Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = platinum nanozymes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3402 KiB  
Article
DNA-Engineered Coating for Protecting the Catalytic Activity of Platinum Nanozymes in Biological Systems
by Lei Ren, Xia Liu, Shuai Tang, Yue Wang, Miao Yang, Linjie Guo, Jiang Li, Kai Jiao and Lihua Wang
Biosensors 2025, 15(4), 205; https://doi.org/10.3390/bios15040205 - 21 Mar 2025
Cited by 1 | Viewed by 632
Abstract
Nanozymes, exemplified by metal nanoparticles, have shown promise in the fields of biological diagnostics and therapeutics. However, their practical application is often hindered by aggregation or deactivation in complex biological systems. Here, we develop a DNA-engineered nanozyme coating to preserve the peroxidase-like catalytic [...] Read more.
Nanozymes, exemplified by metal nanoparticles, have shown promise in the fields of biological diagnostics and therapeutics. However, their practical application is often hindered by aggregation or deactivation in complex biological systems. Here, we develop a DNA-engineered nanozyme coating to preserve the peroxidase-like catalytic activity of platinum nanoparticles in complex biological environments. We employed thiol-modified single-stranded DNA to coat the platinum nanoparticles through metal–sulfur interaction. We found that the negatively charged DNA coating prevents the aggregation of platinum nanoparticles in high-salt environments. Moreover, the DNA coating functions as a molecular sieve, inhibiting non-specific protein adsorption while preserving substrate access to the catalytic interface, thus sustaining high peroxidase-like catalytic activity in serum. As a proof of concept, we demonstrate miRNA detection in serum samples with a detection limit of 1 fM. This approach offers a versatile strategy for molecular diagnostics of nanozymes in complex biological environments. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Figure 1

10 pages, 3760 KiB  
Article
An Enzyme Mimicking Dendritic Platinum–Iron Oxide Catalyzes the Production of Reactive Oxygen Species
by Feng Feng, Yajing Liu, Li Yao and Xiuyu Wang
Catalysts 2024, 14(12), 858; https://doi.org/10.3390/catal14120858 - 26 Nov 2024
Viewed by 967
Abstract
Creatine catalase (CAT), superoxide dismutase (SOD), and NADPH oxidase (NOX) are natural enzyme molecules that play a crucial role in regulating reactive oxygen species (ROS) in biological systems. They maintain life activities and eliminate pathogens by catalyzing various biochemical reactions. However, natural enzymes [...] Read more.
Creatine catalase (CAT), superoxide dismutase (SOD), and NADPH oxidase (NOX) are natural enzyme molecules that play a crucial role in regulating reactive oxygen species (ROS) in biological systems. They maintain life activities and eliminate pathogens by catalyzing various biochemical reactions. However, natural enzymes have some drawbacks in ROS control; they may lose activity under certain environmental conditions, such as high temperatures, extreme pH values, or the presence of organic solvents, which affects their stability and reliability in different applications. The construction of artificial nanozymes is an emerging technology that could probably solve the problems existing in natural enzymes. This study introduces a type of dendritic platinum–iron oxide (DPIO) nanozyme. The unique dendritic structure of this DPIO nanozyme provides a high surface area-to-volume ratio, and the addition of a platinum layer on the surface offers stability, thereby effectively enhancing the catalytic efficiency of producing reactive oxygen species (ROS). The combination of iron-based Fenton reactions and platinum-based Fenton-like reactions in this DPIO nanozyme drastically improves ROS catalytic efficiency. This artificial nanozyme has a high level of biosafety and displays no cytotoxicity. The development of DPIO nanozymes marks a significant advancement in the technology of artificial nanozymes. Full article
(This article belongs to the Special Issue Recent Advances in Biocatalysis and Enzyme Engineering)
Show Figures

