Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = platinum silicide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5970 KiB  
Article
Interface Material Modification to Enhance the Performance of a Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS Resonator by Localized Annealing Through Joule Heating
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami, Liguan Li and Jing Wang
Micromachines 2025, 16(8), 885; https://doi.org/10.3390/mi16080885 - 29 Jul 2025
Viewed by 278
Abstract
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still [...] Read more.
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

11 pages, 47404 KiB  
Article
Batch Fabrication of Wear-Resistant and Conductive Probe with PtSi Tip
by Meijie Liu, Yinfang Zhu, Junyuan Zhao, Lihao Wang, Jinling Yang and Fuhua Yang
Micromachines 2021, 12(11), 1326; https://doi.org/10.3390/mi12111326 - 28 Oct 2021
Viewed by 2174
Abstract
This paper presents a simple and reliable routine for batch fabrication of wear-resistant and conductive probe with a PtSi tip. The fabrication process is based on inductively coupled plasma (ICP) etching, metal evaporation, and annealing. Si tips with curvature radii less than 10 [...] Read more.
This paper presents a simple and reliable routine for batch fabrication of wear-resistant and conductive probe with a PtSi tip. The fabrication process is based on inductively coupled plasma (ICP) etching, metal evaporation, and annealing. Si tips with curvature radii less than 10 nm were produced with good wafer-level uniformity using isotropic etching and thermal oxygen sharpening. The surface roughness of the etched tip post was reduced by optimized isotropic etching. The dependence of the platinum silicide morphology on annealing conditions were also systematically investigated, and conductive and wear-resistant probes with PtSi tips of curvature radii less than 30 nm were batch fabricated and applied for scanning piezoelectric samples. Full article
Show Figures

Figure 1

6 pages, 1861 KiB  
Article
Reduced Operation Current of Oxygen-Doped ZrN Based Resistive Switching Memory Devices Fabricated by the Radio Frequency Sputtering Method
by Jinsu Jung, Dongjoo Bae, Sungho Kim and Hee-Dong Kim
Coatings 2021, 11(2), 197; https://doi.org/10.3390/coatings11020197 - 9 Feb 2021
Cited by 6 | Viewed by 2974
Abstract
In this work, we report the feasibility of resistive switching (RS) properties of oxygen-doped zirconium nitride (O-doped ZrN) films with platinum (Pt) and platinum silicide (PtSi) bottom electrode (BE), produced by a sputtering method. Compared to O-doped ZrN using Pt BE, when Pt/ [...] Read more.
In this work, we report the feasibility of resistive switching (RS) properties of oxygen-doped zirconium nitride (O-doped ZrN) films with platinum (Pt) and platinum silicide (PtSi) bottom electrode (BE), produced by a sputtering method. Compared to O-doped ZrN using Pt BE, when Pt/p-Si was used as BE, the foaming voltage slightly increased, but the operation current was reduced by about two orders. In particular, the average reset current of the O-doped ZrN memory cells was reduced to 50 µA, which can delay deterioration of the element, and reduces power consumption. Therefore, the use of PtSi as the BE of the O-doped ZrN films is considered highly effective in improving reliability through reduction of operating current of the memory cells. Full article
(This article belongs to the Special Issue Synaptic Devices Using Nanomaterials for Neuromorphic System)
Show Figures

