Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = porcine respiratory coronavirus (PRCV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4090 KiB  
Article
Establishment of a One–Pot RAA–CRISPR/Cas13a Assay-Based TGEV S Gene Detection
by Lindan Lv, Hao Mu, Shaomei Li, Jieqi Gao, Mingni Liu, Shuizhu Niu, Guoyang Xu, Lizhi Fu, Zhenhui Song and Liu Yang
Vet. Sci. 2025, 12(5), 464; https://doi.org/10.3390/vetsci12050464 - 12 May 2025
Viewed by 783
Abstract
Porcine transmissible gastroenteritis virus (TGEV) is a highly contagious pathogen causing severe diarrhea in pigs, particularly piglets, leading to significant economic losses. Distinguishing TGEV from the genetically similar porcine respiratory coronavirus (PRCV) remains challenging due to their high genomic homology. In this study, [...] Read more.
Porcine transmissible gastroenteritis virus (TGEV) is a highly contagious pathogen causing severe diarrhea in pigs, particularly piglets, leading to significant economic losses. Distinguishing TGEV from the genetically similar porcine respiratory coronavirus (PRCV) remains challenging due to their high genomic homology. In this study, we developed a one–pot assay combining recombinase-aided amplification (RAA) and CRISPR/Cas13a technology, targeting the TGEV S gene. This method was optimized for sensitivity and specificity, with orthogonal tests determining the optimal reagent concentrations. The assay achieved a detection limit of 4.13 copies/µL within 40 min at 37 °C, demonstrating no cross-reactivity with other porcine viruses. Clinical validation on 140 samples showed 100% concordance with RT–qPCR and RT–PCR results. Since the established method is completed in a single reaction tube, it eliminates the need for step-by-step operations, simplifying the process and reducing the risk of cross–contamination and false positives in subsequent tests. Overall, this assay shows promising potential for TGEV detection. Full article
Show Figures

Figure 1

23 pages, 817 KiB  
Review
Transmissible Gastroenteritis Virus (TGEV) and Porcine Respiratory Coronavirus (PRCV): Epidemiology and Molecular Characteristics—An Updated Overview
by Monika Olech and Marta Antas
Viruses 2025, 17(4), 493; https://doi.org/10.3390/v17040493 - 28 Mar 2025
Viewed by 978
Abstract
Transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) are enveloped, single-stranded RNA viruses belonging to the genus Alphacoronavirus in the family Coronaviridae. PRCV, a TGEV mutant with a spike(S) gene deletion, exhibits altered tissue tropism. TGEV replicates mainly in the intestines [...] Read more.
Transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) are enveloped, single-stranded RNA viruses belonging to the genus Alphacoronavirus in the family Coronaviridae. PRCV, a TGEV mutant with a spike(S) gene deletion, exhibits altered tissue tropism. TGEV replicates mainly in the intestines and causes severe diarrhea and high mortality in piglets, whereas PRCV replicates mainly in the respiratory tract. PRCV causes mild or subclinical respiratory infections but may contribute to respiratory disease syndrome in pigs infected with other respiratory pathogens. As PRCV and TGEV continuously evolve, monitoring these viruses is important for disease prevention and control. In this review, we provide updated information on the prevalence and genetic characteristics of TGEV/PRCV and their phylogenetic relationships. We also discuss the impact of mutations, deletions and recombination on the virulence and tissue tropism of TGEV/PRCV and highlight the possible zoonotic potential of these viruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 3514 KiB  
Article
Bioaerosol Inactivation by a Cold Plasma Ionizer Coupled with an Electrostatic Precipitator
by Samuel Wei Yang Lim, Sian Yang Ow, Laura Sutarlie, Yeong Yuh Lee, Ady Suwardi, Chee Kiang Ivan Tan, Wun Chet Davy Cheong, Xian Jun Loh and Xiaodi Su
Microorganisms 2024, 12(9), 1923; https://doi.org/10.3390/microorganisms12091923 - 21 Sep 2024
Cited by 2 | Viewed by 2048
Abstract
Despite best efforts in air purification, airborne infectious diseases will continue to spread due to the continuous emission of bioaerosols by the host/infected person. Hence, a shift in focus from air purification to bioaerosol inactivation is urgently needed. To explore the potential of [...] Read more.
Despite best efforts in air purification, airborne infectious diseases will continue to spread due to the continuous emission of bioaerosols by the host/infected person. Hence, a shift in focus from air purification to bioaerosol inactivation is urgently needed. To explore the potential of the cold plasma technology for preventing rapid spread of airborne infectious diseases, we studied a cold plasma ionizer (CPI) device and an electrostatic precipitator (ESP)-coupled CPI (CPI-ESP) device for the inactivation and cleaning of surface-spread microorganisms and bioaerosols, using porcine respiratory coronavirus (PRCV), Escherichia coli (E. coli), and aerosolized E. coli as representatives. We firstly demonstrated that CPI coupled with ESP is an effective technology for inactivating virus and bacteria spread on surfaces in an in-house test chamber. We then demonstrated the efficacy of CPI-coupled ESP for the inactivation of aerosolized E. coli in the same chamber. Furthermore, we have demonstrated the efficiency of a CPI-ESP coupled device for the inactivation of naturally occurring airborne microbials in a few indoor settings (i.e., a living room, a discussion room, a schoolroom, and an office) to determine the treatment duration- and human activity-dependent efficacy. To understand the disinfection mechanism, we conducted a fluorescence microscopy study to reveal different degrees of E. coli bacteria cell membrane damage under CPI treatment. Full article
(This article belongs to the Special Issue Advances in Bioaerosols)
Show Figures

