Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = polyelectrolyte microcapsules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6483 KiB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Viewed by 228
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 2920 KiB  
Article
Core-Dependent Desorption Behavior of Polyelectrolyte Microcapsules in NaCl and Na2SO4 Solutions
by Alexey V. Dubrovskii, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(12), 1706; https://doi.org/10.3390/polym17121706 - 19 Jun 2025
Viewed by 375
Abstract
Polyelectrolyte microcapsules (PMCs) have a wide range of applications in fields such as medicine, pharmacology, diagnostics, etc., and can be used as targeted drug delivery vehicles, diagnostic systems and smart materials. However, the existing research indicates that the type of core can influence [...] Read more.
Polyelectrolyte microcapsules (PMCs) have a wide range of applications in fields such as medicine, pharmacology, diagnostics, etc., and can be used as targeted drug delivery vehicles, diagnostic systems and smart materials. However, the existing research indicates that the type of core can influence the properties of the PMC shell. Consequently, we hypothesized that the type of core used for the formation of the PMC may also affect the desorption of the shell’s polyelectrolytes. In this study, the desorption of polyelectrolytes of PMCs, formed on polystyrene cores (PMCPs) and MnCO3 (PMCMn) and CaCO3 cores (PMCCa), incubated in either NaCl or Na2SO4 solution, was investigated. It was demonstrated that the low ionic strength of the solution (up to 200 mM NaCl) has a negligible effect on the desorption of PMCCa. However, in the case of PMCPs and PMCMn, an increase in desorption was observed at 100 and 200 mM NaCl. Increasing the ionic strength to 1000 mM and 2000 mM resulted in a gradual increase in the desorption of the polyelectrolytes PMCCa and PMCMn, while for PMCPs, the maximum desorption was already observed at 1000 mM. Additionally, an increase in desorption was detected upon incubation in various concentrations of sodium sulfate (5–50 mM), although the desorption did not differ significantly across all types of PMCs. Nevertheless, for PMCMn, the maximum desorption was observed at a sodium sulfate concentration of 50 mM, whereas for other types of capsules, the maximum desorption occurred at a concentration of 100 mM. These results support the hypothesis that the type of core used in the formation of PMCs influences the desorption of the shell polyelectrolyte. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 3102 KiB  
Article
Encapsulation of β-Galactosidase into Polyallylamine/Polystyrene Sulphonate Polyelectrolyte Microcapsules
by Yuri S. Chebykin, Egor V. Musin, Aleksandr L. Kim and Sergey A. Tikhonenko
Int. J. Mol. Sci. 2024, 25(20), 10978; https://doi.org/10.3390/ijms252010978 - 12 Oct 2024
Cited by 1 | Viewed by 1092
Abstract
More than half of the global population is unable to consume dairy products due to lactose intolerance (hypolactasia). Current enzyme replacement therapy methods are insufficiently effective as a therapeutic approach to treating lactose intolerance. The encapsulation of β-galactosidase in polyelectrolyte microcapsules by using [...] Read more.
More than half of the global population is unable to consume dairy products due to lactose intolerance (hypolactasia). Current enzyme replacement therapy methods are insufficiently effective as a therapeutic approach to treating lactose intolerance. The encapsulation of β-galactosidase in polyelectrolyte microcapsules by using the layer-by-layer method could be a possible solution to this problem. In this study, adsorption and co-precipitation methods were employed for encapsulating β-galactosidase in polyelectrolyte microcapsules composed of (polyallylamine /polystyrene sulphonate)₃. As a result, the co-precipitation method was chosen for β-galactosidase encapsulation. The adsorption method permits to encapsulate six times less enzyme compared with the co-precipitation method; the β-galactosidase encapsulated via the co-precipitation method released no more than 20% of the initially encapsulated enzyme in pH 2 or 1 M NaCl solutions. In contrast, when using the sorption method, about 100% of the initially encapsulated enzyme was released from the microcapsules under the conditions described above. The co-precipitation method effectively prevents the complete loss of enzyme activity after 2 h of incubation in a solution with pH 2 while also alleviating the adverse effects of ionic strength. Consequently, the encapsulated form of β-galactosidase shows promise as a potential therapeutic agent for enzyme replacement therapy in the treatment of hypolactasia. Full article
(This article belongs to the Special Issue Nano & Micro Materials in Healthcare 3.0)
Show Figures