Graphical abstract

16 pages, 5018 KiB  
Article
Freeze-Driven Adsorption of Oligonucleotides with polyA-Anchors on Au@Pt Nanozyme
by Nikita E. Lapshinov, Svetlana M. Pridvorova, Anatoly V. Zherdev, Boris B. Dzantiev and Irina V. Safenkova
Int. J. Mol. Sci. 2024, 25(18), 10108; https://doi.org/10.3390/ijms251810108 - 20 Sep 2024
Cited by 2 | Viewed by 1418
Abstract
A promising and sought-after class of nanozymes for various applications is Pt-containing nanozymes, primarily Au@Pt, due to their easy preparation and remarkable catalytic properties. This study aimed to explore the freeze–thaw method for functionalizing Pt-containing nanozymes with oligonucleotides featuring a polyadenine anchor. Spherical [...] Read more.
A promising and sought-after class of nanozymes for various applications is Pt-containing nanozymes, primarily Au@Pt, due to their easy preparation and remarkable catalytic properties. This study aimed to explore the freeze–thaw method for functionalizing Pt-containing nanozymes with oligonucleotides featuring a polyadenine anchor. Spherical gold nanoparticles ([Au]NPs) were synthesized and subsequently used as seeds to produce urchin-like Au@Pt nanoparticles ([Au@Pt]NPs) with an average diameter of 29.8 nm. The nanoparticles were conjugated with a series of non-thiolated DNA oligonucleotides, each consisting of three parts: a 5′-polyadenine anchor (An, with n = 3, 5, 7, 10; triple-branched A3, or triple-branched A5), a random sequence of 23 nucleotides, and a linear polyT block consisting of seven deoxythymine residues. The resulting conjugates were characterized using transmission electron microscopy, spectroscopy, dynamic light scattering, and emission detection of the fluorescent label at the 3′-end of each oligonucleotide. The stability of the conjugates was found to depend on the type of oligonucleotide, with decreased stability in the row of [Au@Pt]NP conjugates with A7 > A5 > 3A3 > 3A5 > A10 > A3 anchors. These [Au@Pt]NP–oligonucleotide conjugates were further evaluated using lateral flow test strips to assess fluorescein-specific binding and peroxidase-like catalytic activity. Conjugates with A3, A5, A7, and 3A3 anchors showed the highest levels of signals of bound labels on test strips, exceeding conjugates in sensitivity by up to nine times. These findings hold significant potential for broad application in bioanalytical systems. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

13 pages, 3029 KiB  
Article
Synthesis, Structural Analysis, and Peroxidase-Mimicking Activity of AuPt Branched Nanoparticles
by Silvia Nuti, Javier Fernández-Lodeiro, Jose M. Palomo, José-Luis Capelo-Martinez, Carlos Lodeiro and Adrián Fernández-Lodeiro
Nanomaterials 2024, 14(13), 1166; https://doi.org/10.3390/nano14131166 - 8 Jul 2024
Cited by 2 | Viewed by 2208
Abstract
Bimetallic nanomaterials have generated significant interest across diverse scientific disciplines, due to their unique and tunable properties arising from the synergistic combination of two distinct metallic elements. This study presents a novel approach for synthesizing branched gold–platinum nanoparticles by utilizing poly(allylamine hydrochloride) (PAH)-stabilized [...] Read more.
Bimetallic nanomaterials have generated significant interest across diverse scientific disciplines, due to their unique and tunable properties arising from the synergistic combination of two distinct metallic elements. This study presents a novel approach for synthesizing branched gold–platinum nanoparticles by utilizing poly(allylamine hydrochloride) (PAH)-stabilized branched gold nanoparticles, with a localized surface plasmon resonance (LSPR) response of around 1000 nm, as a template for platinum deposition. This approach allows precise control over nanoparticle size, the LSPR band, and the branching degree at an ambient temperature, without the need for high temperatures or organic solvents. The resulting AuPt branched nanoparticles not only demonstrate optical activity but also enhanced catalytic properties. To evaluate their catalytic potential, we compared the enzymatic capabilities of gold and gold–platinum nanoparticles by examining their peroxidase-like activity in the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB). Our findings revealed that the incorporation of platinum onto the gold surface substantially enhanced the catalytic efficiency, highlighting the potential of these bimetallic nanoparticles in catalytic applications. Full article
(This article belongs to the Special Issue Noble Metal-Based Nanostructures: Optical Properties and Applications)
Show Figures

