Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = polysaccharide lyase family 8

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5029 KiB  
Article
Crystal Structure of the Multidomain Pectin Methylesterase PmeC5 from Butyrivibrio fibrisolvens D1T
by Vincenzo Carbone, Kerri Reilly, Carrie Sang, Linley R. Schofield, William J. Kelly, Ron S. Ronimus, Graeme T. Attwood and Nikola Palevich
Biomolecules 2025, 15(5), 720; https://doi.org/10.3390/biom15050720 - 14 May 2025
Viewed by 476
Abstract
Pectin is a dynamic and complex polysaccharide that forms a substantial proportion of the primary plant cell wall and middle lamella of forage ingested by grazing ruminants. Pectin methylesterases (PMEs) are enzymes that belongs to the carbohydrate esterase family 8 (CE8) and catalyze [...] Read more.
Pectin is a dynamic and complex polysaccharide that forms a substantial proportion of the primary plant cell wall and middle lamella of forage ingested by grazing ruminants. Pectin methylesterases (PMEs) are enzymes that belongs to the carbohydrate esterase family 8 (CE8) and catalyze the demethylesterification of pectin, a key polysaccharide in cell walls. Here we present the crystal structure of the catalytic domain of PmeC5 that is associated with a gene from Butyrivibrio fibrisolvens D1T that encodes a large secreted pectinesterase family protein (2089 aa) determined to a resolution of 1.33 Å. Protein in silico modelling of the secreted pectinesterase confirmed the presence of an additional pectate lyase (PL9) and adhesin-like domains. The structure of PmeC5 was the characteristic right-handed parallel β-helical topology and active site residues of Asp231, Asp253, and Arg326 typical of the enzyme class. PmeC5 is a large modular enzyme that is characteristic of rumen B. fibrisolvens megaplasmids and plays a central role in degrading plant cell wall components and releasing methanol in the rumen environment. Such secreted PMEs are significant contributors to plant fiber digestion and methane production, making them attractive targets for both methane mitigation strategies and livestock productivity enhancement. Full article
Show Figures

Figure 1

13 pages, 2204 KiB  
Article
Biochemical and Molecular Characteristics of a Novel Hyaluronic Acid Lyase from Citrobacter freundii
by Xinyue Li, Fang Li, Junhao Ma, Mingjun Li, Xi Lei, Xianghua Tang, Qian Wu, Zunxi Huang and Rui Zhang
Foods 2022, 11(13), 1989; https://doi.org/10.3390/foods11131989 - 5 Jul 2022
Cited by 7 | Viewed by 2987
Abstract
The Gram-negative strain of Citrobacter freundii, YNLX, has the ability to degrade hyaluronic acid. In this study, we expressed a C. freundii hyaluronic acid lyase, from polysaccharide lyase family 8, in Escherichia coli. The purified recombinant enzyme (rHynACF8) showed a substantially higher [...] Read more.
The Gram-negative strain of Citrobacter freundii, YNLX, has the ability to degrade hyaluronic acid. In this study, we expressed a C. freundii hyaluronic acid lyase, from polysaccharide lyase family 8, in Escherichia coli. The purified recombinant enzyme (rHynACF8) showed a substantially higher cleavage activity of hyaluronic acid than chondroitin sulfate. We found that its optimal pH and temperature are 5.5 and 35 °C, respectively. In addition, the enzyme activity was not notably affected by most metal ions. Km and kcat of rHynACF8 towards HA were 1.5 ± 0.01 mg/mL and 30.9 ± 0.5 /s, respectively. rHynACF8 is an endo-acting enzyme. Its cleavage products had dramatically increased antioxidant activity than hyaluronic acid in vitro (p < 0.001). As the molecular weight of hyaluronic acid decreased, the intramolecular interactions among antioxidant functional groups were removed; in the process of the cracking reaction, new double bonds formed and conjugated with the carbonyl group. We presumed that the structural change is the critical factor influencing antioxidant capacity. Overall, we found that rHynACF8 from Gram-negative bacteria with metal ion resistance, indicated the relationship between the function and structure of its antioxidant cleavage product. Full article
Show Figures