Figure 1

13 pages, 3805 KiB  
Article
Prevalence and Genetic Characterization of Porcine Respiratory Coronavirus in Korean Pig Farms
by Ju-Han Kim, Jonghyun Park, Dong-Kyu Lee, Won-Il Kim, Young S. Lyoo, Choi-Kyu Park and Hye-Ryung Kim
Animals 2024, 14(11), 1698; https://doi.org/10.3390/ani14111698 - 5 Jun 2024
Cited by 5 | Viewed by 1915
Abstract
Porcine respiratory coronavirus (PRCV) is a member of the species Alphacoronavirus 1 within the genus Alphacoronavirus of the family Coronaviridae. A few studies have been conducted on the prevalence of PRCV since its first identification in 1997, but there have been no [...] Read more.
Porcine respiratory coronavirus (PRCV) is a member of the species Alphacoronavirus 1 within the genus Alphacoronavirus of the family Coronaviridae. A few studies have been conducted on the prevalence of PRCV since its first identification in 1997, but there have been no recent studies on the prevalence and genetic characterization of the virus in Korea. In this study, the seroprevalence of PRCV was determined in Korean pig farms using a commercially available TGEV/PRCV differential enzyme-linked immunosorbent assay kit. The farm-level seroprevalence of PRCV was determined to be 68.6% (48/70), similar to previous reports in Korea, suggesting that PRCV is still circulating in Korean pig herds nationwide. Among the 20 PRCV-seropositive farms tested in this study, PRCV RNAs were detected in 17 oral fluid samples (28.3%) from nine farms (45.0%), while TGEV RNAs were not detected in any sample. To investigate the genetic characteristics of Korean PRCV strains, genetic and phylogenetic analyses were conducted on PRCV spike gene sequences obtained in this study. The three Korean PRCV strains (KPRCV2401, KPRCV2402, and KPRCV2403) shared 98.5–100% homology with each other and 96.2–96.6% and 91.6–94.5% homology with European and American strains, respectively. A 224-amino acid deletion was found in the S gene of both Korean and European PRCVs but not in that of American PRCVs, suggesting a European origin for Korean PRCVs. Phylogenetic analysis showed that Korean PRCVs are more closely related to European PRCVs than American PRCVs but clustered apart from both, suggesting that Korean PRCV has evolved independently since its emergence in Korean PRCVs. The results of this study will help expand knowledge on the epidemiology and molecular biology of PRCV currently circulating in Korea. Full article
(This article belongs to the Special Issue Studies of Swine Coronavirus)
Show Figures