Figure 1

15 pages, 4057 KiB  
Article
Oral Administration of Platinum Nanoparticles with SOD/CAT Cascade Catalytic Activity to Alleviate Ulcerative Colitis
by Hao Liu, Yujie Zhang, Mingzhen Zhang, Zhaoxiang Yu and Mingxin Zhang
J. Funct. Biomater. 2023, 14(11), 548; https://doi.org/10.3390/jfb14110548 - 15 Nov 2023
Cited by 14 | Viewed by 3138
Abstract
Ulcerative colitis (UC) is a refractory chronic inflammatory disease involving the colon and rectum, falling under the category of inflammatory bowel disease (IBD). The accumulation of reactive oxygen species (ROS) in local tissues has been identified as a crucial contributor to the escalation [...] Read more.
Ulcerative colitis (UC) is a refractory chronic inflammatory disease involving the colon and rectum, falling under the category of inflammatory bowel disease (IBD). The accumulation of reactive oxygen species (ROS) in local tissues has been identified as a crucial contributor to the escalation of inflammatory responses. Therefore, eliminating ROS in the inflamed colon is a promising approach to treating UC. Nanomaterials with intrinsic enzyme-like activities (nanozymes) have shown significant therapeutic potential in UC. In this study, we found that platinum nanoparticles (Pt NPs) exhibited remarkable superoxide dismutase (SOD) and catalase (CAT) cascade catalytic activities, as well as effective hydroxyl radical (•OH) scavenging ability. The in vitro experiments showed that Pt NPs could eliminate excessive ROS to protect cells against oxidative stress. In the colitis model, oral administration of Pt NPs (loaded in chitosan/alginate hydrogel) could significantly alleviate UC, including reducing the colon length, the damaged epithelium, and the infiltration of inflammatory cells. Without appreciable systemic toxicity, Pt NPs represent a novel therapeutic approach to UC and are expected to achieve long-term inflammatory remission. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Targeting and Drug Delivery)
Show Figures

Figure 1

12 pages, 3277 KiB  
Article
Vancomycin-Stabilized Platinum Nanoparticles with Oxidase-like Activity for Sensitive Dopamine Detection
by Yuzhen Xue, Kai Liu, Mingyue Gao, Tiantian Zhang, Longgang Wang, Yanshuai Cui, Xianbing Ji, Guanglong Ma and Jie Hu
Biomolecules 2023, 13(9), 1312; https://doi.org/10.3390/biom13091312 - 26 Aug 2023
Cited by 5 | Viewed by 1806
Abstract
The development of efficient, reliable, and sensitive dopamine detection methods has attracted much attention. In this paper, vancomycin-stabilized platinum nanoparticles (Van-Ptn NPs, n = 0.5, 1, 2) were prepared by the biological template method, where n represented the molar ratio of vancomycin [...] Read more.
The development of efficient, reliable, and sensitive dopamine detection methods has attracted much attention. In this paper, vancomycin-stabilized platinum nanoparticles (Van-Ptn NPs, n = 0.5, 1, 2) were prepared by the biological template method, where n represented the molar ratio of vancomycin to Pt. The results show that Van-Pt2 NPs had oxidase-like activity and peroxidase-like activity, and the mechanism was due to the generation of reactive oxygen 1O2 and OH. Van-Pt2 NPs exhibited good temperature stability, storage stability, and salt solution stability. Furthermore, Van-Pt2 NPs had almost no cytotoxicity to A549 cells. More importantly, the colorimetric detection of DA in human serum samples was performed based on the oxidase-like activity of Van-Pt2 NPs. The linear range of DA detection was 10–700 μM, and the detection limit was 0.854 μM. This study establishes a rapid and reliable method for the detection of dopamine and extends the application of biosynthetic nanoparticles in the field of biosensing. Full article
Show Figures

