Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = pnicogen bond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2961 KiB  
Article
Involvement of Arsenic Atom of AsF3 in Five Pnicogen Bonds: Differences between X-ray Structure and Theoretical Models
by Steve Scheiner, Mariusz Michalczyk and Wiktor Zierkiewicz
Molecules 2022, 27(19), 6486; https://doi.org/10.3390/molecules27196486 - 1 Oct 2022
Cited by 3 | Viewed by 2439
Abstract
Bonding within the AsF3 crystal is analyzed via quantum chemical methods so as to identify and quantify the pnicogen bonds that are present. The structure of a finite crystal segment containing nine molecules is compared with that of a fully optimized cluster [...] Read more.
Bonding within the AsF3 crystal is analyzed via quantum chemical methods so as to identify and quantify the pnicogen bonds that are present. The structure of a finite crystal segment containing nine molecules is compared with that of a fully optimized cluster of the same size. The geometries are qualitatively different, with a much larger binding energy within the optimized nonamer. Although the total interaction energy of a central unit with the remaining peripheral molecules is comparable for the two structures, the binding of the peripherals with one another is far larger in the optimized cluster. This distinction of much stronger total binding within the optimized cluster is not limited to the nonamer but repeats itself for smaller aggregates as well. The average binding energy of the cluster rises quickly with size, asymptotically approaching a value nearly triple that of the dimer. Full article
(This article belongs to the Special Issue Covalent and Noncovalent Interactions in Crystal Chemistry)
Show Figures

Graphical abstract

31 pages, 13862 KiB  
Review
The Relevance of Experimental Charge Density Analysis in Unraveling Noncovalent Interactions in Molecular Crystals
by Sajesh P. Thomas, Amol G. Dikundwar, Sounak Sarkar, Mysore S. Pavan, Rumpa Pal, Venkatesha R. Hathwar and Tayur N. Guru Row
Molecules 2022, 27(12), 3690; https://doi.org/10.3390/molecules27123690 - 8 Jun 2022
Cited by 22 | Viewed by 3895
Abstract
The work carried out by our research group over the last couple of decades in the context of quantitative crystal engineering involves the analysis of intermolecular interactions such as carbon (tetrel) bonding, pnicogen bonding, chalcogen bonding, and halogen bonding using experimental charge density [...] Read more.
The work carried out by our research group over the last couple of decades in the context of quantitative crystal engineering involves the analysis of intermolecular interactions such as carbon (tetrel) bonding, pnicogen bonding, chalcogen bonding, and halogen bonding using experimental charge density methodology is reviewed. The focus is to extract electron density distribution in the intermolecular space and to obtain guidelines to evaluate the strength and directionality of such interactions towards the design of molecular crystals with desired properties. Following the early studies on halogen bonding interactions, several “sigma-hole” interaction types with similar electrostatic origins have been explored in recent times for their strength, origin, and structural consequences. These include interactions such as carbon (tetrel) bonding, pnicogen bonding, chalcogen bonding, and halogen bonding. Experimental X-ray charge density analysis has proved to be a powerful tool in unraveling the strength and electronic origin of such interactions, providing insights beyond the theoretical estimates from gas-phase molecular dimer calculations. In this mini-review, we outline some selected contributions from the X-ray charge density studies to the field of non-covalent interactions (NCIs) involving elements of the groups 14–17 of the periodic table. Quantitative insights into the nature of these interactions obtained from the experimental electron density distribution and subsequent topological analysis by the quantum theory of atoms in molecules (QTAIM) have been discussed. A few notable examples of weak interactions have been presented in terms of their experimental charge density features. These examples reveal not only the strength and beauty of X-ray charge density multipole modeling as an advanced structural chemistry tool but also its utility in providing experimental benchmarks for the theoretical studies of weak interactions in crystals. Full article
Show Figures