Figure 1

17 pages, 3729 KiB  
Article
Porcine Respiratory Coronavirus (PRCV): Isolation and Characterization of a Variant PRCV from USA Pigs
by Gaurav Rawal, Wannarat Yim-im, Ethan Aljets, Patrick G. Halbur, Jianqiang Zhang and Tanja Opriessnig
Pathogens 2023, 12(9), 1097; https://doi.org/10.3390/pathogens12091097 - 28 Aug 2023
Cited by 11 | Viewed by 3166
Abstract
Porcine respiratory coronavirus (PRCV), a mutant of the transmissible gastroenteritis virus (TGEV), was first reported in Belgium in 1984. PRCV typically replicates and induces mild lesions in the respiratory tract, distinct from the enteric tropism of TGEV. In the past 30 years, PRCV [...] Read more.
Porcine respiratory coronavirus (PRCV), a mutant of the transmissible gastroenteritis virus (TGEV), was first reported in Belgium in 1984. PRCV typically replicates and induces mild lesions in the respiratory tract, distinct from the enteric tropism of TGEV. In the past 30 years, PRCV has rarely been studied, and most cited information is on traditional isolates obtained during the 1980s and 1990s. Little is known about the genetic makeup and pathogenicity of recent PRCV isolates. The objective of this study was to obtain a contemporary PRCV isolate from US pigs for genetic characterization. In total, 1245 lung homogenate samples from pigs in various US states were tested via real-time PCR targeting PRCV and TGEV RNA. Overall, PRCV RNA was detected in five samples, and a single isolate (ISU20-92330) was successfully cultured and sequenced for its full-length genome. The isolate clustered with a new group of variant TGEVs and differed in various genomic regions compared to traditional PRCV isolates. Pathogens, such as PRCV, commonly circulate in pig herds without causing major disease. There may be value in tracking genomic changes and regularly updating the diagnostic methods for such viruses to be better prepared for the emergence of variants in ecology and pathogenicity. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Pathogens)
Show Figures

Figure 1

13 pages, 2358 KiB  
Article
Experimental Infection of Pigs with a Traditional or a Variant Porcine Respiratory Coronavirus (PRCV) Strain and Impact on Subsequent Influenza A Infection
by Gaurav Rawal, Jianqiang Zhang, Patrick G. Halbur, Phillip C. Gauger, Chong Wang and Tanja Opriessnig
Pathogens 2023, 12(8), 1031; https://doi.org/10.3390/pathogens12081031 - 11 Aug 2023
Cited by 5 | Viewed by 2004
Abstract
Porcine respiratory coronavirus (PRCV) pathogenicity in pigs has been characterized using traditional PRCV isolates; however, information is lacking on pathogenicity of currently circulating PRCV isolates. Recently, a contemporary US PRCV variant was isolated. The infection dynamics of that strain (PRCV-var) and a traditional [...] Read more.
Porcine respiratory coronavirus (PRCV) pathogenicity in pigs has been characterized using traditional PRCV isolates; however, information is lacking on pathogenicity of currently circulating PRCV isolates. Recently, a contemporary US PRCV variant was isolated. The infection dynamics of that strain (PRCV-var) and a traditional PRCV strain (PRCV-trad) were compared. In brief, 4-week-old pigs were divided into three groups with five pigs each. The pigs were inoculated with PRCV-trad or PRCV-var, or left uninfected. Nasal swabs were collected daily, and all pigs were necropsied at day (D) 3. PRCV nasal shedding was significantly higher in PRCV-var pigs compared to PRCV-trad pigs. To investigate the impact of trad and var PRCVs on subsequent infection with influenza A virus (IAV), four additional groups of five pigs were used: PRCV-trad-IAV (PRCV-trad at D0, co-infected with IAV at D5), PRCV-var-IAV, and IAV positive and negative controls. Significantly higher mean PRCV antibody titers and a significantly higher area under the curve (AUC) for PRCV shedding were observed in PRCV-var compared to PRCV-trad-pigs at D10. There was no impact on IAV infection. In conclusion, a 2020 PRCV variant isolate was similar in pathogenicity but more transmissible compared to a traditional 1989 isolate. These findings raise concerns about virus evolution towards more highly pathogenic and transmissible strains and the need to monitor such viruses. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Pathogens)
Show Figures

