi.org/10.3390/s23249792 - 13 Dec 2023
Cited by 1 | Viewed by 2176
Abstract
Microelectromechanical systems (MEMS)-based filter with microchannels enables the removal of various microorganisms, including viruses and bacteria, from fluids. Membranes with porous channels can be used as filtration interfaces in MEMS hemofilters or mini-dialyzers. The main problems associated with the filtration process are optimization [...] Read more.
Microelectromechanical systems (MEMS)-based filter with microchannels enables the removal of various microorganisms, including viruses and bacteria, from fluids. Membranes with porous channels can be used as filtration interfaces in MEMS hemofilters or mini-dialyzers. The main problems associated with the filtration process are optimization of membrane geometry and fouling. A nanoporous aluminum oxide membrane was fabricated using an optimized two-step anodization process. Computational strength modeling and analysis of the membrane with specified parameters were performed using the ANSYS structural module. A fuzzy simulation was performed for the numerical analysis of flux through the membrane. The membrane was then incorporated with the prototype for successive filtration. The fluid flux and permeation analysis of the filtration process have been studied. Scanning electron microscope (SEM) micrographs of membranes have been obtained before and after the filtration cycles. The SEM results indicate membrane fouling after multiple cycles, and thus the flux is affected. This type of fabricated membrane and setup are suitable for the separation and purification of various fluids. However, after several filtration cycles, the membrane was degraded. It requires a prolonged chemical cleaning. High-density water has been used for filtration purposes, so this MEMS-based filter can also be used as a mini-dialyzer and hemofilter in various applications for filtration. Such a demonstration also opens up a new strategy for maximizing filtration efficiency and reducing energy costs for the filtration process by using a layered membrane setup. Full article
Show Figures

Figure 1

14 pages, 2879 KiB  
Article
Multiscale Porous Carbon Materials by In Situ Growth of Metal–Organic Framework in the Micro-Channel of Delignified Wood for High-Performance Water Purification
by Youngho Jeon, Dabum Kim, Suji Lee, Kangyun Lee, Youngsang Ko, Goomin Kwon, Jisoo Park, Ung-Jin Kim, Sung Yeon Hwang, Jeonghun Kim and Jungmok You
Nanomaterials 2023, 13(19), 2695; https://doi.org/10.3390/nano13192695 - 3 Oct 2023
Cited by 1 | Viewed by 2568
Abstract
Porous carbon materials are suitable as highly efficient adsorbents for the treatment of organic pollutants in wastewater. In this study, we developed multiscale porous and heteroatom (O, N)-doped activated carbon aerogels (CAs) based on mesoporous zeolitic imidazolate framework-8 (ZIF-8) nanocrystals and wood using [...] Read more.
Porous carbon materials are suitable as highly efficient adsorbents for the treatment of organic pollutants in wastewater. In this study, we developed multiscale porous and heteroatom (O, N)-doped activated carbon aerogels (CAs) based on mesoporous zeolitic imidazolate framework-8 (ZIF-8) nanocrystals and wood using 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation, in situ synthesis, and carbonization/activation. The surface carboxyl groups in a TEMPO-oxidized wood (TW) can provide considerably large nucleation sites for ZIF-8. Consequently, ZIF-8, with excellent porosity, was successfully loaded into the TW via in situ growth to enhance the specific surface area and enable heteroatom doping. Thereafter, the ZIF-8-loaded TW was subjected to a direct carbonization/activation process, and the obtained activated CA, denoted as ZIF-8/TW-CA, exhibited a highly interconnected porous structure containing multiscale (micro, meso, and macro) pores. Additionally, the resultant ZIF-8/TW-CA exhibited a low density, high specific surface area, and excellent organic dye adsorption capacity of 56.0 mg cm−3, 785.8 m2 g−1, and 169.4 mg g−1, respectively. Given its sustainable, scalable, and low-cost wood platform, the proposed high-performance CA is expected to enable the substantial expansion of strategies for environmental protection, energy storage, and catalysis. Full article
(This article belongs to the Topic Porous Materials for Energy and Environment Applications)
Show Figures