Graphical abstract

17 pages, 4594 KiB  
Article
Platinum Palladium Bimetallic Nanozymes Stabilized with Vancomycin for the Sensitive Colorimetric Determination of L-cysteine
by Han Zhao, Kai Liu, Lijie Zhou, Tingting Zhang, Zengsheng Han, Longgang Wang, Xianbing Ji, Yanshuai Cui, Jie Hu and Guanglong Ma
Biomolecules 2023, 13(8), 1254; https://doi.org/10.3390/biom13081254 - 16 Aug 2023
Cited by 7 | Viewed by 2078
Abstract
Many diseases in the human body are related to the level of L-cysteine. Therefore, it is crucial to establish an efficient, simple and sensitive platform for L-cysteine detection. In this work, we synthesized platinum palladium bimetallic nanoparticles (Van-Ptm/Pdn NPs) using [...] Read more.
Many diseases in the human body are related to the level of L-cysteine. Therefore, it is crucial to establish an efficient, simple and sensitive platform for L-cysteine detection. In this work, we synthesized platinum palladium bimetallic nanoparticles (Van-Ptm/Pdn NPs) using vancomycin hydrochloride (Van) as a stabilizer, which exhibited high oxidase-like catalytic activity. In addition, the catalytic kinetics of the Van-Pt1/Pd1 NPs followed the typical Michaelis–Menten equation, exhibiting a strong affinity for 3,3′,5,5′-tetramethylbenzidine substrates. More importantly, we developed a simple and effective strategy for the sensitive colorimetric detection of L-cysteine using biocompatible Van-Pt1/Pd1 NPs. The detection limit was low, at 0.07 μM, which was lower than the values for many previously reported enzyme-like detection systems. The colorimetric method of the L-cysteine assay had good selectivity. The established method for the detection of L-cysteine showed promise for biomedical analysis. Full article
Show Figures

Graphical abstract

15 pages, 1419 KiB  
Article
Role of Platinum Nanozymes in the Oxidative Stress Response of Salmonella Typhimurium
by Mireya Viviana Belloso Daza, Anna Scarsi, Francesca Gatto, Gabriele Rocchetti, Pier Paolo Pompa and Pier Sandro Cocconcelli
Antioxidants 2023, 12(5), 1029; https://doi.org/10.3390/antiox12051029 - 29 Apr 2023
Cited by 4 | Viewed by 2517
Abstract
Platinum nanoparticles (PtNPs) are being intensively explored as efficient nanozymes due to their biocompatibility coupled with excellent catalytic activities, which make them potential candidates as antimicrobial agents. Their antibacterial efficacy and the precise mechanism of action are, however, still unclear. In this framework, [...] Read more.
Platinum nanoparticles (PtNPs) are being intensively explored as efficient nanozymes due to their biocompatibility coupled with excellent catalytic activities, which make them potential candidates as antimicrobial agents. Their antibacterial efficacy and the precise mechanism of action are, however, still unclear. In this framework, we investigated the oxidative stress response of Salmonella enterica serovar Typhimurium cells when exposed to 5 nm citrate coated PtNPs. Notably, by performing a systematic investigation that combines the use of a knock-out mutant strain 12023 HpxF- with impaired response to ROS (ΔkatE ΔkatG ΔkatN ΔahpCF ΔtsaA) and its respective wild-type strain, growth experiments in both aerobic and anaerobic conditions, and untargeted metabolomic profiling, we were able to disclose the involved antibacterial mechanisms. Interestingly, PtNPs exerted their biocidal effect mainly through their oxidase-like properties, though with limited antibacterial activity on the wild-type strain at high particle concentrations and significantly stronger action on the mutant strain, especially in aerobic conditions. The untargeted metabolomic analyses of oxidative stress markers revealed that 12023 HpxF- was not able to cope with PtNPs-based oxidative stress as efficiently as the parental strain. The observed oxidase-induced effects comprise bacterial membrane damage as well as lipid, glutathione and DNA oxidation. On the other hand, in the presence of exogenous bactericidal agents such as hydrogen peroxide, PtNPs display a protective ROS scavenging action, due to their efficient peroxidase mimicking activity. This mechanistic study can contribute to clarifying the mechanisms of PtNPs and their potential applications as antimicrobial agents. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