Figure 1

14 pages, 4203 KiB  
Article
Formation of Si Nanorods and Discrete Nanophases by Axial Diffusion of Si from Substrate into Au and AuPt Nanoalloy Nanorods
by Nele Berger, Ayoub Laghrissi, Yee Yan Tay, Thirumany Sritharan, Jacek Fiutowski, Horst-Günter Rubahn and Mohammed Es-Souni
Nanomaterials 2020, 10(1), 68; https://doi.org/10.3390/nano10010068 - 27 Dec 2019
Viewed by 3089
Abstract
Interdiffusion between Si substrate and nanorod arrays of Au, Pt, and AuPt nanoalloys is investigated at temperatures lower than the AuSi eutectic temperature. When the nanorod is pure Au, Si diffusion from the substrate is very rapid. Au atoms are completely replaced by [...] Read more.
Interdiffusion between Si substrate and nanorod arrays of Au, Pt, and AuPt nanoalloys is investigated at temperatures lower than the AuSi eutectic temperature. When the nanorod is pure Au, Si diffusion from the substrate is very rapid. Au atoms are completely replaced by Si, converting the nanostructure into one of Si nanorod arrays. Au is diffused out to the substrate. The Au nanorod arrays on Si are unstable. When the nanorod is pure Pt, however, no diffusion of Si into the nanorod or any silicide formation is observed. The Pt nanorods are stable on Si substrate. When the nanorods are an alloy of AuPt, interesting interactions occur. Si diffusion into the nanorods is rapid but the diffusing Si readily reacts with Pt forming PtSi while Au diffuses out to the substrate. After annealing, nanophases of Au, Pt, PtSi, and Si may be present within the nanorods. When the Pt content of the alloy is low (12 at%) all Pt atoms are converted to silicide and the extra Si atoms remain in elemental form, particularly near the tip of the nanorods. Hence, the presence of Au accelerates Si diffusion and the ensuing reaction to form PtSi, a phenomenon absents in pure Pt nanorods. When the Au content of the alloy is low, the Si diffusion would cease when all Au atoms have diffused out of the nanorod, thereby arresting the silicide formation resulting in excess Pt in elemental form within the nanorod. This is a technique of making Si nanorods with and without embedded PtSi nanophase consisting of heterojunctions which could have unique properties. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

11 pages, 1963 KiB  
Communication
Probing Transition-Metal Silicides as PGM-Free Catalysts for Hydrogen Oxidation and Evolution in Acidic Medium
by Thomas Mittermeier, Pankaj Madkikar, Xiaodong Wang, Hubert A. Gasteiger and Michele Piana
Materials 2017, 10(6), 661; https://doi.org/10.3390/ma10060661 - 16 Jun 2017
Cited by 18 | Viewed by 6691
Abstract
In this experimental study, we investigate various transition-metal silicides as platinum-group-metal-(PGM)-free electrocatalysts for the hydrogen oxidation reaction (HOR), and for the hydrogen evolution reaction (HER) in acidic environment for the first time. Using cyclic voltammetry in 0.1 M HClO4, we first [...] Read more.
In this experimental study, we investigate various transition-metal silicides as platinum-group-metal-(PGM)-free electrocatalysts for the hydrogen oxidation reaction (HOR), and for the hydrogen evolution reaction (HER) in acidic environment for the first time. Using cyclic voltammetry in 0.1 M HClO4, we first demonstrate that the tested materials exhibit sufficient stability against dissolution in the relevant potential window. Further, we determine the HOR and HER activities for Mo, W, Ta, Ni and Mo-Ni silicides in rotating disk electrode experiments. In conclusion, for the HOR only Ni2Si shows limited activity, and the HER activity of the investigated silicides is considerably lower compared to other PGM-free HER catalysts reported in the literature. Full article
(This article belongs to the Special Issue Advanced Materials in Polymer Electrolyte Fuel Cells)
Show Figures

Figure 1

9 pages, 574 KiB  
Article
Observation and Measurement of Negative Differential Resistance on PtSi Schottky Junctions on Porous Silicon
by Seyedeh Maryam Banihashemian, Hassan Hajghassem, Alireza Erfanian, Majidreza Aliahmadi, Mansor Mohtashamifar and Seyed Mohamadhosein Mosakazemi
Sensors 2010, 10(2), 1012-1020; https://doi.org/10.3390/s100201012 - 27 Jan 2010
Cited by 12 | Viewed by 10442
Abstract
Nanosize porous Si is made by two step controlled etching of Si. The first etching step is carried on the Si surface and the second is performed after deposition of 75 Å of platinum on the formed surface. A platinum silicide structure with [...] Read more.
Nanosize porous Si is made by two step controlled etching of Si. The first etching step is carried on the Si surface and the second is performed after deposition of 75 Å of platinum on the formed surface. A platinum silicide structure with a size of less than 25 nm is formed on the porous Si surface, as measured with an Atomic Forced Microscope (AFM). Differential resistance curve as a function of voltage in 77 K and 100 K shows a negative differential resistance and indicates the effect of quantum tunneling. In general form, the ratio of maximum to minimum tunneling current (PVR) and the number of peaks in I-V curves reduces by increasing the temperature. However, due to accumulation of carriers behind the potential barrier and superposition of several peaks, it is observed that the PVR increases at 100 K and the maximum PVR at 100 K is 189.6. Full article
(This article belongs to the Special Issue ISFET Sensors)
Show Figures

Back to TopTop