Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = polarization bremsstrahlung

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2871 KB  
Communication
Energetic Electron Precipitation via Satellite and Balloon Observations: Their Role in Atmospheric Ionization
by Irina Mironova, Galina Bazilevskaya, Vladimir Makhmutov, Andrey Mironov and Nikita Bobrov
Remote Sens. 2023, 15(13), 3291; https://doi.org/10.3390/rs15133291 - 27 Jun 2023
Cited by 1 | Viewed by 1722
Abstract
Information about the energetic electron precipitation (EEP) from the radiation belt into the atmosphere is important for assessing the ozone variability and dynamics of the middle atmosphere during magnetospheric and geomagnetic disturbances. The accurate values of energetic electron fluxes depending on their energy [...] Read more.
Information about the energetic electron precipitation (EEP) from the radiation belt into the atmosphere is important for assessing the ozone variability and dynamics of the middle atmosphere during magnetospheric and geomagnetic disturbances. The accurate values of energetic electron fluxes depending on their energy range are one of the most important problems for calculating atmospheric ionization rates, which, in turn, are taken into account for estimating ozone depletion in chemistry–climate models. Despite the importance of these processes for the high latitudes of middle atmosphere, precipitation of energetic electrons is still insufficiently studied. In order to better understand EEP and related processes in the atmosphere, it is important to have many realistic observations of EEP in order to correctly characterize their spectra. Invading the atmosphere, precipitating energetic electrons, in the range from tens of keV to relativistic energies of more than 1 MeV, generate bremsstrahlung, which penetrates into the stratosphere and is recorded by detectors on balloons. However, these observations can be made only when the balloon is at stratospheric heights. Near-Earth satellites, such as the polar-orbiting operational environmental satellites (POES), are constantly registering precipitating electrons in the loss cone, but are moving too fast in space. Based on a comparison of the results of EEP measurements on balloons and onboard POES satellites in 2003, we propose a criterion that makes it possible to constantly monitor EEP ionization at stratospheric heights using observations on POES satellites. Full article
Show Figures

Figure 1

42 pages, 1901 KB  
Article
Electron and Positron Scattering from Precious Metal Atoms in the eV to MeV Energy Range
by Doris H. Jakubassa-Amundsen, Abul Kalam Fazlul Haque, Md. Monirul Haque, Md. Masum Billah, Arun Kumar Basak, Bidhan Chandra Saha and Md. Alfaz Uddin
Atoms 2022, 10(3), 82; https://doi.org/10.3390/atoms10030082 - 11 Aug 2022
Cited by 7 | Viewed by 2852
Abstract
This article reports on the scattering of unpolarized and spin polarized electrons and positrons from 28Ni58,29Cu63,46Pd108, and 78Pt196, covering light to heavy precious metal targets. To cover the wide [...] Read more.
This article reports on the scattering of unpolarized and spin polarized electrons and positrons from 28Ni58,29Cu63,46Pd108, and 78Pt196, covering light to heavy precious metal targets. To cover the wide energy domain of 1 eV Ei300 MeV, Dirac partial-wave phase-shift analysis is employed, using a complex optical potential for Ei1 MeV and a potential derived from the nuclear charge distribution for Ei>1 MeV. Results are presented for the differential and integral cross-sections, including elastic, momentum transfer, and viscosity cross-sections. In addition, the inelastic, ionization, and total (elastic + inelastic) cross-section results are provided, together with mean free path estimates. Moreover, the polarization correlations S,T, and U, which are sensitive to phase-dependent interference effects, are considered. Scaling laws with respect to collision energy, scattering angle, and nuclear charge number at ultrahigh energies are derived using the equivalence between elastic scattering and tip bremsstrahlung emission. In addition, a systematic analysis of the critical minima in the differential cross-section and the corresponding total polarization points in the Sherman function S is carried out. A comparison with existing experimental data and other theoretical findings is made in order to test the merit of the present approach in explaining details of the measurements. Full article
Show Figures