14 pages, 3969 KiB  
Article
Platinum Nanoparticles Loaded Graphitic Carbon Nitride Nanosheets with Enhanced Peroxidase-like Activity for H2O2 and Oxidase-Based Sensing
by Gege Yang, Ying Chen, Rui Shi, Rongrong Chen, Shanshan Gao, Xin Zhang, Yuan Rao, Ying Lu, Yuancheng Peng, Zhihe Qing and Chunxia Song
Molecules 2023, 28(9), 3736; https://doi.org/10.3390/molecules28093736 - 26 Apr 2023
Cited by 10 | Viewed by 2646
Abstract
Platinum nanoparticles (PtNPs) are classical peroxidase-like nanozyme; self-agglomeration of nanoparticles leads to the undesirable reduction in stability and catalytic activity. Herein, a hybrid peroxidase-like nanocatalyst consisting of PtNPs in situ growing on g–C3N4 nanosheets with enhanced peroxidase-mimic catalytic activity (PtNP@g–C [...] Read more.
Platinum nanoparticles (PtNPs) are classical peroxidase-like nanozyme; self-agglomeration of nanoparticles leads to the undesirable reduction in stability and catalytic activity. Herein, a hybrid peroxidase-like nanocatalyst consisting of PtNPs in situ growing on g–C3N4 nanosheets with enhanced peroxidase-mimic catalytic activity (PtNP@g–C3N4 nanosheets) was prepared for H2O2 and oxidase-based colorimetric assay. g–C3N4 nanosheets can be used as carriers to solve the problem of poor stability of PtNPs. We observed that the catalytic ability could be maintained for more than 90 days. PtNP@g–C3N4 nanosheets could quickly catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB), and the absorbance of blue color oxidized TMB (oxTMB) showed a robust linear relationship with the concentration of H2O2 (the detection limit (LOD): 3.33 μM). By utilizing H2O2 as a mediator, this strategy can be applied to oxidase-based biomolecules (glucose, organophosphorus, and so on, that generate or consume hydrogen peroxide) sensing. As a proof of concept, a sensitive assay of cholesterol that combined PtNP@g–C3N4 nanosheets with cholesterol oxidase (ChOx) cascade catalytic reaction was constructed with an LOD of 9.35 μM in a widespread range from 10 to 800 μM (R2 = 0.9981). In addition, we also verified its ability to detect cholesterol in fetal bovine serum. These results showed application prospect of PtNP@g–C3N4 nanosheets-based colorimetry in sensing and clinical medical detection. Full article
Show Figures

Figure 1

11 pages, 2325 KiB  
Article
Downregulation of Peroxidase Activity of Platinum Cube Enables Minute–Time Scale Colorimetric Signaling of Hypoxanthine for Fish Freshness Monitoring
by Xiaoming Ma, Tingting Feng, Peng Zhang, Hui Zhang, Xuan Hu, Yuying Yang, Zhen Wang, Huifang Zhang, Dong Peng, Xun Li and Jianguo Xu
Foods 2023, 12(2), 291; https://doi.org/10.3390/foods12020291 - 8 Jan 2023
Cited by 8 | Viewed by 2709
Abstract
Due to its unique biological composition, aquatic products, especially fish, are extremely perishable compared to other muscle products. Herein, we proposed an artificial nanozyme-based colorimetric detection of hypoxanthine (Hx), the indicator of fish freshness, in a minute–time scale without the assistance of a [...] Read more.
Due to its unique biological composition, aquatic products, especially fish, are extremely perishable compared to other muscle products. Herein, we proposed an artificial nanozyme-based colorimetric detection of hypoxanthine (Hx), the indicator of fish freshness, in a minute–time scale without the assistance of a natural enzyme (hypoxanthine oxidase). The principle is based on the interaction between Hx and polyvinylpyrrolidone-modified platinum cubic nanomaterials (PVP-PtNC), in which the catalytic active sites of PVP-PtNC’s surface were blocked by Hx. This causes the downregulation of PVP-PtNC’s catalytic ability and weakened its ability to catalyze the oxidization of 3,3′,5,5′-Tetramethylbenzidine (TMB) by H2O2. Accordingly, the decrease in the UV–vis absorption and the weakening of the colorimetric reaction color is proportional to the Hx concentration. On this basis, a target-triggered colorimetric method for detecting Hx is developed for fish freshness monitoring with a fast detection speed, low cost, high accuracy, and simplified operation. Experiments reveal that the correlation response of Hx is from 0.5 μM to 10 mM with a limit of detection of 0.16 μM. In particular, the Hx detected from real fish indicates that the method possesses a promising potential for practical application. All of these features are expected to promote the development of online detection tools for food safety monitoring. Full article
(This article belongs to the Special Issue Processing and Preservation of Aquatic Products)
Show Figures