Graphical abstract

14 pages, 2522 KiB  
Article
σ-Hole Bonds and the VSEPR Model—From the Tetrahedral Structure to the Trigonal Bipyramid
by Sławomir J. Grabowski
Sci 2022, 4(2), 17; https://doi.org/10.3390/sci4020017 - 19 Apr 2022
Cited by 6 | Viewed by 3307
Abstract
Complexes linked by various interactions are analysed in this study. They are characterized by the tetrahedral configuration of the Lewis acid centre. Interactions, being a subject of this study, are classified as σ-hole bonds, such as the halogen, chalcogen, pnicogen, and tetrel bonds. [...] Read more.
Complexes linked by various interactions are analysed in this study. They are characterized by the tetrahedral configuration of the Lewis acid centre. Interactions, being a subject of this study, are classified as σ-hole bonds, such as the halogen, chalcogen, pnicogen, and tetrel bonds. In the case of strong interactions, the tetrahedral configuration of the Lewis acid centre changes into the trigonal bipyramid configuration. This change is in line with the Valence-Shell Electron-Pair Repulsion model, VSEPR, and this is supported here by the results of high-level ab initio calculations. The theoretical results concerning the geometries are supported mainly by the Natural Bond Orbital, NBO, method. Full article
(This article belongs to the Special Issue Define What Is Not Defined: In Chemistry and Beyond)
Show Figures

Figure 1

23 pages, 3713 KiB  
Review
Classification of So-Called Non-Covalent Interactions Based on VSEPR Model
by Sławomir J. Grabowski
Molecules 2021, 26(16), 4939; https://doi.org/10.3390/molecules26164939 - 15 Aug 2021
Cited by 33 | Viewed by 4234
Abstract
The variety of interactions have been analyzed in numerous studies. They are often compared with the hydrogen bond that is crucial in numerous chemical and biological processes. One can mention such interactions as the halogen bond, pnicogen bond, and others that may be [...] Read more.
The variety of interactions have been analyzed in numerous studies. They are often compared with the hydrogen bond that is crucial in numerous chemical and biological processes. One can mention such interactions as the halogen bond, pnicogen bond, and others that may be classified as σ-hole bonds. However, not only σ-holes may act as Lewis acid centers. Numerous species are characterized by the occurrence of π-holes, which also may play a role of the electron acceptor. The situation is complicated since numerous interactions, such as the pnicogen bond or the chalcogen bond, for example, may be classified as a σ-hole bond or π-hole bond; it ultimately depends on the configuration at the Lewis acid centre. The disadvantage of classifications of interactions is also connected with their names, derived from the names of groups such as halogen and tetrel bonds or from single elements such as hydrogen and carbon bonds. The chaos is aggravated by the properties of elements. For example, a hydrogen atom can act as the Lewis acid or as the Lewis base site if it is positively or negatively charged, respectively. Hence names of the corresponding interactions occur in literature, namely hydrogen bonds and hydride bonds. There are other numerous disadvantages connected with classifications and names of interactions; these are discussed in this study. Several studies show that the majority of interactions are ruled by the same mechanisms related to the electron charge shifts, and that the occurrence of numerous interactions leads to specific changes in geometries of interacting species. These changes follow the rules of the valence-shell electron-pair repulsion model (VSEPR). That is why the simple classification of interactions based on VSEPR is proposed here. This classification is still open since numerous processes and interactions not discussed in this study may be included within it. Full article
(This article belongs to the Special Issue Featured Reviews in Applied Chemistry)
Show Figures