Figure 1

19 pages, 4203 KiB  
Article
Interface Leakage Theory of Mechanical Seals Considering Microscopic Forces
by Wei Zheng, Jianjun Sun, Chenbo Ma and Qiuping Yu
Coatings 2023, 13(8), 1435; https://doi.org/10.3390/coatings13081435 - 15 Aug 2023
Cited by 3 | Viewed by 2305
Abstract
The fluid flow in the small pore throat is a nonlinear flow, and the microscopic force between the fluid and the wall cannot be ignored. However, the previously established theories about the leakage between sealing interfaces have not considered the influence of microscopic [...] Read more.
The fluid flow in the small pore throat is a nonlinear flow, and the microscopic force between the fluid and the wall cannot be ignored. However, the previously established theories about the leakage between sealing interfaces have not considered the influence of microscopic forces. Based on contact mechanics and percolation theory, the void characteristics of the sealing interface were clarified, and the influence of microscopic force on fluid flow in porous medium was analyzed. Combined with the capillary force, the concept of a critical void radius between the mechanical seal interfaces is proposed. The fluid flow resistance model and leakage rate calculation equation of the sealing interface considering the van der Waals force are established, and the leakage judgment criterion of the sealing interface is provided. Through numerical calculation and experiments, the effect of microscopic force is verified in terms of the fluid flow law and macroscopic leakage rate. The results show that van der Waals forces have an important influence on the fluid flow between the sealing interfaces. As the microchannel size decreases, the van der Waals forces between solid and liquid increase, and the influence of these van der Waals forces on the fluid flow between the sealing interfaces cannot be ignored. The calculation model of the sealing interface leakage rate proposed in this paper shows little difference with the results of the Persson model, and is in good agreement with the experimental results; the maximum relative error is 8.7%, the minimum relative error is only 3.8%. Full article
Show Figures

Figure 1

19 pages, 11671 KiB  
Article
Assessment of Vapor Formation Rate and Phase Shift between Pressure Gradient and Liquid Velocity in Flat Mini Heat Pipes as a Function of Internal Structure
by Ioan Mihai, Cornel Suciu and Claudiu Marian Picus
Micromachines 2023, 14(7), 1468; https://doi.org/10.3390/mi14071468 - 21 Jul 2023
Cited by 1 | Viewed by 1449
Abstract
Flat mini heat pipes (FMHPs) are often used in cooling systems for various power electronic components, as they rapidly dissipate high heat flux densities. The main objective of the present work is to experimentally investigate whether differences in the rate of vapor formation [...] Read more.
Flat mini heat pipes (FMHPs) are often used in cooling systems for various power electronic components, as they rapidly dissipate high heat flux densities. The main objective of the present work is to experimentally investigate whether differences in the rate of vapor formation occur on an internal structure containing trapezoidal microchannels and porous sintered copper powder material. Several parameters, such as hydraulic diameter and fluid velocity through the material, as a function of the internal structure porosity, were determined by calculation for a steady state regime. Reynolds number was determined as a function of porosity, according to Darcy’s law, and the Nusselt number was calculated. Since the flow is Darcy-type through the porous medium inside the FMHP, the Darcy friction factor was calculated using five methods: Colebrook, Darcy–Weisbach, Swamee–Jain, Blasius, and Haaland. After experimental tests, it was found that when the porous and trapezoidal microchannel layers are wetted at the same time, the vaporization progresses at a faster rate in the porous material, and the duration of the process is shorter. This recommends the use of such an internal structure in FMHPs since the manufacturing technology is simpler, the materials are cheaper, and the heat flux transport capacity is higher. Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Flow in Microstructures)
Show Figures

Figure 1

17 pages, 635 KiB  
Article
Influence of Stress Jump Condition at the Interface Region of a Two-Layer Nanofluid Flow in a Microchannel with EDL Effects
by Muhammad Raees ul Haq, Ammarah Raees, Hang Xu and Shaozhang Xiao
Nanomaterials 2023, 13(7), 1198; https://doi.org/10.3390/nano13071198 - 28 Mar 2023
Cited by 2 | Viewed by 1811
Abstract
The influence of stress jump conditions on a steady, fully developed two-layer magnetohydrodynamic electro-osmotic nanofluid in the microchannel, is investigated numerically. A nanofluid is partially filled into the microchannel, while a porous medium, saturated with nanofluid, is immersed into the other half of [...] Read more.
The influence of stress jump conditions on a steady, fully developed two-layer magnetohydrodynamic electro-osmotic nanofluid in the microchannel, is investigated numerically. A nanofluid is partially filled into the microchannel, while a porous medium, saturated with nanofluid, is immersed into the other half of the microchannel. The Brinkmann-extended Darcy equation is used to effectively explain the nanofluid flow in the porous region. In both regions, electric double layers are examined, whereas at the interface, Ochoa-Tapia and Whitaker’s stress jump condition is considered. The non-dimensional velocity, temperature, and volume fraction of the nanoparticle profiles are examined, by varying physical parameters. Additionally, the Darcy number, as well as the coefficient in the stress jump condition, are investigated for their profound effect on skin friction and Nusselt number. It is concluded that, taking into account the change in shear stress at the interface has a significant impact on fluid flow problems. Full article
(This article belongs to the Special Issue Advances of Nanoscale Fluid Mechanics)
Show Figures