Figure 1

11 pages, 2824 KiB  
Article
Biosensor Based on Peroxidase-Mimetic Nanozyme and Lactate Oxidase for Accurate L-Lactate Analysis in Beverages
by Oleh Smutok, Taras Kavetskyy, Tetiana Prokopiv, Roman Serkiz, Ondrej Šauša, Ivan Novák, Helena Švajdlenková, Igor Maťko, Mykhailo Gonchar and Evgeny Katz
Biosensors 2022, 12(11), 1042; https://doi.org/10.3390/bios12111042 - 18 Nov 2022
Cited by 20 | Viewed by 3599
Abstract
Precision analysis of the key biological metabolites such as L-lactate has great practical importance for many technological processes in food technology, including beverage production. Here we describe a new, highly selective, and sensitive biosensor for accurate L-lactate assay based on a combination of [...] Read more.
Precision analysis of the key biological metabolites such as L-lactate has great practical importance for many technological processes in food technology, including beverage production. Here we describe a new, highly selective, and sensitive biosensor for accurate L-lactate assay based on a combination of peroxidase-mimetic nanozymes with microbial lactate oxidase (LOx) immobilized onto the surface of a graphite-rod electrode (GE). The peroxidase-like nanozymes were synthesized using the debris of carbon microfibers (CFs) functionalized with hemin (H) and modified with gold nanoparticles (AuNPs) or platinum microparticles (PtMPs). The nanozyme formed with PtMPs as well as corresponding bioelectrodes based on it (LOx-CF-H-PtMPs/GE) is characterized by preferable catalytic and operational characteristics, so it was selected for the analysis of L-lactate content in real samples of grape must and red wine. The results of the L-lactate analysis obtained by the developed biosensors are highly correlated with a very selective spectrophotometric approach used as a reference. The developed biosensor, due to its high selectivity and sensitivity, is very prospective not only for the beverage industry and food technology, but also for clinical diagnostics and medicine, as well as in other applications where the accurate analysis of L-lactate is highly important. Full article
(This article belongs to the Special Issue Electrochemical (Bio-) Sensors in Biological Applications)
Show Figures

Figure 1

13 pages, 4305 KiB  
Article
A Paper-Based Electrochemical Sensor Based on PtNP/COFTFPB−DHzDS@rGO for Sensitive Detection of Furazolidone
by Rongfang Chen, Xia Peng, Yonghai Song and Yan Du
Biosensors 2022, 12(10), 904; https://doi.org/10.3390/bios12100904 - 21 Oct 2022
Cited by 17 | Viewed by 2789
Abstract
Herein, a paper-based electrochemical sensor based on PtNP/COFTFPB−DHzDS@rGO was developed for the sensitive detection of furazolidone. A cluster-like covalent organic framework (COFTFPB−DHzDS) was successfully grown on the surface of amino-functional reduced graphene oxide (rGO-NH2) to avoid serious [...] Read more.
Herein, a paper-based electrochemical sensor based on PtNP/COFTFPB−DHzDS@rGO was developed for the sensitive detection of furazolidone. A cluster-like covalent organic framework (COFTFPB−DHzDS) was successfully grown on the surface of amino-functional reduced graphene oxide (rGO-NH2) to avoid serious self-aggregation, which was further loaded with platinum nanoparticles (PtNPs) with high catalytic activity as nanozyme to obtain PtNP/COFTFPB−DHzDS@rGO nanocomposites. The morphology of PtNP/COFTFPB−DHzDS@rGO nanocomposites was characterized, and the results showed that the smooth rGO surface became extremely rough after the modification of COFTFPB−DHzDS. Meanwhile, ultra-small PtNPs with sizes of around 1 nm were precisely anchored on COFTFPB−DHzDS to maintain their excellent catalytic activity. The conventional electrodes were used to detect furazolidone and showed a detection limit as low as 5 nM and a linear range from 15 nM to 110 μM. In contrast, the detection limit for the paper-based electrode was 0.23 μM, and the linear range was 0.69–110 μM. The results showed that the paper-based electrode can be used to detect furazolidone. This sensor is a potential candidate for the detection of furazolidone residue in human serum and fish samples. Full article
(This article belongs to the Special Issue Paper-Based Biosensors)
Show Figures