Figure 1

21 pages, 5111 KiB  
Review
Noncovalent Bonds through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons
by Wiktor Zierkiewicz, Mariusz Michalczyk and Steve Scheiner
Molecules 2021, 26(6), 1740; https://doi.org/10.3390/molecules26061740 - 20 Mar 2021
Cited by 49 | Viewed by 6261
Abstract
Over the last years, scientific interest in noncovalent interactions based on the presence of electron-depleted regions called σ-holes or π-holes has markedly accelerated. Their high directionality and strength, comparable to hydrogen bonds, has been documented in many fields of modern chemistry. The current [...] Read more.
Over the last years, scientific interest in noncovalent interactions based on the presence of electron-depleted regions called σ-holes or π-holes has markedly accelerated. Their high directionality and strength, comparable to hydrogen bonds, has been documented in many fields of modern chemistry. The current review gathers and digests recent results concerning these bonds, with a focus on those systems where both σ and π-holes are present on the same molecule. The underlying principles guiding the bonding in both sorts of interactions are discussed, and the trends that emerge from recent work offer a guide as to how one might design systems that allow multiple noncovalent bonds to occur simultaneously, or that prefer one bond type over another. Full article
(This article belongs to the Special Issue Featured Reviews in Applied Chemistry)
Show Figures

Graphical abstract

18 pages, 5749 KiB  
Review
Hydrogen Bond and Other Lewis Acid–Lewis Base Interactions as Preliminary Stages of Chemical Reactions
by Sławomir J. Grabowski
Molecules 2020, 25(20), 4668; https://doi.org/10.3390/molecules25204668 - 13 Oct 2020
Cited by 30 | Viewed by 5557
Abstract
Various Lewis acid–Lewis base interactions are discussed as initiating chemical reactions and processes. For example, the hydrogen bond is often a preliminary stage of the proton transfer process or the tetrel and pnicogen bonds lead sometimes to the SN2 reactions. There [...] Read more.
Various Lewis acid–Lewis base interactions are discussed as initiating chemical reactions and processes. For example, the hydrogen bond is often a preliminary stage of the proton transfer process or the tetrel and pnicogen bonds lead sometimes to the SN2 reactions. There are numerous characteristics of interactions being first stages of reactions; one can observe a meaningful electron charge transfer from the Lewis base unit to the Lewis acid; such interactions possess at least partly covalent character, one can mention other features. The results of different methods and approaches that are applied in numerous studies to describe the character of interactions are presented here. These are, for example, the results of the Quantum Theory of Atoms in Molecules, of the decomposition of the energy of interaction or of the structure-correlation method. Full article
Show Figures

Figure 1

15 pages, 1120 KiB  
Article
Theoretical Studies of IR and NMR Spectral Changes Induced by Sigma-Hole Hydrogen, Halogen, Chalcogen, Pnicogen, and Tetrel Bonds in a Model Protein Environment
by Mariusz Michalczyk, Wiktor Zierkiewicz, Rafał Wysokiński and Steve Scheiner
Molecules 2019, 24(18), 3329; https://doi.org/10.3390/molecules24183329 - 12 Sep 2019
Cited by 37 | Viewed by 3529
Abstract
Various types of σ-hole bond complexes were formed with FX, HFY, H2FZ, and H3FT (X = Cl, Br, I; Y = S, Se, Te; Z = P, As, Sb; T = Si, Ge, Sn) as Lewis acid. In order [...] Read more.
Various types of σ-hole bond complexes were formed with FX, HFY, H2FZ, and H3FT (X = Cl, Br, I; Y = S, Se, Te; Z = P, As, Sb; T = Si, Ge, Sn) as Lewis acid. In order to examine their interactions with a protein, N-methylacetamide (NMA), a model of the peptide linkage was used as the base. These noncovalent bonds were compared by computational means with H-bonds formed by NMA with XH molecules (X = F, Cl, Br, I). In all cases, the A–F bond, which lies opposite the base and is responsible for the σ-hole on the A atom (A refers to the bridging atom), elongates and its stretching frequency undergoes a shift to the red with a band intensification, much as what occurs for the X–H bond in a H-bond (HB). Unlike the NMR shielding decrease seen in the bridging proton of a H-bond, the shielding of the bridging A atom is increased. The spectroscopic changes within NMA are similar for H-bonds and the other noncovalent bonds. The C=O bond of the amide is lengthened and its stretching frequency red-shifted and intensified. The amide II band shifts to higher frequency and undergoes a small band weakening. The NMR shielding of the O atom directly involved in the bond rises, whereas the C and N atoms both undergo a shielding decrease. The frequency shifts of the amide I and II bands of the base as well as the shielding changes of the three pertinent NMA atoms correlate well with the strength of the noncovalent bond. Full article
(This article belongs to the Special Issue Spectroscopic Aspects of Noncovalent Interactions)
Show Figures