Figure 1

10 pages, 14012 KB  
Article
Research on Electromagnetic Radiation Mechanism during Detonation of Energetic Material
by Yuanbo Cui, Deren Kong, Jian Jiang and Shang Gao
Sensors 2022, 22(7), 2765; https://doi.org/10.3390/s22072765 - 3 Apr 2022
Cited by 10 | Viewed by 3338
Abstract
In the process of deflagration of energetic materials, strong electromagnetic radiation is generated, which causes the surrounding electronic equipment to fail to work normally. To solve this problem, it is necessary to clarify the mechanism of electromagnetic radiation generated by energetic materials. The [...] Read more.
In the process of deflagration of energetic materials, strong electromagnetic radiation is generated, which causes the surrounding electronic equipment to fail to work normally. To solve this problem, it is necessary to clarify the mechanism of electromagnetic radiation generated by energetic materials. The mechanism of plasma changed by the deflagration of energetic materials is an important topic in the aerospace and geophysics fields. The academic community holds two main viewpoints on the mechanism of electromagnetic radiation generated by energetic materials: one is that the solid material is squeezed and deformed during the deflagration of energetic materials, and the charges of different polarities rub in space to form effective electric dipoles, which eventually generate electromagnetic radiation. Another view is that the deflagration of energetic materials causes the temperature of the medium to rise sharply, and bremsstrahlung is formed during the compression and diffusion of the high-temperature wave front, resulting in the generation of electromagnetic radiation. This paper, based on theoretical analysis and experimental data, holds the view that electromagnetic radiation is generated by the high-temperature thermal effect. It studies the relationship between temperature and electromagnetic radiation and obtains quantitative analysis conclusions. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

17 pages, 396 KB  
Article
Scalar Radiation in Interaction of Cosmic String with Point Charge
by Pavel Spirin
Universe 2021, 7(7), 206; https://doi.org/10.3390/universe7070206 - 23 Jun 2021
Cited by 4 | Viewed by 1831
Abstract
We consider the scalar bremsstrahlung of the spinless relativistic particle, which interacts with infinitely thin cosmic string by linearized gravity. With the iterational scheme, based on the Perturbaion Theory with respect to the Newtonian constant, we compute the radiation amplitude and the emitted [...] Read more.
We consider the scalar bremsstrahlung of the spinless relativistic particle, which interacts with infinitely thin cosmic string by linearized gravity. With the iterational scheme, based on the Perturbaion Theory with respect to the Newtonian constant, we compute the radiation amplitude and the emitted energy due to collision. The general phenomenon of mutual cancellation of the leading terms on the local and non-local amplitude, known in the ultrarelativistic regime for several types of collision, also takes place here. Remarkably, this cancellation (destructive interference) is complete, and takes place for any particle’s velocity. We compute the spectral and angular distributions of the emitted waves. Particular attention is paid to the ultrarelativistic case. Due to the radiation emission, a string may lose its energy and decrease the tension; it may affect all field effects, including the vacuum polarization and the Casimir effect, in terms of physical problems with the real cosmic strings. Full article
(This article belongs to the Special Issue The Casimir Effect: From a Laboratory Table to the Universe)
Show Figures

Figure 1

14 pages, 1863 KB  
Article
Generalized Bessel Functions and Their Use in Bremsstrahlung and Multi-Photon Processes
by Giuseppe Dattoli, Emanuele Di Palma, Silvia Licciardi and Elio Sabia
Symmetry 2021, 13(2), 159; https://doi.org/10.3390/sym13020159 - 20 Jan 2021
Cited by 4 | Viewed by 3210
Abstract
The theory of Generalized Bessel Functions is reviewed and their application to various problems in the study of electro-magnetic processes is presented. We consider the cases of emission of bremsstrahlung radiation by ultra-relativistic electrons in linearly polarized undulators, including also exotic configurations, aimed [...] Read more.
The theory of Generalized Bessel Functions is reviewed and their application to various problems in the study of electro-magnetic processes is presented. We consider the cases of emission of bremsstrahlung radiation by ultra-relativistic electrons in linearly polarized undulators, including also exotic configurations, aimed at enhancing the harmonic content of the emitted radiation. The analysis is eventually extended to the generalization of the FEL pendulum equation to treat Free Electron Laser operating with multi-harmonic undulators. The paper aims at picking out those elements supporting the usefulness of the Generalized Bessel Functions in the elaboration of the theory underlying the study of the spectral properties of the bremsstrahlung radiation emitted by relativistic charges, along with the relevant flexibility in accounting for a large variety of apparently uncorrelated phenomenolgies, like multi-photon processes, including non linear Compton scattering. Full article
(This article belongs to the Special Issue Theory and Applications of Special Functions in Mathematical Physics)
Show Figures