Figure 1

15 pages, 6089 KiB  
Article
Metavirome Analysis Reveals a High Prevalence of Porcine Hemagglutination Encephalomyelitis Virus in Clinically Healthy Pigs in China
by Weiyao Sun, Zhibin Shi, Pengfei Wang, Bingbing Zhao, Jiaqi Li, Xinyu Wei, Lili Wei and Jingfei Wang
Pathogens 2023, 12(4), 510; https://doi.org/10.3390/pathogens12040510 - 24 Mar 2023
Cited by 10 | Viewed by 2343
Abstract
Six swine coronaviruses (SCoVs), which include porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine hemagglutination encephalomyelitis virus (PHEV), porcine respiratory coronavirus (PRCV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine delta coronavirus (PDCoV), have been reported as infecting and causing serious [...] Read more.
Six swine coronaviruses (SCoVs), which include porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine hemagglutination encephalomyelitis virus (PHEV), porcine respiratory coronavirus (PRCV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine delta coronavirus (PDCoV), have been reported as infecting and causing serious diseases in pigs. To investigate the genetic diversity and spatial distribution of SCoVs in clinically healthy pigs in China, we collected 6400 nasal swabs and 1245 serum samples from clinically healthy pigs at slaughterhouses in 13 provinces in 2017 and pooled them into 17 libraries by type and region for next-generation sequencing (NGS) and metavirome analyses. In total, we identified five species of SCoVs, including PEDV, PDCoV, PHEV, PRCV, and TGEV. Strikingly, PHEV was detected from all the samples in high abundance and its genome sequences accounted for 75.28% of all coronaviruses, while those belonging to TGEV (including PRCV), PEDV, and PDCoV were 20.4%, 2.66%, and 2.37%, respectively. The phylogenetic analysis showed that two lineages of PHEV have been circulating in pig populations in China. We also recognized two PRCVs which lack 672 nucleotides at the N-terminus of the S gene compared with that of TGEV. Together, we disclose preliminarily the genetic diversities of SCoVs in clinically healthy pigs in China and provide new insights into two SCoVs, PHEV and PRCV, that have been somewhat overlooked in previous studies in China. Full article
(This article belongs to the Special Issue Epidemiology, Evolution, and Prevention of Animal Coronaviruses)
Show Figures

Figure 1

9 pages, 1333 KiB  
Brief Report
A Serological Investigation of Porcine Reproductive and Respiratory Syndrome and Three Coronaviruses in the Campania Region, Southern Italy
by Gianmarco Ferrara, Emanuele D’Anza, Antonella Rossi, Elvira Improda, Valentina Iovane, Ugo Pagnini, Giuseppe Iovane and Serena Montagnaro
Viruses 2023, 15(2), 300; https://doi.org/10.3390/v15020300 - 20 Jan 2023
Cited by 20 | Viewed by 2135
Abstract
Porcine coronaviruses and reproductive and respiratory syndrome (PRRS) are responsible for severe outbreaks that cause huge economic losses worldwide. In Italy, three coronaviruses have been reported historically: porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV). Although repeated [...] Read more.
Porcine coronaviruses and reproductive and respiratory syndrome (PRRS) are responsible for severe outbreaks that cause huge economic losses worldwide. In Italy, three coronaviruses have been reported historically: porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV). Although repeated outbreaks have been described, especially in northern Italy, where intensive pig farming is common, there is a worrying lack of information on the spread of these pathogens in Europe. In this work, we determined the seroprevalence of three porcine coronaviruses and PRRSV in the Campania region, southern Italy. A total of 443 samples were tested for the presence of antibodies against porcine coronaviruses and PRRSV using four different commercial ELISAs. Our results indicated that PEDV is the most prevalent among porcine coronaviruses, followed by TGEV, and finally PRCV. PRRSV appeared to be the most prevalent virus (16.7%). For coronaviruses, seroprevalence was higher in pigs raised in intensive farming systems. In terms of distribution, TGEV is more widespread in the province of Avellino, while PEDV and PRRSV are more prevalent in the province of Naples, emphasizing the epidemic nature of both infections. Interestingly, TGEV-positive animals are more common among growers, while seropositivity for PEDV and PRRSV was higher in adults. Our research provides new insights into the spread of swine coronaviruses and PRRSV in southern Italy, as well as a warning about the need for viral surveillance. Full article
(This article belongs to the Special Issue State-of-the-Art Porcine Viruses Research in Europe)
Show Figures