Figure 1

12 pages, 3041 KiB  
Article
YsHyl8A, an Alkalophilic Cold-Adapted Glycosaminoglycan Lyase Cloned from Pathogenic Yersinia sp. 298
by Shilong Zhang, Yujiao Li, Feng Han and Wengong Yu
Molecules 2022, 27(9), 2897; https://doi.org/10.3390/molecules27092897 - 2 May 2022
Cited by 8 | Viewed by 2293
Abstract
A high enzyme-yield strain Yersinia sp. 298 was screened from marine bacteria harvested from the coastal water. The screening conditions were extensive, utilizing hyaluronic acid (HA)/chondroitin sulfate (CS) as the carbon source. A coding gene yshyl8A of the family 8 polysaccharide lyase (PL8) [...] Read more.
A high enzyme-yield strain Yersinia sp. 298 was screened from marine bacteria harvested from the coastal water. The screening conditions were extensive, utilizing hyaluronic acid (HA)/chondroitin sulfate (CS) as the carbon source. A coding gene yshyl8A of the family 8 polysaccharide lyase (PL8) was cloned from the genome of Yersinia sp. 298 and subjected to recombinant expression. The specific activity of the recombinase YsHyl8A was 11.19 U/mg, with an optimal reaction temperature of 40 °C and 50% of its specific activity remaining after thermal incubation at 30 °C for 1 h. In addition, its optimal reaction pH was 7.5, and while it was most stable at pH 6.0 in Na2HPO4-citric acid buffer, it remained highly stable at pH 6.0–11.0. Further, its enzymatic activity was increased five-fold with 0.1 M NaCl. YsHyl8A, as an endo-lyase, can degrade both HA and CS, producing disaccharide end-products. These properties suggested that YsHyl8A possessed both significant alkalophilic and cold-adapted features while being dependent on NaCl, likely resulting from its marine source. Yersinia is a typical fish pathogen, with glycosaminoglycan lyase (GAG lyase) as a potential pathogenic factor, exhibiting strong hyaluronidase and chondroitinase activity. Further research on the pathogenic mechanism of GAG lyase may benefit the prevention and treatment of related diseases. Full article
(This article belongs to the Topic Advances in Enzymes and Protein Engineering)
Show Figures

Figure 1

14 pages, 3932 KiB  
Article
Identification and Biochemical Characterization of a Surfactant-Tolerant Chondroitinase VhChlABC from Vibrio hyugaensis LWW-1
by Juanjuan Su, Xiaoyi Wang, Chengying Yin, Yujiao Li, Hao Wu, Wengong Yu and Feng Han
Mar. Drugs 2021, 19(7), 399; https://doi.org/10.3390/md19070399 - 18 Jul 2021
Cited by 4 | Viewed by 2733
Abstract
Chondroitinases, catalyzing the degradation of chondroitin sulfate (CS) into oligosaccharides, not only play a crucial role in understanding the structure and function of CS, but also have been reported as a potential candidate drug for the treatment of high CS-related diseases. Here, a [...] Read more.
Chondroitinases, catalyzing the degradation of chondroitin sulfate (CS) into oligosaccharides, not only play a crucial role in understanding the structure and function of CS, but also have been reported as a potential candidate drug for the treatment of high CS-related diseases. Here, a marine bacterium Vibrio hyugaensis LWW-1 was isolated, and its genome was sequenced and annotated. A chondroitinase, VhChlABC, was found to belong to the second subfamily of polysaccharide lyase (PL) family 8. VhChlABC was recombinant expressed and characterized. It could specifically degrade CS-A, CS-B, and CS-C, and reached the maximum activity at pH 7.0 and 40 °C in the presence of 0.25 M NaCl. VhChlABC showed high stability within 8 h under 37 °C and within 2 h under 40 °C. VhChlABC was stable in a wide range of pH (5.0~10.6) at 4 °C. Unlike most chondroitinases, VhChlABC showed high surfactant tolerance, which might provide a good tool for removing extracellular CS proteoglycans (CSPGs) of lung cancer under the stress of pulmonary surfactant. VhChlABC completely degraded CS to disaccharide by the exolytic mode. This research expanded the research and application system of chondroitinases. Full article
Show Figures

Figure 1

16 pages, 2769 KiB  
Article
Specificities and Synergistic Actions of Novel PL8 and PL7 Alginate Lyases from the Marine Fungus Paradendryphiella salina
by Bo Pilgaard, Marlene Vuillemin, Jesper Holck, Casper Wilkens and Anne S. Meyer
J. Fungi 2021, 7(2), 80; https://doi.org/10.3390/jof7020080 - 25 Jan 2021
Cited by 43 | Viewed by 4736
Abstract
Alginate is an anionic polysaccharide abundantly present in the cell walls of brown macroalgae. The enzymatic depolymerization is performed solely by alginate lyases (EC 4.2.2.x), categorized as polysaccharide lyases (PLs) belonging to 12 different PL families. Until now, the vast majority of the [...] Read more.
Alginate is an anionic polysaccharide abundantly present in the cell walls of brown macroalgae. The enzymatic depolymerization is performed solely by alginate lyases (EC 4.2.2.x), categorized as polysaccharide lyases (PLs) belonging to 12 different PL families. Until now, the vast majority of the alginate lyases have been found in bacteria. We report here the first extensive characterization of four alginate lyases from a marine fungus, the ascomycete Paradendryphiella salina, a known saprophyte of seaweeds. We have identified four polysaccharide lyase encoding genes bioinformatically in P. salina, one PL8 (PsMan8A), and three PL7 alginate lyases (PsAlg7A, -B, and -C). PsMan8A was demonstrated to exert exo-action on polymannuronic acid, and no action on alginate, indicating that this enzyme is most likely an exo-acting polymannuronic acid specific lyase. This enzyme is the first alginate lyase assigned to PL8 and polymannuronic acid thus represents a new substrate specificity in this family. The PL7 lyases (PsAlg7A, -B, and -C) were found to be endo-acting alginate lyases with different activity optima, substrate affinities, and product profiles. PsAlg7A and PsMan8A showed a clear synergistic action for the complete depolymerization of polyM at pH 5. PsAlg7A depolymerized polyM to mainly DP5 and DP3 oligomers and PsMan8A to dimers and monosaccharides. PsAlg7B and PsAlg7C showed substrate affinities towards both polyM and polyG at pH 8, depolymerizing both substrates to DP9-DP2 oligomers. The findings elucidate how P. salina accomplishes alginate depolymerization and provide insight into an efficient synergistic cooperation that may provide a new foundation for enzyme selection for alginate degradation in seaweed bioprocessing. Full article
(This article belongs to the Special Issue Exploiting Fungal Solutions for Today's Challenges)
Show Figures

Figure 1

15 pages, 3174 KiB  
Article
Cloning, Expression, and Characterization of a New Glycosaminoglycan Lyase from Microbacterium sp. H14
by Junhao Sun, Xu Han, Guanrui Song, Qianhong Gong and Wengong Yu
Mar. Drugs 2019, 17(12), 681; https://doi.org/10.3390/md17120681 - 2 Dec 2019
Cited by 12 | Viewed by 3196
Abstract
Glycosaminoglycan (GAG) lyase is an effective tool for the structural and functional studies of glycosaminoglycans and preparation of functional oligosaccharides. A new GAG lyase from Microbacterium sp. H14 was cloned, expressed, purified, and characterized, with a molecular weight of approximately 85.9 kDa. The [...] Read more.
Glycosaminoglycan (GAG) lyase is an effective tool for the structural and functional studies of glycosaminoglycans and preparation of functional oligosaccharides. A new GAG lyase from Microbacterium sp. H14 was cloned, expressed, purified, and characterized, with a molecular weight of approximately 85.9 kDa. The deduced lyase HCLaseM belonged to the polysaccharide lyase (PL) family 8. Based on the phylogenetic tree, HCLaseM could not be classified into the existing three subfamilies of this family. HCLaseM showed almost the same enzyme activity towards hyaluronan (HA), chondroitin sulfate A (CS-A), CS-B, CS-C, and CS-D, which was different from reported GAG lyases. HCLaseM exhibited the highest activities to both HA and CS-A at its optimal temperature (35 °C) and pH (pH 7.0). HCLaseM was stable in the range of pH 5.0–8.0 and temperature below 30 °C. The enzyme activity was independent of divalent metal ions and was not obviously affected by most metal ions. HCLaseM is an endo-type enzyme yielding unsaturated disaccharides as the end products. The facilitated diffusion effect of HCLaseM is dose-dependent in animal experiments. These properties make it a candidate for further basic research and application. Full article
Show Figures

Figure 1

12 pages, 2422 KiB  
Article
Characterization of a Long-Lived Alginate Lyase Derived from Shewanella Species YH1
by Hisashi Yagi, Natsuki Isobe, Narumi Itabashi, Asako Fujise and Takashi Ohshiro
Mar. Drugs 2018, 16(1), 4; https://doi.org/10.3390/md16010004 - 27 Dec 2017
Cited by 11 | Viewed by 4433
Abstract
Polysaccharides from seaweeds are widely used in various fields, including the food, biomedical material, cosmetic, and biofuel industries. Alginate, which is a major polysaccharide in brown algae, and the products of its degradation (oligosaccharides) have been used in stabilizers, thickeners, and gelling agents, [...] Read more.
Polysaccharides from seaweeds are widely used in various fields, including the food, biomedical material, cosmetic, and biofuel industries. Alginate, which is a major polysaccharide in brown algae, and the products of its degradation (oligosaccharides) have been used in stabilizers, thickeners, and gelling agents, especially in the food industry. Discovering novel alginate lyases with unique characteristics for the efficient production of oligosaccharides may be relevant for the food and pharmaceutical fields. In this study, we identified a unique alginate lyase derived from an alginate-utilizing bacterium, Shewanella species YH1. The recombinant enzyme (rAlgSV1-PL7) was produced in an Escherichia coli system and it was classified in the Polysaccharide Lyase family 7. The optimal temperature and pH for rAlgSV1-PL7 activity were around 45 °C and 8, respectively. Interestingly, we observed that rAlgSV1-PL7 retained over 80% of its enzyme activity after incubation at 30 °C for at least 20 days, indicating that rAlgSV1-PL7 is a long-lived enzyme. Moreover, the degradation of alginate by rAlgSV1-PL7 produced one to four sugars because of the broad substrate specificity of this enzyme. Our findings suggest that rAlgSV1-PL7 may represent a new commercially useful enzyme. Full article
(This article belongs to the Special Issue Marine Oligosaccharides and Polysaccharides)
Show Figures

Figure 1

Back to TopTop