Graphical abstract

12 pages, 830 KiB  
Article
Effects of Halogen, Chalcogen, Pnicogen, and Tetrel Bonds on IR and NMR Spectra
by Jia Lu and Steve Scheiner
Molecules 2019, 24(15), 2822; https://doi.org/10.3390/molecules24152822 - 2 Aug 2019
Cited by 45 | Viewed by 4400
Abstract
Complexes were formed pairing FX, FHY, FH2Z, and FH3T (X = Cl, Br, I; Y = S, Se, Te; Z = P, As, Sb; T = Si, Ge, Sn) with NH3 in order to form an A⋯N noncovalent [...] Read more.
Complexes were formed pairing FX, FHY, FH2Z, and FH3T (X = Cl, Br, I; Y = S, Se, Te; Z = P, As, Sb; T = Si, Ge, Sn) with NH3 in order to form an A⋯N noncovalent bond, where A refers to the central atom. Geometries, energetics, atomic charges, and spectroscopic characteristics of these complexes were evaluated via DFT calculations. In all cases, the A–F bond, which is located opposite the base and is responsible for the σ-hole on the A atom, elongates and its stretching frequency undergoes a shift to the red. This shift varies from 42 to 175 cm−1 and is largest for the halogen bonds, followed by chalcogen, tetrel, and then pnicogen. The shift also decreases as the central A atom is enlarged. The NMR chemical shielding of the A atom is increased while that of the F and electron donor N atom are lowered. Unlike the IR frequency shifts, it is the third-row A atoms that undergo the largest change in NMR shielding. The change in shielding of A is highly variable, ranging from negligible for FSnH3 all the way up to 1675 ppm for FBr, while those of the F atom lie in the 55–422 ppm range. Although smaller in magnitude, the changes in the N shielding are still easily detectable, between 7 and 27 ppm. Full article
(This article belongs to the Special Issue Spectroscopic Aspects of Noncovalent Interactions)
Show Figures

Graphical abstract

21 pages, 11791 KiB  
Article
What Is the Nature of Supramolecular Bonding? Comprehensive NBO/NRT Picture of Halogen and Pnicogen Bonding in RPH2···IF/FI Complexes (R = CH3, OH, CF3, CN, NO2)
by Yinchun Jiao and Frank Weinhold
Molecules 2019, 24(11), 2090; https://doi.org/10.3390/molecules24112090 - 31 May 2019
Cited by 20 | Viewed by 4468
Abstract
We employ a variety of natural bond orbital (NBO) and natural resonance theory (NRT) tools to comprehensively investigate the nature of halogen and pnicogen bonding interactions in RPH2···IF/FI binary complexes (R = CH3, OH, CF3, CN, and [...] Read more.
We employ a variety of natural bond orbital (NBO) and natural resonance theory (NRT) tools to comprehensively investigate the nature of halogen and pnicogen bonding interactions in RPH2···IF/FI binary complexes (R = CH3, OH, CF3, CN, and NO2) and the tuning effects of R-substituents. Though such interactions are commonly attributed to “sigma-hole”-type electrostatic effects, we show that they exhibit profound similarities and analogies to the resonance-type 3-center, 4-electron (3c/4e) donor-acceptor interactions of hydrogen bonding, where classical-type “electrostatics” are known to play only a secondary modulating role. The general 3c/4e resonance perspective corresponds to a continuous range of interatomic A···B bond orders (bAB), spanning both the stronger “covalent” interactions of the molecular domain (say, bAB ≥ ½) and the weaker interactions (bAB ˂ ½, often misleadingly termed “noncovalent”) that underlie supramolecular complexation phenomena. We show how a unified NBO/NRT-based description of hydrogen, halogen, pnicogen, and related bonding yields an improved predictive utility and intuitive understanding of empirical trends in binding energies, structural geometry, and other measurable properties that are expected to be manifested in all such supramolecular interaction phenomena. Full article
(This article belongs to the Special Issue σ and π Holes: A New Class of Non-Covalent Interactions)
Show Figures