Figure 1

15 pages, 2488 KB  
Article
Absolute Double Differential Cross Sections of Bremsstrahlung Produced from 4.0 keV Electrons Incident on Free Ar Atoms
by Suman Prajapati, Bhupendra Singh, Sunil Kumar, Bhartendu Kumar Singh, C. A. Quarles and R. Shanker
Atoms 2020, 8(4), 72; https://doi.org/10.3390/atoms8040072 - 12 Oct 2020
Cited by 1 | Viewed by 2459
Abstract
New results are reported on the measurements of absolute double differential cross sections (DDCSs) of bremsstrahlung produced from 4.0 keV electrons incident on free Ar atoms in the angular detection range of 45°–120°. A significant reduction of the thick target bremsstrahlung (TTB) of [...] Read more.
New results are reported on the measurements of absolute double differential cross sections (DDCSs) of bremsstrahlung produced from 4.0 keV electrons incident on free Ar atoms in the angular detection range of 45°–120°. A significant reduction of the thick target bremsstrahlung (TTB) of the chamber wall and of the photon transmission windows has been achieved by modifying the experimental set-up used previously; a large reduction of TTB in the present experiments is supported by the results of our model calculations for the ratio of TTB background to the normal bremsstrahlung (NB) spectrum carried out for the employed geometry of the experimental set-up. The results of photon energy distribution measured at different angles and those of angular distributions of photons of a given energy are compared with theoretical predictions of Kissel–Quarles–Pratt (KQP) theory for ordinary bremsstrahlung and with predictions of total bremsstrahlung including polarization bremsstrahlung (PBS) of the stripping approximation (SA). A satisfactory agreement observed between experiment and predictions using SA theory for absolute DDCSs of bremsstrahlung provides evidence for an appreciable contribution of polarization bremsstrahlung at the considered impact energy of electrons on one hand, while on the other hand, it exhibits a large discrepancy (about a factor of 2) in DDCSs of bremsstrahlung photons obtained by experiment and by KQP theory for photon energy distributions at all detection angles measured in these experiments. In addition, present results of the angular dependence of photons of different energies show anisotropic distributions and they are found to be in reasonable agreement with both KQP and SA theories. The satisfactory agreement between experiment and theory for angular distributions is an indication of a significant reduction of the background produced from TTB photons. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

20 pages, 5956 KB  
Review
X-Ray and Gamma-Ray Observations of the Fermi Bubbles and NPS/Loop I Structures
by Jun Kataoka, Yoshiaki Sofue, Yoshiyuki Inoue, Masahiro Akita, Shinya Nakashima and Tomonori Totani
Galaxies 2018, 6(1), 27; https://doi.org/10.3390/galaxies6010027 - 26 Feb 2018
Cited by 50 | Viewed by 9155
Abstract
The Fermi bubbles were possibly created by large injections of energy into the Galactic Center (GC), either by an active galactic nucleus (AGN) or by nuclear starburst more than ~10 Myr ago. However, the origin of the diffuse gamma-ray emission associated with Loop [...] Read more.
The Fermi bubbles were possibly created by large injections of energy into the Galactic Center (GC), either by an active galactic nucleus (AGN) or by nuclear starburst more than ~10 Myr ago. However, the origin of the diffuse gamma-ray emission associated with Loop I, a radio continuum loop spanning across 100° on the sky, is still being debated. The northern-most part of Loop I, known as the North Polar Spur (NPS), is the brightest arm and is even clearly visible in the ROSAT X-ray sky map. In this paper, we present a comprehensive review on the X-ray observations of the Fermi bubbles and their possible association with the NPS and Loop I structures. Using uniform analysis of archival Suzaku and Swift data, we show that X-ray plasma with kT~0.3 keV and low metal abundance (Z~0.2 Z) is ubiquitous in both the bubbles and Loop I and is naturally interpreted as weakly shock-heated Galactic halo gas. However, the observed asymmetry of the X-ray-emitting gas above and below the GC has still not been resolved; it cannot be fully explained by the inclination of the axis of the Fermi bubbles to the Galactic disk normal. We argue that the NPS and Loop I may be asymmetric remnants of a large explosion that occurred before the event that created the Fermi bubbles, and that the soft gamma-ray emission from Loop I may be due to either π0 decay of accelerated protons or electron bremsstrahlung. Full article
Show Figures

Figure 1

Back to TopTop