Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = pomegranate husk polyphenols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1612 KB  
Article
Antioxidant Activity of Pomegranate Husk Ellagitannins in Enhancing Oxidative Stability of Canola Oil During Frying
by Mariela R. Michel, Maritza Pacheco-Lara, Romeo Rojas, Guillermo Cristian G. Martínez-Ávila, Juan Alberto Ascacio-Valdés, Mayra Aguilar-Zárate and Pedro Aguilar-Zárate
Foods 2025, 14(2), 226; https://doi.org/10.3390/foods14020226 - 13 Jan 2025
Cited by 2 | Viewed by 1426
Abstract
This study evaluated the antioxidant efficacy of ellagitannins from a pomegranate husk in preventing vegetable canola oil (VCO) oxidation during French fry preparation. Ellagitannins were extracted using 80% acetone, purified via Amberlite XAD-16 resin chromatography, and incorporated into VCO at 0.05%, 0.1%, and [...] Read more.
This study evaluated the antioxidant efficacy of ellagitannins from a pomegranate husk in preventing vegetable canola oil (VCO) oxidation during French fry preparation. Ellagitannins were extracted using 80% acetone, purified via Amberlite XAD-16 resin chromatography, and incorporated into VCO at 0.05%, 0.1%, and 0.2% concentrations. VCO oxidation was assessed at 145 °C, 160 °C, and 190 °C, with frying experiments conducted at 160 °C for five 10 min cycles. Primary lipid oxidation (peroxide values) was measured using the AOCS Cd 8-53 method, and molecular structural changes were analyzed by infrared spectroscopy. Results showed that ellagitannins significantly mitigated VCO oxidation across all temperatures, with 0.05% identified as the optimal concentration. This concentration reduced peroxide values to 4.66 ± 1.15 meq O/kg, remaining stable and below acceptable limits during frying. Infrared spectroscopy confirmed no significant structural changes in VCO. These findings highlight ellagitannins as effective antioxidants for enhancing VCO oxidative stability during frying, offering a natural, sustainable solution for improving oil quality and extending its usability in the food industry. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

16 pages, 1566 KB  
Review
Pomegranate Husk Scald Browning during Storage: A Review on Factors Involved, Their Modes of Action, and Its Association to Postharvest Treatments
by Mahshad Maghoumi, Maria Luisa Amodio, Danial Fatchurrahman, Luis Cisneros-Zevallos and Giancarlo Colelli
Foods 2022, 11(21), 3365; https://doi.org/10.3390/foods11213365 - 26 Oct 2022
Cited by 18 | Viewed by 4013
Abstract
The pomegranate (Punica granatum L.), which contains high levels of health-promoting compounds, has received much attention in recent decades. Fruit storage potential ranges from 3 to 4 months in air and from 4 to 6 months in Controlled Atmospheres (CA) with 3–5% [...] Read more.
The pomegranate (Punica granatum L.), which contains high levels of health-promoting compounds, has received much attention in recent decades. Fruit storage potential ranges from 3 to 4 months in air and from 4 to 6 months in Controlled Atmospheres (CA) with 3–5% oxygen and 10–15% carbon dioxide. Storage life is limited by decay, chilling injury, weight loss (WL), and husk scald. In particular, husk scald (HS) limits pomegranate long-term storage at favorable temperatures. HS appears as skin browning which expands from stem end towards the blossom end during handling or long-term storage (10–12 weeks) at 6–10 °C. Even though HS symptoms are limited to external appearance, it may still significantly reduce pomegranate fruit marketability. A number of postharvest treatments have been proposed to prevent husk scald, including atmospheric modifications, intermittent warming, coatings, and exposure to 1-MCP. Long-term storage may induce phenolic compounds accumulation, affect organelles membranes, and activate browning enzymes such as polyphenol oxidases (PPO) and peroxidases (POD). Due to oxidation of tannins and phenolics, scalding becomes visible. There is no complete understanding of the etiology and biochemistry of HS. This review discusses the hypothesized mechanism of HS based on recent research, its association to postharvest treatments, and their possible targets. Full article
Show Figures

Figure 1

17 pages, 4103 KB  
Article
Punicalagin Regulates Apoptosis-Autophagy Switch via Modulation of Annexin A1 in Colorectal Cancer
by Thanusha Ganesan, Ajantha Sinniah, Zamri Chik and Mohammed Abdullah Alshawsh
Nutrients 2020, 12(8), 2430; https://doi.org/10.3390/nu12082430 - 13 Aug 2020
Cited by 24 | Viewed by 4535
Abstract
Punicalagin (PU), a polyphenol extracted from pomegranate (Punica granatum) husk is proven to have anti-cancer effects on different types of cancer including colorectal cancer (CRC). Its role in modulating endogenous protein as a means of eliciting its anti-cancer effects, however, has [...] Read more.
Punicalagin (PU), a polyphenol extracted from pomegranate (Punica granatum) husk is proven to have anti-cancer effects on different types of cancer including colorectal cancer (CRC). Its role in modulating endogenous protein as a means of eliciting its anti-cancer effects, however, has not been explored to date. Hence, this study aimed to investigate the role of PU in modulating the interplay between apoptosis and autophagy by regulating Annexin A1 (Anx-A1) expression in HCT 116 colorectal adenocarcinoma cells. In the study, selective cytotoxicity, pro-apoptotic, autophagic and Anx-A1 downregulating properties of PU were shown which indicate therapeutic potential that this polyphenol has against CRC. Autophagy flux analysis via flow cytometry showed significant autophagosomes degradation in treated cells, proving the involvement of autophagy. Proteome profiling of 35 different proteins in the presence and absence of Anx-A1 antagonists in PU-treated cells demonstrated a complex interplay that happens between apoptosis and autophagy that suggests the possible simultaneous induction and inhibition of these two cell death mechanisms by PU. Overall, this study suggests that PU induces autophagy while maintaining basal level of apoptosis as the main mechanisms of cytotoxicity via the modulation of Anx-A1 expression in HCT 116 cells, and thus has a promising translational potential. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

Back to TopTop