Figure 1

15 pages, 3037 KiB  
Article
Characterization of Bubble Transport in Porous Media Using a Microfluidic Channel
by Ryan Haggerty, Dong Zhang, Jongwan Eun and Yusong Li
Water 2023, 15(6), 1033; https://doi.org/10.3390/w15061033 - 9 Mar 2023
Cited by 6 | Viewed by 3983
Abstract
This study investigates the effect on varying flow rates and bubble sizes on gas–liquid flow through porous media in a horizontal microchannel. A simple bubble generation system was set up to generate bubbles with controllable sizes and frequencies, which directly flowed into microfluidic [...] Read more.
This study investigates the effect on varying flow rates and bubble sizes on gas–liquid flow through porous media in a horizontal microchannel. A simple bubble generation system was set up to generate bubbles with controllable sizes and frequencies, which directly flowed into microfluidic channels packed with different sizes of glass beads. Bubble flow was visualized using a high-speed camera and analyzed to obtain the change in liquid holdup. Pressure data were measured for estimation of hydraulic conductivity. The bubble displacement pattern in the porous media was viscous fingering based on capillary numbers and visual observation. Larger bubbles resulted in lower normalized frequency of the bubble breakthrough by 20 to 60 percent. Increasing the flow rate increased the change in apparent liquid holdup during bubble breakthrough. Larger bubbles and lower flow rate reduced the relative permeability of each channel by 50 to 57 percent and 30 to 64 percent, respectively. Full article
Show Figures

Figure 1

16 pages, 4516 KiB  
Article
Boiling Heat Transfer Characteristics of Porous Microchannel with Pore-Forming Agent
by Qinhui Lei, Donghui Zhang, Lei Feng, Jijin Mao and Daifen Chen
Processes 2023, 11(2), 617; https://doi.org/10.3390/pr11020617 - 17 Feb 2023
Cited by 2 | Viewed by 3130
Abstract
Traditional microchannel needs to face the flow-reversal difficulty in high heat fluxes due to limited space. It results in large pressure and temperature fluctuation. Porous microchannels arouse more interest to provide a new solution to this problem. Flow boiling experiments in porous microchannels [...] Read more.
Traditional microchannel needs to face the flow-reversal difficulty in high heat fluxes due to limited space. It results in large pressure and temperature fluctuation. Porous microchannels arouse more interest to provide a new solution to this problem. Flow boiling experiments in porous microchannels with PFA were investigated. Porous microchannels were sintered by 10 μm (or 30 μm) spherical copper particles with pore-forming agent (Na2CO3, 60–90 μm). Porous microchannels were composed of 23 parallel porous microchannels with 600 μm in width and 1200 μm in depth.The addition of PFA (pore-forming agent) could increase the sample porosity. For Q10 series, sample porosities increase from 20.4% to 52.9% with the PFA percentage change from 0% to 40%, while for the Q30 series they increase from 26.6% to 47.5%. Experimental results showed the boiling heat transfer coefficient (HTC) reached the maximum at the moderate porosity for both Q10 and Q30 series. Too large or too small porosity would degrade boiling heat transfer performance. It demonstrated that there existed an optimal range of PFA content for sintered microchannels. PFA content has a minor effect on the average pressure drop and would not cause the rapid increase in flow resistance. Visual observation disclosed that the sample porosity would affect the pressure instability significantly. The sample with moderate porosity showed periodic pressure fluctuation and could establish rhythmical boiling. Particle size also exerted a certain influence on the boiling heat transfer performance. Q30 series could achieve higher HTC and CHF (Critical heat flux) than Q10 series. This is attributed to the larger ratio of layer-thickness-to-particle-size (δ/d) for Q10-series samples. Full article
(This article belongs to the Special Issue New Advances in Heat Transfer and Fluid Flow)
Show Figures

Figure 1

Back to TopTop