Platinum Nanoparticles Loaded Graphitic Carbon Nitride Nanosheets with Enhanced Peroxidase-like Activity for H2O2 and Oxidase-Based Sensing
(This article belongs to the Section Materials Chemistry)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of PtNP@g–C3N4 Nanosheets
2.2. Catalytic Performance of PtNP@g–C3N4 Nanosheets
2.3. Kinetic Parameters of PtNP@g–C3N4 Nanosheets as Peroxidase Mimics
2.4. Catalytic Mechanism of PtNP@g–C3N4 Nanosheets
2.5. Optimization of Experiment Conditions for Detection of H2O2
2.6. Optimization of Experiment Conditions for Detection of Cholesterol
2.7. Colorimetric Assay of H2O2
2.8. Colorimetric Assay of Cholesterol
2.9. Assay of Cholesterol in Fetal Bovine Serum
3. Materials and Methods
3.1. Materials and Instruments
3.2. Synthesis of PtNP@g–C3N4 Nanosheets
3.3. Investigation of PtNP@g–C3N4 Nanosheets Peroxidase-Mimic Activity
3.4. Steady-State Kinetic Assays
3.5. H2O2 Colorimetric Assay
3.6. Cholesterol Colorimetric Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
References
- Manea, F.; Houillon, F.B.; Pasquato, L.; Scrimin, P. Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts. Angew. Chem. Int. Ed. 2004, 43, 6165–6169. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic Peroxidase-Like Activity of Ferromagnetic Nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef]
- Dong, H.; Fan, Y.; Zhang, W.; Gu, N.; Zhang, Y. Catalytic Mechanisms of Nanozymes and Their Applications in Biomedicine. Bioconjugate Chem. 2019, 30, 1273–1296. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Q.; Li, Q.; Li, H.; Li, F. Two-Dimensional MnO2 Nanozyme-Mediated Homogeneous Electrochemical Detection of Organophosphate Pesticides without the Interference of H2O2 and Color. Anal. Chem. 2021, 93, 4084–4091. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, L.; Zhang, S.; Chen, X.; Li, P.; Gao, Y.; Xie, S.; Zhang, A.; Wang, H. Plasma-Assisted Controllable Doping of Nitrogen into MoS2 Nanosheets as Efficient Nanozymes with Enhanced Peroxidase-Like Catalysis Activity. ACS Appl. Mater. Interfaces 2020, 12, 17547–17556. [Google Scholar] [CrossRef]
- Qin, N.; Pan, A.; Yuan, J.; Ke, F.; Wu, X.; Zhu, J.; Liu, J.; Zhu, J. One-Step Construction of a Hollow Au@Bimetal–Organic Framework Core–Shell Catalytic Nanoreactor for Selective Alcohol Oxidation Reaction. ACS Appl. Mater. Interfaces 2021, 13, 12463–12471. [Google Scholar] [CrossRef]
- Qin, N.; Wu, X.; Liu, X.; Xue, Z.; Muddassir, M.; Sakiyama, H.; Xia, C.; Zhang, C.; Zhu, L.; Ke, F. Well-Arranged Hollow Au@Zn/Ni-MOF-2-NH2 Core–Shell Nanocatalyst with Enhanced Catalytic Activity for Biomass-Derived d-Xylose Oxidation. ACS Sustain. Chem. Eng. 2022, 10, 5396–5403. [Google Scholar] [CrossRef]
- Wang, H.; Song, A.; Chen, H.; Zhang, W.; Xue, Z. Charge-Storage Nickel Substrate-Boosted CuP2 Nanosheet for the Electrochemical Oxygen Evolution Reaction. Inorg. Chem. 2022, 61, 12489–12493. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, D.; Zeng, G.; Chi, H.; Li, L.; He, Y.; Ke, F.; Xiao, J.; Ye, S. Dysprosium Doped CoFe2O4 with Enhanced Magnetic Property and Photodegradation Activity of Methyl Orange. Mater. Lett. 2021, 284, 128966. [Google Scholar] [CrossRef]
- Huang, Y.; Gu, Y.; Liu, X.; Deng, T.; Dai, S.; Qu, J.; Yang, G.; Qu, L. Reusable ring-like Fe3O4/Au Nanozymes with Enhanced Peroxidase-Like Activities for Colorimetric-SERS Dual-Mode Sensing of Biomolecules in Human Blood. Biosens. Bioelectron. 2022, 209, 114253. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Y.; Wang, Q.; Lin, A.; Wei, H. Nanozyme-Enabled Analytical Chemistry. Anal. Chem. 2022, 94, 312–323. [Google Scholar] [CrossRef]
- Navyatha, B.; Singh, S.; Nara, S. AuPeroxidase nanozymes: Promises and applications in biosensing. Biosens. Bioelectron. 2021, 175, 112882. [Google Scholar] [CrossRef] [PubMed]