Graphical abstract

12 pages, 2368 KiB  
Article
Solvent and Substituent Effects on the Phosphine + CO2 Reaction
by Ibon Alkorta, Cristina Trujillo, Goar Sánchez-Sanz and José Elguero
Inorganics 2018, 6(4), 110; https://doi.org/10.3390/inorganics6040110 - 10 Oct 2018
Cited by 25 | Viewed by 4347
Abstract
A theoretical study of the substituent and solvent effects on the reaction of phosphines with CO2 has been carried out by means of Møller-Plesset (MP2) computational level calculations and continuum polarizable method (PCM) solvent models. Three stationary points along the reaction coordinate [...] Read more.
A theoretical study of the substituent and solvent effects on the reaction of phosphines with CO2 has been carried out by means of Møller-Plesset (MP2) computational level calculations and continuum polarizable method (PCM) solvent models. Three stationary points along the reaction coordinate have been characterized, a pre-transition state (TS) assembly in which a pnicogen bond or tetrel bond is established between the phosphine and the CO2 molecule, followed by a transition state, and leading finally to the adduct in which the P–C bond has been formed. The solvent effects on the stability and geometry of the stationary points are different. Thus, the pnicogen bonded complexes are destabilized as the dielectric constant of the solvent increases while the opposite happens within the adducts with the P–C bond and the TSs trend. A combination of the substituents and solvents can be used to control the most stable minimum. Full article
(This article belongs to the Special Issue Novel Non-Covalent Interactions)
Show Figures

Graphical abstract

17 pages, 1916 KiB  
Article
Comparative Strengths of Tetrel, Pnicogen, Chalcogen, and Halogen Bonds and Contributing Factors
by Wenbo Dong, Qingzhong Li and Steve Scheiner
Molecules 2018, 23(7), 1681; https://doi.org/10.3390/molecules23071681 - 10 Jul 2018
Cited by 76 | Viewed by 7310
Abstract
Ab initio calculations are employed to assess the relative strengths of various noncovalent bonds. Tetrel, pnicogen, chalcogen, and halogen atoms are represented by third-row atoms Ge, As, Se, and Br, respectively. Each atom was placed in a series of molecular bonding situations, beginning [...] Read more.
Ab initio calculations are employed to assess the relative strengths of various noncovalent bonds. Tetrel, pnicogen, chalcogen, and halogen atoms are represented by third-row atoms Ge, As, Se, and Br, respectively. Each atom was placed in a series of molecular bonding situations, beginning with all H atoms, then progressing to methyl substitutions, and F substituents placed in various locations around the central atom. Each Lewis acid was allowed to engage in a complex with NH3 as a common nucleophile, and the strength and other aspects of the dimer were assessed. In the context of fully hydrogenated acids, the strengths of the various bonds varied in the pattern of chalcogen > halogen > pnicogen ≈ tetrel. Methyl substitution weakened all bonds, but not in a uniform manner, resulting in a greatly weakened halogen bond. Fluorosubstitution strengthened the interactions, increasing its effect as the number of F atoms rises. The effect was strongest when the F atom lay directly opposite the base, resulting in a halogen > chalcogen > pnicogen > tetrel order of bond strength. Replacing third-row atoms by their second-row counterparts weakened the bonds, but not uniformly. Tetrel bonds were weakest for the fully hydrogenated acids and surpassed pnicogen bonds when F had been added to the acid. Full article
(This article belongs to the Special Issue Tetrel Bonds)
Show Figures