Figure 1

28 pages, 12309 KiB  
Article
Study on Preparation and Performance of Acid pH-Responsive Intelligent Self-Healing Coating
by Jianguo Liu, Feiyu Chen, Qiaosheng Zhang, Xiao Xing and Gan Cui
Polymers 2024, 16(17), 2473; https://doi.org/10.3390/polym16172473 - 30 Aug 2024
Cited by 3 | Viewed by 1282
Abstract
In this paper, microcapsules with acidic pH stimulus responsiveness were prepared through a one-step in situ polymerization method and a layer-by-layer assembly method. The effects of factors such as chitosan (CS) concentration, polymerization time, polymerization process temperature, and the number of polymerization layers [...] Read more.
In this paper, microcapsules with acidic pH stimulus responsiveness were prepared through a one-step in situ polymerization method and a layer-by-layer assembly method. The effects of factors such as chitosan (CS) concentration, polymerization time, polymerization process temperature, and the number of polymerization layers on the performance of microcapsules were explored, and microcapsules with optimal performance were prepared and added to the epoxy coating. The morphology and structure of the microcapsules were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and zeta potential testing. The thermal stability and sustained release properties of the microcapsules were studied through thermogravimetric analysis and sustained release curve testing. Through scratch experiments, immersion experiments, salt spray experiments, and electrochemical impedance spectroscopy tests, the impact of the added amount of microcapsules on the self-healing performance and anti-corrosion performance of the coating in complex environments was explored. The results show that the optimal preparation process of acidic pH-responsive microcapsules requires that the concentration of chitosan is 2 mg/mL, the polymerization time of the polyelectrolyte layer is 8 h, the heating temperature during the polymerization process is 75 °C, and the number of polyelectrolyte layers is three. The prepared acidic pH-responsive microcapsules have good morphology, pH sensitivity, and thermal stability. The average particle size is approximately 203 μm, the drug loading rate reaches 59.74%, and the encapsulation rate reaches 63.99%. The optimal added amount of the acidic pH-responsive microcapsule coating is 15 wt%. The coating has a dual-trigger mechanism underlying it stimulus response capability and has an obvious stimulus response to acidic pH. It can inhibit corrosion in non-scratch areas, and its anti-corrosion ability is significantly stronger than that of epoxy coatings and ordinary self-healing coatings. The coating has a stronger repair effect and anti-corrosion ability when the environmental pH becomes acidic. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

11 pages, 4148 KiB  
Article
The Buffer Capacity of Polyelectrolyte Microcapsules Depends on the Type of Template
by Alexey V. Dubrovskii, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2024, 16(16), 2261; https://doi.org/10.3390/polym16162261 - 9 Aug 2024
Cited by 1 | Viewed by 1354
Abstract
One of the key physicochemical parameters of polyelectrolyte microcapsules (PMCs) is their buffer capacity (BC). The BC of the microcapsules allows for an assessment of the change in protonation state across the entire polyelectrolyte system, which directly impacts the buffer barrier of PMCs, [...] Read more.
One of the key physicochemical parameters of polyelectrolyte microcapsules (PMCs) is their buffer capacity (BC). The BC of the microcapsules allows for an assessment of the change in protonation state across the entire polyelectrolyte system, which directly impacts the buffer barrier of PMCs, as well as the stability and physical properties of their shell. However, the buffer capacity of PMCs and their behavior under changes in ionic strength and temperature can differ depending on the type of core used to form the microcapsules. As part of this study, we revealed the buffer capacity (BC) of polyelectrolyte microcapsules formed on polystyrene cores (PMCPs) and studied the influence of ionic strength and environmental temperature on the BC of these capsules. We found that the buffer capacity of PMCPs differs from the BC of water at a pH above 8; the addition of sodium chloride leads to an increase in buffer capacity in alkaline conditions, and conversely, thermal treatment leads to its decrease at a pH of 9. The results obtained are different from the BC of polyelectrolyte microcapsules formed on CaCO3 cores, which suggests a difference in the physicochemical properties of these types of capsules. The buffer capacity of polyelectrolyte microcapsules depends on the type of template used. Full article
(This article belongs to the Special Issue Advances in Polyelectrolytes and Polyelectrolyte Complexes)
Show Figures