Figure 1

13 pages, 1935 KiB  
Article
Synthesis of Gold-Platinum Core-Shell Nanoparticles Assembled on a Silica Template and Their Peroxidase Nanozyme Properties
by Xuan-Hung Pham, Van-Khue Tran, Eunil Hahm, Yoon-Hee Kim, Jaehi Kim, Wooyeon Kim and Bong-Hyun Jun
Int. J. Mol. Sci. 2022, 23(12), 6424; https://doi.org/10.3390/ijms23126424 - 8 Jun 2022
Cited by 13 | Viewed by 3518
Abstract
Bimetallic nanoparticles are important materials for synthesizing multifunctional nanozymes. A technique for preparing gold-platinum nanoparticles (NPs) on a silica core template (SiO2@Au@Pt) using seed-mediated growth is reported in this study. The SiO2@Au@Pt exhibits peroxidase-like nanozyme activity has several advantages [...] Read more.
Bimetallic nanoparticles are important materials for synthesizing multifunctional nanozymes. A technique for preparing gold-platinum nanoparticles (NPs) on a silica core template (SiO2@Au@Pt) using seed-mediated growth is reported in this study. The SiO2@Au@Pt exhibits peroxidase-like nanozyme activity has several advantages over gold assembled silica core templates (SiO2@Au@Au), such as stability and catalytic performance. The maximum reaction velocity (Vmax) and the Michaelis–Menten constants (Km) were and 2.1 × 10−10 M−1∙s−1 and 417 µM, respectively. Factors affecting the peroxidase activity, including the quantity of NPs, solution pH, reaction time, and concentration of tetramethyl benzidine, are also investigated in this study. The optimization of SiO2@Au@Pt NPs for H2O2 detection obtained in 0.5 mM TMB; using 5 µg SiO2@Au@Pt, at pH 4.0 for 15 min incubation. H2O2 can be detected in the dynamic liner range of 1.0 to 100 mM with the detection limit of 1.0 mM. This study presents a novel method for controlling the properties of bimetallic NPs assembled on a silica template and increases the understanding of the activity and potential applications of highly efficient multifunctional NP-based nanozymes. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

13 pages, 2724 KiB  
Article
Gold-Platinum Nanoparticles with Core-Shell Configuration as Efficient Oxidase-like Nanosensors for Glutathione Detection
by Javier Bonet-Aleta, Jose I. Garcia-Peiro, Silvia Irusta and Jose L. Hueso
Nanomaterials 2022, 12(5), 755; https://doi.org/10.3390/nano12050755 - 24 Feb 2022
Cited by 17 | Viewed by 4901
Abstract
Nanozymes, defined as nanomaterials that can mimic the catalytic activity of natural enzymes, have been widely used to develop analytical tools for biosensing. In this regard, the monitoring of glutathione (GSH), a key antioxidant biomolecule intervening in the regulation of the oxidative stress [...] Read more.
Nanozymes, defined as nanomaterials that can mimic the catalytic activity of natural enzymes, have been widely used to develop analytical tools for biosensing. In this regard, the monitoring of glutathione (GSH), a key antioxidant biomolecule intervening in the regulation of the oxidative stress level of cells or related with Parkinson’s or mitochondrial diseases can be of great interest from the biomedical point of view. In this work, we have synthetized a gold-platinum Au@Pt nanoparticle with core-shell configuration exhibiting a remarkable oxidase-like mimicking activity towards the substrates 3,3′,5,5′-tetramethylbenzidine (TMB) and o-phenylenediamine (OPD). The presence of a thiol group (-SH) in the chemical structure of GSH can bind to the Au@Pt nanozyme surface to hamper the activation of O2 and reducing its oxidase-like activity as a function of the concentration of GSH. Herein, we exploit the loss of activity to develop an analytical methodology able to detect and quantify GSH up to µM levels. The system composed by Au@Pt and TMB demonstrates a good linear range between 0.1–1.0 µM to detect GSH levels with a limit of detection (LoD) of 34 nM. Full article
(This article belongs to the Special Issue Green Synthesis of Nanomaterials and Its Applications)
Show Figures

Figure 1

Back to TopTop