- Romanholo, P.; Razzino, C.A.; Raymundo-Pereira, P.A.; Prado, T.M.; Sgobbi, L.F. Biomimetic Electrochemical Sensors: New Horizons and Challenges in Biosensing Applications. Biosens. Bioelectron. 2021, 8, 113242. [Google Scholar] [CrossRef]
- Paudyal, J.; Wang, P.; Zhou, F.; Liu, Y.; Cai, Y.; Xiao, Y. Platinum-Nanoparticle-Modified Single-Walled Carbon Nanotube-Laden Paper Electrodes for Electrocatalytic Oxidation of Methanol. ACS Appl. Nano Mater. 2021, 4, 13798–13806. [Google Scholar] [CrossRef]
- Draz, M.S.; Lakshminaraasimulu, N.K.; Krishnakumar, S.; Battalapalli, D.; Vasan, A.; Kanakasabapathy, M.K.; Sreeram, A.; Kallakuri, S.; Thirumalaraju, P.; Li, Y.; et al. Motion-Based Immunological Detection of Zika Virus Using Pt-Nanomotors and a Cellphone. ACS Nano 2018, 12, 5709–5718. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cai, T.; Kang, E. Hairy Hybrid Nanorattles of Platinum Nanoclusters with Dual-Responsive Polymer Shells for Confined Nanocatalysis. Macromolecules 2016, 49, 5649–5659. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Sun, X.; Chen, L.; Xu, Z. Boron Nitride Nanosheet/CuS Nanocomposites as Mimetic Peroxidase for Sensitive Colorimetric Detection of Cholesterol. Sens. Actuators B Chem. 2017, 246, 118–126. [Google Scholar] [CrossRef]
- Chen, L.; Xing, S.; Qing, Z.; Chen, Q.; Zou, Z.; Quan, K.; Lei, Y.; Liu, J.; Yang, R. A Glucose-Powered Activatable Nanozyme Breaking pH and H2O2 Limitations for Treating Diabetic Infections. Angew. Chem. Int. Ed. 2021, 60, 23534–23539. [Google Scholar] [CrossRef]
- Wu, N.; Wang, Y.; Wang, X.; Guo, F.; Wen, H.; Yang, T.; Wang, J. Enhanced Peroxidase-Like Activity of AuNPs Loaded Graphitic Carbon Nitride Nanosheets for Colorimetric Biosensing. Anal. Chim. Acta 2019, 1091, 69–75. [Google Scholar] [CrossRef]
- Fu, L.; Chen, G.; Jiang, N.; Yu, J.; Lin, C.; Yu, A. In Situ Growth of Metal Nanoparticles on Boron Nitride Nanosheets as Highly Efficient Catalysts. J. Mater. Chem. A 2016, 4, 19107–19115. [Google Scholar] [CrossRef]
- Tang, S.; Wang, M.; Li, G.; Li, X.; Chen, W.; Zhang, L. Ultrasensitive Colorimetric Determination of Silver(I) Based on the Peroxidase Mimicking Activity of a Hybrid Material Composed of Graphitic Carbon Nitride and Platinum Nanoparticles. Microchim. Acta 2018, 185, 273. [Google Scholar] [CrossRef]
- Qiu, H.; Pu, F.; Ran, X.; Liu, C.; Ren, J.; Qu, X. Nanozyme as Artificial Receptor with Multiple Readouts for Pattern Recognition. Anal. Chem. 2018, 90, 11775–11779. [Google Scholar] [CrossRef]
- He, Y.; Li, W.; Zhang, X.; Zhang, X.; Lin, Z.; Lin, Q.; Ql, A. 5,10,15,20-Tetrakis (4-Carboxylphenyl) Porphyrin Functionalized NiCo2S4 yolk-shell Nanospheres: Excellent Peroxidase-Like Activity, Catalytic Mechanism and Fast Cascade Colorimetric Biosensor for Cholesterol. Sens. Actuators B Chem. 2021, 326, 128850. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, Y. Designing Recognition Molecules and Tailoring Functional Surfaces for In Vivo Monitoring of Small Molecules in the Brain. Acc. Chem. Res. 2018, 51, 688–698. [Google Scholar] [CrossRef]
- Priyadarshini, E.; Rawat, K. Au@Carbon Dot Nanoconjugates As a Dual Mode Enzyme-Free Sensing Platform for Cholesterol. J. Mater. Chem. B 2017, 5, 5425–5432. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xu, T.; Li, Y.; Wang, C. Size Effect of Pt Co-Catalyst on Photocatalytic Efficiency of g–C3N4 for Hydrogen Evolution. Appl. Surf. Sci. 2019, 464, 36–42. [Google Scholar]
- Navadeepthy, D.; Rebekah, A.; Viswanathan, C.; Ponpandian, N. N-Doped Graphene/ZnFe2O4: A Novel Nanocomposite for Intrinsic Peroxidase Based Sensing of H2O2. Mater. Res. Bull. 2017, 95, 1–8. [Google Scholar]
- Muhammad, N.; Sajid, R.; Nawshad, M.; Mian, H.N.; Aqif, A.C.; Muhammad, H.M.; Shakir, A.S.; Akhtar, H. Biomimetic Nitrogen Doped Titania Nanoparticles as a Colorimetric Platform for Hydrogen Peroxide Detection. J. Colloid Interface Sci. 2017, 505, 1147–1157. [Google Scholar]