Figure 1

15 pages, 4102 KiB  
Article
Cytotoxic Effects of Doxorubicin on Cancer Cells and Macrophages Depend Differently on the Microcarrier Structure
by Daria Kalenichenko, Irina Kriukova, Alexander Karaulov, Igor Nabiev and Alyona Sukhanova
Pharmaceutics 2024, 16(6), 785; https://doi.org/10.3390/pharmaceutics16060785 - 9 Jun 2024
Cited by 3 | Viewed by 2681
Abstract
Microparticles are versatile carriers for controlled drug delivery in personalized, targeted therapy of various diseases, including cancer. The tumor microenvironment contains different infiltrating cells, including immune cells, which can affect the efficacy of antitumor drugs. Here, prototype microparticle-based systems for the delivery of [...] Read more.
Microparticles are versatile carriers for controlled drug delivery in personalized, targeted therapy of various diseases, including cancer. The tumor microenvironment contains different infiltrating cells, including immune cells, which can affect the efficacy of antitumor drugs. Here, prototype microparticle-based systems for the delivery of the antitumor drug doxorubicin (DOX) were developed, and their cytotoxic effects on human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells were compared in vitro. DOX-containing calcium carbonate microparticles with or without a protective polyelectrolyte shell and polyelectrolyte microcapsules of about 2.4–2.5 μm in size were obtained through coprecipitation and spontaneous loading. All the microstructures exhibited a prolonged release of DOX. An estimation of the cytotoxicity of the DOX-containing microstructures showed that the encapsulation of DOX decreased its toxicity to macrophages and delayed the cytotoxic effect against tumor cells. The DOX-containing calcium carbonate microparticles with a protective polyelectrolyte shell were more toxic to the cancer cells than DOX-containing polyelectrolyte microcapsules, whereas, for the macrophages, the microcapsules were most toxic. It is concluded that DOX-containing core/shell microparticles with an eight-layer polyelectrolyte shell are optimal drug microcarriers due to their low toxicity to immune cells, even upon prolonged incubation, and strong delayed cytotoxicity against tumor cells. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies)
Show Figures

Figure 1

19 pages, 947 KiB  
Review
Characterization of Polyallylamine/Polystyrene Sulfonate Polyelectrolyte Microcapsules Formed on Solid Cores: Morphology
by Aleksandr L. Kim, Egor V. Musin, Yuri S. Chebykin and Sergey A. Tikhonenko
Polymers 2024, 16(11), 1521; https://doi.org/10.3390/polym16111521 - 28 May 2024
Cited by 5 | Viewed by 1463
Abstract
Polyelectrolyte microcapsules (PMC) based on polyallylamine and polystyrene sulfonate are utilized in various fields of human activity, including medicine, textiles, and the food industry, among others. However, characteristics such as microcapsule size, shell thickness, and pore size are not sufficiently studied and systematized, [...] Read more.
Polyelectrolyte microcapsules (PMC) based on polyallylamine and polystyrene sulfonate are utilized in various fields of human activity, including medicine, textiles, and the food industry, among others. However, characteristics such as microcapsule size, shell thickness, and pore size are not sufficiently studied and systematized, even though they determine the possibility of using microcapsules in applied tasks. The aim of this review is to identify general patterns and gaps in the study of the morphology of polyelectrolyte microcapsules obtained by the alternate adsorption of polystyrene sulfonate and polyallylamine on different solid cores. First and foremost, it was found that the morphological change in polyelectrolyte microcapsules formed on different cores exhibits a significant difference in response to varying stimuli. Factors such as ionic strength, the acidity of the medium, and temperature have different effects on the size of the microcapsules, the thickness of their shells, and the number and size of their pores. At present, the morphology of the microcapsules formed on the melamine formaldehyde core has been most studied, while the morphology of microcapsules formed on other types of cores is scarcely studied. In addition, modern methods of nanoscale system analysis will allow for an objective assessment of PMC characteristics and provide a fresh perspective on the subject of research. Full article
(This article belongs to the Special Issue Advances in Polyelectrolytes and Polyelectrolyte Complexes)
Show Figures

Figure 1

12 pages, 3104 KiB  
Article
Polyelectrolyte Microcapsules: An Extended Release System for the Antiarrhythmic Complex of Allapinin with Glycyrrhizic Acid Salt
by Shavkat I. Salikhov, Egor V. Musin, Aleksandr L. Kim, Yulia I. Oshchepkova and Sergey A. Tikhonenko
Int. J. Mol. Sci. 2024, 25(5), 2652; https://doi.org/10.3390/ijms25052652 - 24 Feb 2024
Cited by 2 | Viewed by 1413
Abstract
Allapinin has antiarrhythmic activity and can be used to prevent and treat various supraventricular and ventricular arrhythmias. Nevertheless, it is highly toxic and has a number of side effects associated with non-specific accumulation in various tissues. The complex of this substance with the [...] Read more.
Allapinin has antiarrhythmic activity and can be used to prevent and treat various supraventricular and ventricular arrhythmias. Nevertheless, it is highly toxic and has a number of side effects associated with non-specific accumulation in various tissues. The complex of this substance with the monoammonium salt of glycyrrhizic acid (Al:MASGA) has less toxicity and improved antiarrhythmic activity. However, the encapsulation of Al:MASGA in polyelectrolyte microcapsules (PMC) for prolonged release will reduce the residual adverse effects of this drug. In this work, the possibility of encapsulating the allapinin–MASGA complex in polyelectrolyte microcapsules based on polyallylamine and polystyrene sulfonate was investigated. The encapsulation methods of the allapinin–MASGA in polyelectrolyte microcapsules by adsorption and coprecipitation were compared. It was found that the coprecipitation method did not result in the encapsulation of Al:MASGA. The sorption method facilitated the encapsulation of up to 80% of the original substance content in solution in PMC. The release of the encapsulated substance was further investigated, and it was shown that the release of the encapsulated Al:MASGA was independent of the substance content in the capsules, but at pH 5, a two-fold decrease in the rate of drug release was observed. Full article
Show Figures

Figure 1

13 pages, 2439 KiB  
Article
Hybrid Polyelectrolyte Capsules Loaded with Gadolinium-Doped Cerium Oxide Nanoparticles as a Biocompatible MRI Agent for Theranostic Applications
by Danil D. Kolmanovich, Nikita N. Chukavin, Irina V. Savintseva, Elena A. Mysina, Nelli R. Popova, Alexander E. Baranchikov, Madina M. Sozarukova, Vladimir K. Ivanov and Anton L. Popov
Polymers 2023, 15(18), 3840; https://doi.org/10.3390/polym15183840 - 21 Sep 2023
Cited by 3 | Viewed by 1967
Abstract
Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their unique advantages and capability in drug delivery applications. These ordered micro/nanostructures are also promising candidates as imaging contrast agents for diagnostic and theranostic applications. Magnetic resonance imaging (MRI), one of the most powerful clinical imaging [...] Read more.
Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their unique advantages and capability in drug delivery applications. These ordered micro/nanostructures are also promising candidates as imaging contrast agents for diagnostic and theranostic applications. Magnetic resonance imaging (MRI), one of the most powerful clinical imaging modalities, is moving forward to the molecular imaging field and requires advanced imaging probes. This paper reports on a new design of MRI-visible LbL capsules, loaded with redox-active gadolinium-doped cerium oxide nanoparticles (CeGdO2−x NPs). CeGdO2−x NPs possess an ultrasmall size, high colloidal stability, and pronounced antioxidant properties. A comprehensive analysis of LbL capsules by TEM, SEM, LCSM, and EDX techniques was carried out. The research demonstrated a high level of biocompatibility and cellular uptake efficiency of CeGdO2−x-loaded capsules by cancer (human osteosarcoma and adenocarcinoma) cells and normal (human mesenchymal stem) cells. The LbL-based delivery platform can also be used for other imaging modalities and theranostic applications. Full article
(This article belongs to the Special Issue Biopolymer Composites for Biomedicine Applications)
Show Figures