Figure 1

18 pages, 3288 KiB  
Review
The Effects of Swine Coronaviruses on ER Stress, Autophagy, Apoptosis, and Alterations in Cell Morphology
by Ya-Mei Chen and Eric Burrough
Pathogens 2022, 11(8), 940; https://doi.org/10.3390/pathogens11080940 - 19 Aug 2022
Cited by 14 | Viewed by 4225
Abstract
Swine coronaviruses include the following six members, namely porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine delta coronavirus (PDCoV), swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine hemagglutinating encephalomyelitis virus (PHEV), and porcine respiratory coronavirus (PRCV). Clinically, PEDV, TGEV, PDCoV, and SADS-CoV [...] Read more.
Swine coronaviruses include the following six members, namely porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine delta coronavirus (PDCoV), swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine hemagglutinating encephalomyelitis virus (PHEV), and porcine respiratory coronavirus (PRCV). Clinically, PEDV, TGEV, PDCoV, and SADS-CoV cause enteritis, whereas PHEV induces encephalomyelitis, and PRCV causes respiratory disease. Years of studies reveal that swine coronaviruses replicate in the cellular cytoplasm exerting a wide variety of effects on cells. Some of these effects are particularly pertinent to cell pathology, including endoplasmic reticulum (ER) stress, unfolded protein response (UPR), autophagy, and apoptosis. In addition, swine coronaviruses are able to induce cellular changes, such as cytoskeletal rearrangement, alterations of junctional complexes, and epithelial-mesenchymal transition (EMT), that render enterocytes unable to absorb nutrients normally, resulting in the loss of water, ions, and protein into the intestinal lumen. This review aims to describe the cellular changes in swine coronavirus-infected cells and to aid in understanding the pathogenesis of swine coronavirus infections. This review also explores how the virus exerted subcellular and molecular changes culminating in the clinical and pathological findings observed in the field. Full article
Show Figures

Figure 1

15 pages, 4291 KiB  
Article
Identification and Comparison of Receptor Binding Characteristics of the Spike Protein of Two Porcine Epidemic Diarrhea Virus Strains
by Feng Deng, Gang Ye, Qianqian Liu, Muhammad Tariq Navid, Xiaoli Zhong, Youwen Li, Chunyun Wan, Shaobo Xiao, Qigai He, Zhen F. Fu and Guiqing Peng
Viruses 2016, 8(3), 55; https://doi.org/10.3390/v8030055 - 23 Feb 2016
Cited by 103 | Viewed by 12732
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of Alphacoronavirus, has caused huge economic losses for the global pork industry recently. The spike (S) protein mediates PEDV entry into host cells. Herein, we investigated the interactions between the S protein and its receptor [...] Read more.
Porcine epidemic diarrhea virus (PEDV), a member of Alphacoronavirus, has caused huge economic losses for the global pork industry recently. The spike (S) protein mediates PEDV entry into host cells. Herein, we investigated the interactions between the S protein and its receptor porcine aminopeptidase N (pAPN) or co-receptor sugars. The C-terminal domain (CTD) of the S1 domain is bound to pAPN. The prototype strain demonstrated similar receptor-binding activity compared with the variant field isolate. Three loops at the tips of the β-barrel domains did not play crucial roles in the PEDV S-pAPN association, indicating that PEDV conforms to a different receptor recognition model compared with transmissible gastroenteritis virus (TGEV), porcine respiratory CoV (PRCV), and human coronavirus NL63 (HCoV-NL63). The N-terminal domain (NTD) of the PEDV S1 domain could bind sugar, a possible co-receptor for PEDV. The prototype strain exhibited weaker sugar-binding activity compared with the variant field isolate. Strategies targeting the receptor binding domain (RBD) may be helpful for developing vaccines or antiviral drugs for PEDV. Understanding the differences in receptor binding between the prototype and the variant strains may provide insight into PEDV pathogenesis. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop