Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = polygon degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 7227 KiB  
Review
Formation of Low-Centered Ice-Wedge Polygons and Their Orthogonal Systems: A Review
by Yuri Shur, Benjamin M. Jones, M. Torre Jorgenson, Mikhail Z. Kanevskiy, Anna Liljedahl, Donald A. Walker, Melissa K. Ward Jones, Daniel Fortier and Alexander Vasiliev
Geosciences 2025, 15(7), 249; https://doi.org/10.3390/geosciences15070249 - 2 Jul 2025
Viewed by 717
Abstract
Ice wedges, which are ubiquitous in permafrost areas, play a significant role in the evolution of permafrost landscapes, influencing the topography and hydrology of these regions. In this paper, we combine a detailed multi-generational, interdisciplinary, and international literature review along with our own [...] Read more.
Ice wedges, which are ubiquitous in permafrost areas, play a significant role in the evolution of permafrost landscapes, influencing the topography and hydrology of these regions. In this paper, we combine a detailed multi-generational, interdisciplinary, and international literature review along with our own field experiences to explore the development of low-centered ice-wedge polygons and their orthogonal networks. Low-centered polygons, a type of ice-wedge polygonal ground characterized by elevated rims and lowered wet central basins, are critical indicators of permafrost conditions. The formation of these features has been subject to numerous inconsistencies and debates since their initial description in the 1800s. The development of elevated rims is attributed to different processes, such as soil bulging due to ice-wedge growth, differential frost heave, and the accumulation of vegetation and peat. The transition of low-centered polygons to flat-centered, driven by processes like peat accumulation, aggradational ice formation, and frost heave in polygon centers, has been generally overlooked. Low-centered polygons occur in deltas, on floodplains, and in drained-lake basins. There, they are often arranged in orthogonal networks that comprise a complex system. The prevailing explanation of their formation does not match with several field studies that practically remain unnoticed or ignored. By analyzing controversial subjects, such as the degradational or aggradational nature of low-centered polygons and the formation of orthogonal ice-wedge networks, this paper aims to clarify misconceptions and present a cohesive overview of lowland terrain ice-wedge dynamics. The findings emphasize the critical role of ice wedges in shaping Arctic permafrost landscapes and their vulnerability to ongoing climatic and landscape changes. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

16 pages, 18153 KiB  
Article
Effect of Mo and B on Microstructure and Impact Toughness of Coarse Grain Heat-Affected Zone in Low-Carbon V-Ti-N Micro-Alloyed Steel
by Mingliang Qiao, Huibing Fan, Shibiao Wang, Yixin Huang, Qingfeng Wang and Riping Liu
Materials 2025, 18(7), 1667; https://doi.org/10.3390/ma18071667 - 4 Apr 2025
Viewed by 487
Abstract
This study investigates the effects of molybdenum (Mo) and boron (B) on the microstructures and impact properties in the coarse grain heat-affected zone (CGHAZ) of a low-carbon V-Ti-N steel. The results demonstrate that, at a heat input of up to 75 kJ/cm, the [...] Read more.
This study investigates the effects of molybdenum (Mo) and boron (B) on the microstructures and impact properties in the coarse grain heat-affected zone (CGHAZ) of a low-carbon V-Ti-N steel. The results demonstrate that, at a heat input of up to 75 kJ/cm, the addition of Mo alters the microstructure of the CGHAZ, transforming it from a polygonal ferrite (PF) + degraded pearlite (DP) composition to a granular bainite (GB) + a small amount of acicular ferrite (AF). This transformation increases the impact energy from 20 J to 35 J. Furthermore, with the Mo/B composite addition, the CGHAZ microstructure was refined due to the formation of a large number of acicular ferrites, and the mean equivalent diameter (MEDMTA≥15°) decreased from 7.9 μm to 4.2 μm. Consequently, the impact toughness of the CGHAZ increased from 35 J to 111 J. The correlation between the Mo/B elements, microstructure and impact toughness was investigated in detail. The findings of this study have the potential to generate novel ideas for the advancement of steel materials in the context of high heat input welding. Full article
Show Figures

Figure 1

23 pages, 11253 KiB  
Article
Evaluation of the Geomorphon Approach for Extracting Troughs in Polygonal Patterned Ground Across Different Permafrost Environments
by Amin Wen, Tonghua Wu, Xiaofan Zhu, Jie Chen, Jianzong Shi, Peiqing Lou, Dong Wang, Xin Ma and Xiaodong Wu
Remote Sens. 2025, 17(6), 1040; https://doi.org/10.3390/rs17061040 - 16 Mar 2025
Viewed by 761
Abstract
As the climate continues to warm, the thawing of ice-rich permafrost leads to changes in the polygonal patterned ground (PPG) landscape, exhibiting an array of spatial heterogeneity in trough patterns, governing permafrost stability and hydrological and ecosystem dynamics. Developing accurate methods for detecting [...] Read more.
As the climate continues to warm, the thawing of ice-rich permafrost leads to changes in the polygonal patterned ground (PPG) landscape, exhibiting an array of spatial heterogeneity in trough patterns, governing permafrost stability and hydrological and ecosystem dynamics. Developing accurate methods for detecting trough areas will allow us to better understand where the degradation of PPG occurs. The Geomorphon approach is proven to be a computationally efficient method that utilizes digital elevation models (DEMs) for terrain classification across multiple scales. In this study, we firstly evaluate the appliance of the Geomorphon algorithm in trough mapping in Prudhoe Bay (PB) in Alaska and the Wudaoliang region (WDL) on the central Qinghai–Tibet Plateau. We used the optimized DEM resolution, flatness threshold (t), and search radius (L) as input parameters for Geomorphon. The accuracy of trough recognition was evaluated against that of hand-digitized troughs and field measurements, using the mean intersection over union (mIOU) and the F1 Score. By setting a classification threshold, the troughs were detected where the Geomorphon values were larger than 6. The results show that (i) the lowest t value (0°) captured the microtopograhy of the troughs, while the larger L values paired with a DEM resolution of 50 cm diminished the impact of minor noise, improving the accuracy of trough detection; (ii) the optimized Geomorphon model produced trough maps with a high accuracy, achieving mIOU and F1 Scores of 0.89 and 0.90 in PB and 0.84 and 0.87 in WDL, respectively; and (iii) compared with the polygonal boundaries, the trough maps can derive the heterogeneous features to quantify the degradation of PPG. By comparing with the traditional terrain indices for trough classification, Geomorphon provides a direct classification of troughs, thus advancing the scientific reproducibility of comparisons in PB and WDL. This work provides a valuable method that may propel future pan-Arctic studies of trough mapping. Full article
Show Figures

Figure 1

16 pages, 22557 KiB  
Article
HRTEM Study of Desulfurization of Pt- and Pd-Rich Sulfides from New Caledonia Ophiolite
by Néstor Cano, José M. González-Jiménez, Fernando Gervilla and Thomas N. Kerestedjian
Minerals 2025, 15(1), 66; https://doi.org/10.3390/min15010066 - 12 Jan 2025
Viewed by 1039
Abstract
Oxygen-bearing platinum group minerals (O-bearing PGMs) are intergrown with base metal sulfides (BMS, e.g., pentlandite–[NiFe]9S8) within fractures in chromite grains from chromitite bodies on Ouen Island, New Caledonia. These PGMs are hosted in chlorite and serpentine, which formed during [...] Read more.
Oxygen-bearing platinum group minerals (O-bearing PGMs) are intergrown with base metal sulfides (BMS, e.g., pentlandite–[NiFe]9S8) within fractures in chromite grains from chromitite bodies on Ouen Island, New Caledonia. These PGMs are hosted in chlorite and serpentine, which formed during serpentinization of olivine and pyroxene. The O-bearing PGM grains are polygonal, show microfracturing (indicating volume loss), and contain Pt-Pd-rich sulfide remnants, suggesting pseudomorphic replacement of primary (magmatic) sulfides. They display chemical zonation, with Pt(-Pd-Ni-Fe) relict sulfide cores replaced by Pt-Fe-Ni oxidized alloy mantles and Pt-Cu-Fe(-Pd) alloy rims (tulameenite), indicating desulfurization. The core and mantle show a nanoporous structure, interpreted as the result of coupled dissolution–reprecipitation reactions between magmatic sulfides and low fO2fS2 serpentinite-related fluids, probably formed during olivine transformation to serpentine + magnetite (early stages of serpentinization). This fluid infiltrated magmatic sulfides (PGE-rich and BMS), degrading them to secondary products and releasing S and metals that were accommodated in the mantle and rim of O-bearing PGMs. Upon olivine exhaustion, an increase in fO2 might have stabilized Pt-Fe-O compounds (likely Pt0/Pt-Fe + Fe oxyhydroxides) alongside Ni-Fe alloys. Our results show that post-magmatic desulfurization of primary sulfides produces complex nano-scale intergrowths, mainly driven by changes in the fluid’s physicochemical properties during serpentinization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

20 pages, 12655 KiB  
Article
Modeling of Explosive Pingo-like Structures and Fluid-Dynamic Processes in the Arctic Permafrost: Workflow Based on Integrated Geophysical, Geocryological, and Analytical Data
by Igor Buddo, Natalya Misyurkeeva, Ivan Shelokhov, Alexandr Shein, Vladimir Sankov, Artem Rybchenko, Anna Dobrynina, Alexey Nezhdanov, Anna Parfeevets, Marina Lebedeva, Alena Kadetova, Alexander Smirnov, Oxana Gutareva, Alexey Chernikh, Lyubov Shashkeeva and Gleb Kraev
Remote Sens. 2024, 16(16), 2948; https://doi.org/10.3390/rs16162948 - 12 Aug 2024
Cited by 4 | Viewed by 1856
Abstract
Understanding the mechanisms responsible for the origin, evolution, and failure of pingos with explosive gas emissions and the formation of craters in the Arctic permafrost requires comprehensive studies in the context of fluid dynamic processes. Properly choosing modeling methods for the joint interpretation [...] Read more.
Understanding the mechanisms responsible for the origin, evolution, and failure of pingos with explosive gas emissions and the formation of craters in the Arctic permafrost requires comprehensive studies in the context of fluid dynamic processes. Properly choosing modeling methods for the joint interpretation of geophysical results and analytical data on core samples from suitable sites are prerequisites for predicting pending pingo failure hazards. We suggest an optimal theoretically grounded workflow for such studies, in a site where pingo collapse induced gas blowout and crater formation in the Yamal Peninsula. The site was chosen with reference to the classification of periglacial landforms and their relation to the local deformation pattern, according to deciphered satellite images and reconnaissance geophysical surveys. The deciphered satellite images and combined geophysical data from the site reveal a pattern of periglacial landforms matching the structural framework with uplifted stable permafrost blocks (polygons) bounded by eroded fractured zones (lineaments). Greater percentages of landforms associated with permafrost degradation fall within the lineaments. Resistivity anomalies beneath pingo-like mounds presumably trace deeply rooted fluid conduits. This distribution can be explained in terms of fluid dynamics. N–E and W–E faults, and especially their junctions with N–W structures, are potentially the most widely open conduits for gas and water which migrate into shallow sediments in the modern stress field of N–S (or rather NEN) extension and cause a warming effect on permafrost. The results obtained with a new workflow and joint interpretation of remote sensing, geophysical, and analytical data from the site of explosive gas emission in the Yamal Peninsula confirm the advantages of the suggested approach and its applicability for future integrated fluid dynamics research. Full article
(This article belongs to the Special Issue Remote Sensing Monitoring for Arctic Region)
Show Figures

Figure 1

17 pages, 5678 KiB  
Article
Clustering-Based Classification of Polygonal Wheels in a Railway Freight Vehicle Using a Wayside System
by António Guedes, Rúben Silva, Diogo Ribeiro, Jorge Magalhães, Tomás Jorge, Cecília Vale, Andreia Meixedo, Araliya Mosleh and Pedro Montenegro
Appl. Sci. 2024, 14(9), 3650; https://doi.org/10.3390/app14093650 - 25 Apr 2024
Cited by 4 | Viewed by 1812
Abstract
Polygonal wheels are one of the most common defects in train wheels, causing a reduction in comfort levels for passengers and a higher degradation of vehicle and track components. With the aim of contributing to the safety and reliability of railway transport, this [...] Read more.
Polygonal wheels are one of the most common defects in train wheels, causing a reduction in comfort levels for passengers and a higher degradation of vehicle and track components. With the aim of contributing to the safety and reliability of railway transport, this paper presents the development of an innovative methodology for classifying polygonal wheels based on a wayside system. To achieve that, a numerical train-track interaction model was adopted to simulate the passage of a freight train over a virtual wayside monitoring system composed of a set of accelerometers installed on the rails. Then, the acquired acceleration time series was transformed to a frequency domain using a Fast Fourier transform (FFT), and on this data, damage-sensitive features were extracted. The features based on Principal Component Analysis (PCA) showed great sensitivity to the harmonic order, while the ones based on Continuous Wavelet Transform (CWT) model showed great sensitivity to the defect amplitude. One step further, all features are merged using the Mahalanobis distance in order to obtain a damage index strongly correlated with the polygonal defect. Finally, a cluster analysis allowed the automatic classification of polygonal wheels, according to the harmonic order (harmonic-based) and defect amplitude (amplitude-based). The proposed methodology demonstrated high efficiency in identifying different types of polygonal wheels using a minimum layout of two sensors. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

21 pages, 10024 KiB  
Article
Sentinel-2 versus PlanetScope Images for Goldenrod Invasive Plant Species Mapping
by Bogdan Zagajewski, Marcin Kluczek, Karolina Barbara Zdunek and David Holland
Remote Sens. 2024, 16(4), 636; https://doi.org/10.3390/rs16040636 - 8 Feb 2024
Cited by 12 | Viewed by 3777
Abstract
A proliferation of invasive species is displacing native species, occupying their habitats and degrading biodiversity. One of these is the invasive goldenrod (Solidago spp.), characterized by aggressive growth that results in habitat disruption as it outcompetes native plants. This invasiveness also leads [...] Read more.
A proliferation of invasive species is displacing native species, occupying their habitats and degrading biodiversity. One of these is the invasive goldenrod (Solidago spp.), characterized by aggressive growth that results in habitat disruption as it outcompetes native plants. This invasiveness also leads to altered soil composition through the release of allelopathic chemicals, complicating control efforts and making it challenging to maintain ecological balance in affected areas. The research goal was to develop methods that allow the analysis of changes in heterogeneous habitats with high accuracy and repeatability. For this reason, we used open source classifiers Support Vector Machine (SVM), Random Forest (RF), and satellite images of Sentinel-2 (free) and PlanetScope (commercial) to assess their potential in goldenrod classification. Due to the fact that invasions begin with invasion footholds, created by small patches of invasive, autochthonous plants and different land cover patterns (asphalt, concrete, buildings) forming heterogeneous areas, we based our studies on field-verified polygons, which allowed the selection of randomized pixels for the training and validation of iterative classifications. The results confirmed that the optimal solution is the use of multitemporal Sentinel-2 images and the RF classifier, as this combination gave F1-score accuracy of 0.92–0.95 for polygons dominated by goldenrod and 0.85–0.89 for heterogeneous areas where goldenrod was in the minority (mix class; smaller share of goldenrod in canopy than autochthonous plants). The mean decrease in the accuracy analysis (MDA), indicating an informativeness of individual spectral bands, showed that Sentinel-2 bands coastal aerosol, NIR, green, SWIR, and red were comparably important, while in the case of PlanetScope data, the NIR and red were definitely the most important, and remaining bands were less informative, and yellow (B5) did not contribute significant information even during the flowering period, when the plant was covered with intensely yellow perianth, and red-edge, coastal aerosol, or green II were much more important. The maximum RF classification values of Sentinel-2 and PlanetScope images for goldenrod are similar (F1-score > 0.9), but the medians are lower for PlanetScope data, especially with the SVM algorithm. Full article
Show Figures

Graphical abstract

18 pages, 12541 KiB  
Article
Evolutions of Microstructure and Impact Toughness of Submerged Arc Weld Metal via Introducing Varied Si for Weathering Bridge Steel
by Fangmin Li, Bing Hu, Qiuming Wang, Liyang Zhao, Yuzhu Yi, Jinjian Li and Qingfeng Wang
Metals 2023, 13(9), 1506; https://doi.org/10.3390/met13091506 - 22 Aug 2023
Viewed by 1892
Abstract
In this paper, the influence of the silicon (Si) content on microstructure and impact property of submerged arc weld metals (WMs) for weathering bridge steel was clarified. Actual submerged arc welding (SAW) was carried out to produce WMs with 0.18 wt.%, 0.36 wt.%, [...] Read more.
In this paper, the influence of the silicon (Si) content on microstructure and impact property of submerged arc weld metals (WMs) for weathering bridge steel was clarified. Actual submerged arc welding (SAW) was carried out to produce WMs with 0.18 wt.%, 0.36 wt.%, 0.51 wt.%, and 0.60 wt.% of Si. The low temperature impact property of weld metal was detected, and the weld microstructures were characterized by optical microscopy (OM), scanning and transmission electron microscope (SEM and TEM), and electron backscatter diffraction (EBSD). The results indicate that WMs consist of polygon ferrite (PF), acicular ferrite (AF), granular bainitic ferrite (GBF), and martensite/austenite (M/A) constituents in each Si content. With increasing Si, the proportion of PF increased, while AF and GBF coarsened, the area fraction, fM/A, and the mean size, dM/A, of M/A constituents increased, the number of inclusions decreased, but the size increased. Further, the fraction of high-angle grain boundaries (HAGBs) with the misorientation tolerance angles (MTAs) greater than 15° reduced, while the mean equivalent diameter, MEDMTA≥15°, of ferrite grains with HAGBs increased. Accordingly, the impact toughness of WM was degraded from 108.1 J to 39.4 J with the increase in Si. The increase in M/A constituents and inclusions size reduced the critical fracture stress, thereby formation of larger microcracks and cleavage planes occurred. The reduced HAGBs exhibited a low hindering effect on crack propagation, and, consequently, the impact toughness decreased with increasing Si content. Full article
(This article belongs to the Special Issue Advances in Weathering Bridge Steels)
Show Figures

Figure 1

22 pages, 2324 KiB  
Article
Species Diversity and Driving Factors of Benthic and Zooplanktonic Assemblages at Different Stages of Thermokarst Lake Development: A Case Study in the Lena River Delta (Middle Siberia)
by Elena S. Chertoprud, Anna A. Novichkova, Andrey N. Tsyganov, Lada V. Vorobjeva, Anton S. Esaulov, Sergey V. Krylenko and Yuri A. Mazei
Diversity 2023, 15(4), 511; https://doi.org/10.3390/d15040511 - 2 Apr 2023
Cited by 10 | Viewed by 2896
Abstract
Global climate change might result in permafrost thaw and the formation of thermokarst landscapes that release long-term carbon stocks as greenhouse into the atmosphere, thereby initiating a positive climate feedback. These processes are mediated by biological activity, including by microbes, vascular plants and [...] Read more.
Global climate change might result in permafrost thaw and the formation of thermokarst landscapes that release long-term carbon stocks as greenhouse into the atmosphere, thereby initiating a positive climate feedback. These processes are mediated by biological activity, including by microbes, vascular plants and animals, whereas the role of invertebrates in thermokarst ecosystems remains poorly understood. We investigated the diversity and assemblage structures of zooplankton (mainly Copepoda, Cladocera), microbenthos (testate amoebae) and meio- (Copepoda and Cladocera) and macrozoobenthos (mollusks, crustaceans, insects and annelids) from a range of water bodies representing different stages of thermokarst lake formation in the southern part of the Lena River Delta (Central Siberia). Altogether, 206 species of testate amoeba, mollusk, crustacean, insect and annelid taxa were identified. A total of 60 species of macrozoobenthos (mainly insects) and 62 species of testate amoebae were detected in the water bodies of the Lena River Delta for the first time. The species richness of zooplankton and meio- and macrozoobenthos was greater in the large thermokarst lakes than in the polygonal ponds due to the freezing of the latter in the winter. In contrast, the species richness of protists was higher in the polygonal ponds, which was related to the habitat preferences of testate amoebae. Fish grazing strongly affected the macrobenthos assemblages but not the smaller-sized organisms. Water acidity and temperature were the main environmental drivers of the assemblage structure of testate amoeba and microcrustacean. The species structure of the macroinvertebrate assemblages was significantly explained by water acidity, permafrost depth and size of the water area. It means that small size organisms with their short generation times are sensitive to more dynamic factors such as temperature and may serve as indicators of ecosystem changes due to global climate warming. In contrast, large size organisms are affected by driven factors that appear during thermokarst lakes formation and permafrost degradation. Full article
(This article belongs to the Special Issue Meiofauna: Biodiversity, Ecology and Role in Ecosystems)
Show Figures

Figure 1

20 pages, 53339 KiB  
Article
Monitoring Ground Surface Deformation of Ice-Wedge Polygon Areas in Saskylakh, NW Yakutia, Using Interferometric Synthetic Aperture Radar (InSAR) and Google Earth Engine (GEE)
by Wenhui Wang, Huijun Jin, Ze Zhang, Mikhail N. Zhelezniak, Valentin V. Spektor, Raul-David Șerban, Anyuan Li, Vladimir Tumskoy, Xiaoying Jin, Suiqiao Yang, Shengrong Zhang, Xiaoying Li, Mihaela Șerban, Qingbai Wu and Yanan Wen
Remote Sens. 2023, 15(5), 1335; https://doi.org/10.3390/rs15051335 - 27 Feb 2023
Cited by 7 | Viewed by 3872
Abstract
As one of the best indicators of the periglacial environment, ice-wedge polygons (IWPs) are important for arctic landscapes, hydrology, engineering, and ecosystems. Thus, a better understanding of the spatiotemporal dynamics and evolution of IWPs is key to evaluating the hydrothermal state and carbon [...] Read more.
As one of the best indicators of the periglacial environment, ice-wedge polygons (IWPs) are important for arctic landscapes, hydrology, engineering, and ecosystems. Thus, a better understanding of the spatiotemporal dynamics and evolution of IWPs is key to evaluating the hydrothermal state and carbon budgets of the arctic permafrost environment. In this paper, the dynamics of ground surface deformation (GSD) in IWP zones (2018–2019) and their influencing factors over the last 20 years in Saskylakh, northwestern Yakutia, Russia were investigated using the Interferometric Synthetic Aperture Radar (InSAR) and Google Earth Engine (GEE). The results show an annual ground surface deformation rate (AGSDR) in Saskylakh at −49.73 to 45.97 mm/a during the period from 1 June 2018 to 3 May 2019. All the selected GSD regions indicate that the relationship between GSD and land surface temperature (LST) is positive (upheaving) for regions with larger AGSDR, and negative (subsidence) for regions with lower AGSDR. The most drastic deformation was observed at the Aeroport regions with GSDs rates of −37.06 mm/a at tower and 35.45 mm/a at runway. The GSDs are negatively correlated with the LST of most low-centered polygons (LCPs) and high-centered polygons (HCPs). Specifically, the higher the vegetation cover, the higher the LST and the thicker the active layer. An evident permafrost degradation has been observed in Saskylakh as reflected in higher ground temperatures, lusher vegetation, greater active layer thickness, and fluctuant numbers and areal extents of thermokarst lakes and ponds. Full article
(This article belongs to the Special Issue Remote Sensing of Dynamic Permafrost Regions Ⅱ)
Show Figures

Graphical abstract

16 pages, 6688 KiB  
Article
Design and Manufacturing Process of a New Type of Deep-Sea Spherical Pressure Hull Structure
by Yang Jing, Chenghai Kong, Jingchao Guan, Wei Zhao, Apollo B. Fukuchi and Xilu Zhao
Designs 2023, 7(1), 12; https://doi.org/10.3390/designs7010012 - 11 Jan 2023
Cited by 3 | Viewed by 7224
Abstract
Spherical shell structures are the most suitable shape for deep-sea pressure hulls because they have ideal mechanical properties for handling symmetrical pressure. However, the shape accuracy requirement for a hull in a spherical shell structure subjected to deep-sea pressure is extremely high. Even [...] Read more.
Spherical shell structures are the most suitable shape for deep-sea pressure hulls because they have ideal mechanical properties for handling symmetrical pressure. However, the shape accuracy requirement for a hull in a spherical shell structure subjected to deep-sea pressure is extremely high. Even minor asymmetry can significantly degrade its mechanical properties. In this study, a new type of spherical deep-sea pressure hull structure and its integral hydro-bulge-forming (IHBF) method are proposed. First, 32 flat metal plate parts are prepared and welded along their straight sides to form a regular polygonally shaped box. Next, water pressure is applied inside the preformed box to create a spherical pressure vessel. We performed a forming experiment using a spherical pressure vessel with a design radius of 250 mm as a verification research object. The radius of the spherical pressure vessel obtained from the forming experiment is 249.32 mm, the error from the design radius is 0.27%, and the roundness of the spherical surface is 2.36 mm. We performed a crushing analysis using uniform external pressure to confirm the crushing and buckling characteristics of the formed spherical pressure vessel. The results show that the work-hardening increased the crushing and buckling load of the spherical pressure vessel, above that of the conventional spherical shell structure. Additionally, it is established that local defects and the size of the weld line significantly and slightly affected the crushing and buckling load of the spherical pressure hull, respectively. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

21 pages, 36528 KiB  
Article
The Potential of UAV Imagery for the Detection of Rapid Permafrost Degradation: Assessing the Impacts on Critical Arctic Infrastructure
by Soraya Kaiser, Julia Boike, Guido Grosse and Moritz Langer
Remote Sens. 2022, 14(23), 6107; https://doi.org/10.3390/rs14236107 - 2 Dec 2022
Cited by 10 | Viewed by 3031
Abstract
Ground subsidence and erosion processes caused by permafrost thaw pose a high risk to infrastructure in the Arctic. Climate warming is increasingly accelerating the thawing of permafrost, emphasizing the need for thorough monitoring to detect damages and hazards at an early stage. The [...] Read more.
Ground subsidence and erosion processes caused by permafrost thaw pose a high risk to infrastructure in the Arctic. Climate warming is increasingly accelerating the thawing of permafrost, emphasizing the need for thorough monitoring to detect damages and hazards at an early stage. The use of unoccupied aerial vehicles (UAVs) allows a fast and uncomplicated analysis of sub-meter changes across larger areas compared to manual surveys in the field. In our study, we investigated the potential of photogrammetry products derived from imagery acquired with off-the-shelf UAVs in order to provide a low-cost assessment of the risks of permafrost degradation along critical infrastructure. We tested a minimal drone setup without ground control points to derive high-resolution 3D point clouds via structure from motion (SfM) at a site affected by thermal erosion along the Dalton Highway on the North Slope of Alaska. For the sub-meter change analysis, we used a multiscale point cloud comparison which we improved by applying (i) denoising filters and (ii) alignment procedures to correct for horizontal and vertical offsets. Our results show a successful reduction in outliers and a thorough correction of the horizontal and vertical point cloud offset by a factor of 6 and 10, respectively. In a defined point cloud subset of an erosion feature, we derive a median land surface displacement of 0.35 m from 2018 to 2019. Projecting the development of the erosion feature, we observe an expansion to NNE, following the ice-wedge polygon network. With a land surface displacement of 0.35 m and an alignment root mean square error of 0.99 m, we find our workflow is best suitable for detecting and quantifying rapid land surface changes. For a future improvement of the workflow, we recommend using alternate flight patterns and an enhancement of the point cloud comparison algorithm. Full article
(This article belongs to the Special Issue Dynamic Disturbance Processes in Permafrost Regions)
Show Figures

Figure 1

11 pages, 1873 KiB  
Article
Development of Stable Liposomal Drug Delivery System of Thymoquinone and Its In Vitro Anticancer Studies Using Breast Cancer and Cervical Cancer Cell Lines
by Mohammad Hossain Shariare, Md Asaduzzaman Khan, Abdullah Al-Masum, Junayet Hossain Khan, Jamal Uddin and Mohsin Kazi
Molecules 2022, 27(19), 6744; https://doi.org/10.3390/molecules27196744 - 10 Oct 2022
Cited by 26 | Viewed by 4002
Abstract
Thymoquinone, a well-known phytoconstituent derived from the seeds of Nigella sativa, exhibits unique pharmacological activities However, despite the various medicinal properties of thymoquinone, its administration in vivo remains challenging due to poor aqueous solubility, bioavailability, and stability. Therefore, an advanced drugdelivery system [...] Read more.
Thymoquinone, a well-known phytoconstituent derived from the seeds of Nigella sativa, exhibits unique pharmacological activities However, despite the various medicinal properties of thymoquinone, its administration in vivo remains challenging due to poor aqueous solubility, bioavailability, and stability. Therefore, an advanced drugdelivery system is required to improve the therapeutic outcome of thymoquinone by enhancing its solubility and stability in biological systems. Therefore, this study is mainly focused on preparing thymoquinone-loaded liposomes to improve its physicochemical stability in gastric media and its performance in different cancer cell line studies. Liposomes were prepared using phospholipid extracted from egg yolk. The liposomal nano preparations were evaluated in terms of hydrodynamic diameter, zeta potential, microscopic analysis, and entrapment efficiency. Cell-viability measurements were conducted using breast and cervical cancer cell lines. Optimized liposomal preparation exhibited polygonal, globule-like shape with a hydrodynamic diameter of less than 260 nm, PDI of 0.6, and zeta potential values of −23.0 mV. Solid-state characterizations performed using DSC and XRPD showed that the freeze-dried liposomal preparations were amorphous in nature. Gastric pH stability data showed no physical changes (precipitation, degradation) or significant growth in the average size of blank and thymoquinone-loaded liposomes after 24 h. Cell line studies exhibited better performance for thymoquinone-loaded liposomal drug delivery system compared with the thymoquinone-only solution; this finding can play a critical role in improving breast and cervical cancer treatment management. Full article
Show Figures

Graphical abstract

19 pages, 2721 KiB  
Article
Increased Arctic NO3 Availability as a Hydrogeomorphic Consequence of Permafrost Degradation and Landscape Drying
by Carli A. Arendt, Jeffrey M. Heikoop, Brent D. Newman, Cathy J. Wilson, Haruko Wainwright, Jitendra Kumar, Christian G. Andersen, Nathan A. Wales, Baptiste Dafflon, Jessica Cherry and Stan D. Wullschleger
Nitrogen 2022, 3(2), 314-332; https://doi.org/10.3390/nitrogen3020021 - 21 May 2022
Cited by 2 | Viewed by 3230
Abstract
Climate-driven permafrost thaw alters the strongly coupled carbon and nitrogen cycles within the Arctic tundra, influencing the availability of limiting nutrients including nitrate (NO3). Researchers have identified two primary mechanisms that increase nitrogen and NO3 availability within permafrost [...] Read more.
Climate-driven permafrost thaw alters the strongly coupled carbon and nitrogen cycles within the Arctic tundra, influencing the availability of limiting nutrients including nitrate (NO3). Researchers have identified two primary mechanisms that increase nitrogen and NO3 availability within permafrost soils: (1) the ‘frozen feast’, where previously frozen organic material becomes available as it thaws, and (2) ‘shrubification’, where expansion of nitrogen-fixing shrubs promotes increased soil nitrogen. Through the synthesis of original and previously published observational data, and the application of multiple geospatial approaches, this study investigates and highlights a third mechanism that increases NO3 availability: the hydrogeomorphic evolution of polygonal permafrost landscapes. Permafrost thaw drives changes in microtopography, increasing the drainage of topographic highs, thus increasing oxic conditions that promote NO3 production and accumulation. We extrapolate relationships between NO3 and soil moisture in elevated topographic features within our study area and the broader Alaskan Coastal Plain and investigate potential changes in NO3 availability in response to possible hydrogeomorphic evolution scenarios of permafrost landscapes. These approximations indicate that such changes could increase Arctic tundra NO3 availability by ~250–1000%. Thus, hydrogeomorphic changes that accompany continued permafrost degradation in polygonal permafrost landscapes will substantially increase soil pore water NO3 availability and boost future fertilization and productivity in the Arctic. Full article
(This article belongs to the Special Issue Nitrogen Cycling in Permafrost Soils)
Show Figures

Figure 1

22 pages, 9485 KiB  
Article
Road Network Vulnerability Based on Diversion Routes to Reconnect Disrupted Road Segments
by Amir Al Hamdi Redzuan, Rozana Zakaria, Aznah Nor Anuar, Eeydzah Aminudin and Norbazlan Mohd Yusof
Sustainability 2022, 14(4), 2244; https://doi.org/10.3390/su14042244 - 16 Feb 2022
Cited by 9 | Viewed by 3641
Abstract
The reliance on roads to provide fluent mobilization has raised great concern when facing functional degradation. Disruption of the critical segments of a road network may significantly increase the distance traveled by a community. This paper proposes a method for measuring road network [...] Read more.
The reliance on roads to provide fluent mobilization has raised great concern when facing functional degradation. Disruption of the critical segments of a road network may significantly increase the distance traveled by a community. This paper proposes a method for measuring road network vulnerability when facing disruption by assessing all road segments within a network. The assessment is based on two of the shortest disjointed diversion routes from one end of the segment to the other, supporting the strategy of reaching equilibrium flow in an emergency condition. To generate diversion routes for the purpose of reconnecting a disrupted segment, the shortest path patterns are generated through the formation of adjacent polygons using GIS. Accordingly, this paper proposes a segment vulnerability index based on the support of diversion routes. Additionally, the model introduces supporting vulnerability, a parameter for measuring the potential of a road segment becoming a supporting diversion route when its surrounding segments are disrupted. By adopting the Malaysian Peninsular road network as a case study, the developed index can assist transportation agencies in planning and maintaining road assets while prioritizing vulnerable road segments relative to the entire road network. Full article
(This article belongs to the Special Issue Critical Infrastructure Safety, Resilience and Sustainability)
Show Figures

Figure 1

Back to TopTop