Figure 1

18 pages, 5532 KiB  
Article
Labeling and Tracking of Individual Human Mesenchymal Stromal Cells Using Photoconvertible Fluorescent Microcapsules
by Olga A. Sindeeva, Polina A. Demina, Zhanna V. Kozyreva, Albert R. Muslimov, Olga I. Gusliakova, Valeriia O. Laushkina, Ekaterina A. Mordovina, Daria Tsyupka, Olga S. Epifanovskaya, Anastasiia Yu. Sapach, Irina Yu. Goryacheva and Gleb B. Sukhorukov
Int. J. Mol. Sci. 2023, 24(17), 13665; https://doi.org/10.3390/ijms241713665 - 4 Sep 2023
Cited by 9 | Viewed by 2058
Abstract
The behavior and migration of human mesenchymal stromal cells (hMSCs) are focal points of research in the biomedical field. One of the major aspects is potential therapy using hMCS, but at present, the safety of their use is still controversial owing to limited [...] Read more.
The behavior and migration of human mesenchymal stromal cells (hMSCs) are focal points of research in the biomedical field. One of the major aspects is potential therapy using hMCS, but at present, the safety of their use is still controversial owing to limited data on changes that occur with hMSCs in the long term. Fluorescent photoconvertible proteins are intensively used today as “gold standard” to mark the individual cells and study single-cell interactions, migration processes, and the formation of pure lines. A crucial disadvantage of this method is the need for genetic modification of the primary culture, which casts doubt on the possibility of exploring the resulting clones in personalized medicine. Here we present a new approach for labeling and tracking hMSCs without genetic modification based on the application of cell-internalizable photoconvertible polyelectrolyte microcapsules (size: 2.6 ± 0.5 μm). These capsules were loaded with rhodamine B, and after thermal treatment, exhibited fluorescent photoconversion properties. Photoconvertible capsules demonstrated low cytotoxicity, did not affect the immunophenotype of the hMSCs, and maintained a high level of fluorescent signal for at least seven days. The developed approach was tested for cell tracking for four days and made it possible to trace the destiny of daughter cells without the need for additional labeling. Full article
Show Figures

Figure 1

12 pages, 3524 KiB  
Article
Behaviour of FITC-Labeled Polyallylamine in Polyelectrolyte Microcapsules
by Alexey V. Dubrovskii, Alexey V. Berezhnov, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2023, 15(16), 3330; https://doi.org/10.3390/polym15163330 - 8 Aug 2023
Cited by 3 | Viewed by 1654
Abstract
There are many studies devoted to the application of polyelectrolyte microcapsules (PMC) in various fields; however, there are significantly fewer studies devoted to the study of the polyelectrolyte microcapsules themselves. The study examined the mutual arrangement of the polyelectrolytes in 13-layered PMC capsules [...] Read more.
There are many studies devoted to the application of polyelectrolyte microcapsules (PMC) in various fields; however, there are significantly fewer studies devoted to the study of the polyelectrolyte microcapsules themselves. The study examined the mutual arrangement of the polyelectrolytes in 13-layered PMC capsules composed of (PAH/PSS)6PAH. The research showed that different layers of the polyelectrolyte microcapsules dissociate equally, as in the case of 13-layered PMC capsules composed of (PAH/PSS)6PAH with a well-defined shell, and in the case of 7-layered PMC capsules composed of (PAH/PSS)3PAH, where the shell is absent. The study showed that polyallylamine layers labeled with FITC migrate to the periphery of the microcapsule regardless of the number of layers. This is due to an increase in osmotic pressure caused by the rapid flow of ions from the interior of the microcapsule into the surrounding solution. In addition, FITC-polyallylamine has a lower charge density and less interaction with polystyrene sulfonate in the structure of the microcapsule. Meanwhile, the hydrophilicity of FITC-polyallylamine does not change or decreases slightly. The results suggest that this effect promotes the migration of labeled polyallylamine to a more hydrophilic region of the microcapsule, towards its periphery. Full article
(This article belongs to the Special Issue Advances in Polyelectrolytes)
Show Figures

Figure 1

15 pages, 14891 KiB  
Article
Tissue Reaction to Low-Density Polyacrylamide Gel as a Carrier for Microimplants in the Adipose Fin of Rainbow Trout
by Ekaterina Borvinskaya, Svetlana Matrosova, Irina Sukhovskaya, Polina Drozdova, Evgeniy Titov, Inna Anikienko, Yulia Lubyaga, Anton Gurkov and Maxim Timofeyev
Gels 2023, 9(8), 629; https://doi.org/10.3390/gels9080629 - 5 Aug 2023
Cited by 2 | Viewed by 1976
Abstract
The implantation of optical sensors is a promising method for monitoring physiological parameters of organisms in vivo. For this, suitable hydrogels are required that can provide a biocompatible interface with the organism’s tissues. Amorphous hydrogel is advantageous for administration in animal organs due [...] Read more.
The implantation of optical sensors is a promising method for monitoring physiological parameters of organisms in vivo. For this, suitable hydrogels are required that can provide a biocompatible interface with the organism’s tissues. Amorphous hydrogel is advantageous for administration in animal organs due to its ease of injection compared to resilient analogs. In this study, we investigated the applicability of a semi-liquid 2.5% polyacrylamide hydrogel (PAAH) as a scaffold for fluorescent polyelectrolyte microcapsules (PMs) in rainbow trout. The hydrogel was injected subcutaneously into the adipose fin, which is a small, highly translucent fold of skin in salmonids that is convenient for implanting optical sensors. Using histological methods, we compared tissue organization and in vivo stability of the applied hydrogel at the injection site after administration of uncoated PMs or PMs coated with 2.5% PAAH (PMs-PAAH) for a period of 3 to 14 days. Our results showed that the introduction of PMs into the gel did not have a masking effect, as they were recognized, engulfed, and carried away by phagocytes from the injection site. However, both PMs and PMs-PAAH were found to provoke chronic inflammation at the injection site, although according to cytokine expression in the fish spleen, the irritating effect was local and did not affect the systemic immunity of the fish. Therefore, our study suggests low applicability of 2.5% polyacrylamide as a scaffold for injectable sensors within a timeframe of days. Full article
(This article belongs to the Special Issue Hydrogel Surface/Coating for Smart Drug Delivery and Medical Devices)
Show Figures

Figure 1

20 pages, 8863 KiB  
Article
Long-Term Culture Performance of a Polyelectrolyte Complex Microcapsule Platform for Hyaline Cartilage Repair
by Ehinor P. Arhebamen, Maria T. Teodoro, Amelia B. Blonka and Howard W. T. Matthew
Bioengineering 2023, 10(4), 467; https://doi.org/10.3390/bioengineering10040467 - 12 Apr 2023
Cited by 2 | Viewed by 2388
Abstract
Articular cartilage (AC) tissue repair and regeneration remains an ongoing challenge. One component of the challenge is the limited ability to scale an engineered cartilage graft to clinically relevant sizes while maintaining uniform properties. In this paper, we report on the evaluation of [...] Read more.
Articular cartilage (AC) tissue repair and regeneration remains an ongoing challenge. One component of the challenge is the limited ability to scale an engineered cartilage graft to clinically relevant sizes while maintaining uniform properties. In this paper, we report on the evaluation of our polyelectrolyte complex microcapsule (PECM) platform technology as a technique for generating cartilage-like spherical modules. Bone marrow-derived mesenchymal stem cells (bMSCs) or primary articular chondrocytes were encapsulated within PECMs composed of methacrylated hyaluronan, collagen I, and chitosan. The formation of cartilage-like tissue in the PECMs over a 90-day culture was characterized. The results showed that chondrocytes exhibited superior growth and matrix deposition compared to either chondrogenically-induced bMSCs or a mixed PECM culture containing both chondrocytes and bMSCs. The chondrocyte-generated matrix filled the PECM and produced substantial increases in capsule compressive strength. The PECM system thus appears to support intracapsular cartilage tissue formation and the capsule approach promotes efficient culture and handling of these micro tissues. Since previous studies have proven the feasibility of fusing such capsules into large tissue constructs, the results suggest that encapsulating primary chondrocytes in PECM modules may be a viable route toward achieving a functional articular cartilage graft. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Figure 1