Graphical abstract

5 pages, 940 KiB  
Editorial
Analysis of Hydrogen Bonds in Crystals
by Sławomir J. Grabowski
Crystals 2016, 6(5), 59; https://doi.org/10.3390/cryst6050059 - 17 May 2016
Cited by 40 | Viewed by 10013
Abstract
The determination of crystal structures provides important information on the geometry of species constituting crystals and on the symmetry relations between them. Additionally, the analysis of crystal structures is so conclusive that it allows us to understand the nature of various interactions. The [...] Read more.
The determination of crystal structures provides important information on the geometry of species constituting crystals and on the symmetry relations between them. Additionally, the analysis of crystal structures is so conclusive that it allows us to understand the nature of various interactions. The hydrogen bond interaction plays a crucial role in crystal engineering and, in general, its important role in numerous chemical, physical and bio-chemical processes was the subject of various studies. That is why numerous important findings on the nature of hydrogen bonds concern crystal structures. This special issue presents studies on hydrogen bonds in crystals, and specific compounds and specific H-bonded patterns existing in crystals are analyzed. However, the characteristics of the H-bond interactions are not only analyzed theoretically; this interaction is compared with other ones that steer the arrangement of molecules in crystals, for example halogen, tetrel or pnicogen bonds. More general findings concerning the influence of the hydrogen bond on the physicochemical properties of matter are also presented. Full article
(This article belongs to the Special Issue Analysis of Hydrogen Bonds in Crystals)
Show Figures

Figure 1

11 pages, 1502 KiB  
Article
H2XP:OH2 Complexes: Hydrogen vs. Pnicogen Bonds
by Ibon Alkorta, Janet E. Del Bene and Jose Elguero
Crystals 2016, 6(2), 19; https://doi.org/10.3390/cryst6020019 - 2 Feb 2016
Cited by 20 | Viewed by 6169
Abstract
A search of the Cambridge Structural Database (CSD) was carried out for phosphine-water and arsine-water complexes in which water is either the proton donor in hydrogen-bonded complexes, or the electron-pair donor in pnicogen-bonded complexes. The range of experimental P-O distances in the phosphine [...] Read more.
A search of the Cambridge Structural Database (CSD) was carried out for phosphine-water and arsine-water complexes in which water is either the proton donor in hydrogen-bonded complexes, or the electron-pair donor in pnicogen-bonded complexes. The range of experimental P-O distances in the phosphine complexes is consistent with the results of ab initio MP2/aug’-cc-pVTZ calculations carried out on complexes H2XP:OH2, for X = NC, F, Cl, CN, OH, CCH, H, and CH3. Only hydrogen-bonded complexes are found on the H2(CH3)P:HOH and H3P:HOH potential surfaces, while only pnicogen-bonded complexes exist on H2(NC)P:OH2, H2FP:OH2, H2(CN)P:OH2, and H2(OH)P:OH2 surfaces. Both hydrogen-bonded and pnicogen-bonded complexes are found on the H2ClP:OH2 and H2(CCH)P:OH2 surfaces, with the pnicogen-bonded complexes more stable than the corresponding hydrogen-bonded complexes. The more electronegative substituents prefer to form pnicogen-bonded complexes, while the more electropositive substituents form hydrogen-bonded complexes. The H2XP:OH2 complexes are characterized in terms of their structures, binding energies, charge-transfer energies, and spin-spin coupling constants 2hJ(O-P), 1hJ(H-P), and 1J(O-H) across hydrogen bonds, and 1pJ(P-O) across pnicogen bonds. Full article
(This article belongs to the Special Issue Analysis of Hydrogen Bonds in Crystals)
Show Figures

Figure 1

Back to TopTop