12 pages, 2362 KiB  
Article
Determination of Phenol with Peroxidase Immobilized on CaCO3
by Aleksandr L. Kim, Alexey V. Dubrovskii, Egor V. Musin and Sergey A. Tikhonenko
Int. J. Mol. Sci. 2023, 24(7), 6766; https://doi.org/10.3390/ijms24076766 - 5 Apr 2023
Cited by 5 | Viewed by 2385
Abstract
Phenols are widely used in industries despite their toxicity, which requires governments to limit their concentration in water to 5 mg/L before discharge to the city sewer. Thus, it is essential to develop a rapid, simple, and low-cost detection method for phenol. This [...] Read more.
Phenols are widely used in industries despite their toxicity, which requires governments to limit their concentration in water to 5 mg/L before discharge to the city sewer. Thus, it is essential to develop a rapid, simple, and low-cost detection method for phenol. This study explored two pathways of peroxidase immobilization to develop a phenol detection system: peroxidase encapsulation into polyelectrolyte microcapsules and peroxidase captured by CaCO3. The encapsulation of peroxidase decreased enzyme activity by 96%; thus, this method cannot be used for detection systems. The capturing process of peroxidase by CaCO3 microspherulites did not affect the maximum reaction rate and the Michaelis constant of peroxidase. The native peroxidase—Vmax = 109 µM/min, Km = 994 µM; CaCO3–peroxidase—Vmax = 93.5 µM/min, Km = 956 µM. Ultimately, a reusable phenol detection system based on CaCO3 microparticles with immobilized peroxidase was developed, capable of detecting phenol in the range of 700 ng/mL to 14 µg/mL, with an error not exceeding 5%, and having a relatively low cost and production time. The efficiency of the system was confirmed by determining the content of phenol in a paintwork product. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

21 pages, 7475 KiB  
Article
Rapid, Highly-Efficient and Selective Removal of Anionic and Cationic Dyes from Wastewater Using Hollow Polyelectrolyte Microcapsules
by Zhiqi Zhao, Hongbing Zhou, Xu Han, Lun Han, Zhenzhen Xu and Peng Wang
Molecules 2023, 28(7), 3010; https://doi.org/10.3390/molecules28073010 - 28 Mar 2023
Cited by 4 | Viewed by 2077
Abstract
Herein, poly (allylamine hydrochloride) (PAH)/ poly (styrene sulfonic acid) sodium salt (PSS) microcapsules of (PAH/PSS)2PAH (P2P MCs) and (PAH/PSS)2 (P2 MCs) were obtained by a layer-by-layer method. The P2 MCs show high adsorption capacity for Rhodamine B (642.26 mg/g) and [...] Read more.
Herein, poly (allylamine hydrochloride) (PAH)/ poly (styrene sulfonic acid) sodium salt (PSS) microcapsules of (PAH/PSS)2PAH (P2P MCs) and (PAH/PSS)2 (P2 MCs) were obtained by a layer-by-layer method. The P2 MCs show high adsorption capacity for Rhodamine B (642.26 mg/g) and methylene blue (909.25 mg/g), with an extremely low equilibrium adsorption time (~20 min). The P2P MCs exhibited high adsorption capacities of reactive orange K-G (ROKG) and direct yellow 5G (DY5G) which were 404.79 and 451.56 mg/g. Adsorption processes of all dyes onto microcapsules were best described by the Langmuir isotherm model and a pseudo-second-order kinetic model. In addition, the P2P MCs loaded with reactive dyes (P2P–ROKG), could further adsorb rhodamine B (RhB) dye, and P2 MCs that had adsorbed cationic MB dyes could also be used for secondary adsorption treatment of direct dye waste-water, respectively. The present work confirmed that P2P and P2 MCs were expected to become an excellent adsorbent in the water treatment industry. Full article
Show Figures

Figure 1

Back to TopTop