- Hu, L.; Yuan, Y.; Zhang, L.; Zhao, J.; Majeed, S.; Xu, G. Copper Nanoclusters as Peroxidase Mimetics and Their Applications to H2O2 and Glucose Detection. Anal. Chim. Acta 2013, 762, 83–86. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Y.; Shen, J.; Qi, W.; Wang, H. Fabrication of Polyethyleneimine-Functionalized Reduced Graphene Oxide-Hemin-Bovine Serum Albumin (PEI-rGO-Hemin-BSA) Nanocomposites as Peroxidase Mimetics for the Detection of Multiple Metabolites. Anal. Chim. Acta 2019, 1070, 80–87. [Google Scholar] [CrossRef]
- Cai, S.; Fu, Z.; Xiao, W.; Xiong, Y.; Wang, C.; Yang, R. Zero-Dimensional/Two-Dimensional AuxPd100–x Nanocomposites with Enhanced Nanozyme Catalysis for Sensitive Glucose Detection. ACS Appl. Mater. Interfaces 2020, 12, 11616–11624. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Sun, B.; Wang, X.; Qiao, F.; Ai, S. 2D Ultrathin Nanosheets of Co–Al Layered Double Hydroxides Prepared in l-Asparagine Solution: Enhanced Peroxidase-Like Activity and Colorimetric Detection of Glucose. J. Mater. Chem. B 2013, 1, 2268–2274. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.K.; Loh, P.Y.; Sow, C.H.; Chin, W.S. CoOOH Nanosheet Electrodes: Simple Fabrication for Sensitive Electrochemical Sensing of Hydrogen Peroxide and Hydrazine. Biosens. Bioelectron. 2013, 39, 255–260. [Google Scholar] [CrossRef]
- Chen, L.; Sun, K.; Li, P.; Fan, X.; Sun, J.; Ai, S. DNA-Enhanced Peroxidase-Like Activity of Layered Double Hydroxide Nanosheets and Applications in H2O2 and Glucose Sensing. Nanoscale 2013, 5, 10982–10988. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Qi, C.; Zheng, X.; Zheng, J. Facile Synthesis of Silver Nanoparticle-Decorated Graphene Oxide Nanocomposites and Their Application for Electrochemical Sensing. New J. Chem. 2015, 39, 9358–9362. [Google Scholar] [CrossRef]
- Kuo, C.; Lan, W.-J.; Chen, C. Redox Preparation of Mixed-valence Cobalt Manganese Oxide Nanostructured Materials: Highly Efficient Noble Metal-Free Electrocatalysts for Sensing Hydrogen Peroxide. Nanoscale 2014, 6, 334–341. [Google Scholar] [CrossRef]
- Umar, A.; Ahmad, R.; Hwang, S.W.; Kim, S.H.; Al-Hajry, A.; Hahn, Y.B. Development of Highly Sensitive and Selective Cholesterol Biosensor Based on Cholesterol Oxidase Co-Immobilized with α-Fe2O3 Micro-Pine Shaped Hierarchical Structures. Electrochim. Acta 2014, 135, 396–403. [Google Scholar] [CrossRef]
- Nirala, N.R.; Abraham, S.; Kumar, V.; Bansal, A.; Srivastava, A.; Saxena, P.S. Colorimetric Detection of Cholesterol Based on Highly Efficient Peroxidase Mimetic Activity of Graphene Quantum Dots. Sens. Actuators B Chem. 2015, 218, 42–50. [Google Scholar] [CrossRef]
- Nantaphol, S.; Chailapakul, O. Sensitive and Selective Electrochemical Sensor Using Silver Nanoparticles Modified Glassy Carbon Electrode for Determination of Cholesterol in Bovine Serum. Sens. Actuators B Chem. 2015, 207, 193–198. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, G.; Gao, S.; Zhang, L.; Yu, M.; Song, C.; Lu, Y. Highly Rapid and Non-Enzymatic Detection of Cholesterol Based on Carbon Nitride Quantum Dots as Fluorescent Nanoprobes. RSC Adv. 2020, 10, 39596–39600. [Google Scholar] [CrossRef] [PubMed]
Km (mmol/L) | Vmax (1 × 10−8 M s−1) | ||||
---|---|---|---|---|---|
Catalysts | TMB | H2O2 | TMB | H2O2 | Reference |
a NGZF | 0.907 | 115.52 | 9.71 | 7.44 | [28] |
b MoS2 | 0.825 | 2.083 | 1.161 | 1.346 | [6] |
c N-doped TiO2 | 0.45 | 0.72 | 11.5 | 6.8 | [29] |
d CuNCs | 0.648 | 29.16 | 5.96 | 4.22 | [30] |
Hemin | 4.26 | 2.95 | 1.108 | 0.637 | [31] |
PtNP/g–C3N4 | 0.446 | 0.105 | 2.84 | 5.33 | This work |
Method | Material | Linear Range (mmol/L) | LOD (μmol/L) | Reference |
---|---|---|---|---|
Colorimetry | CoAl-a ELDHs | 0.01~0.2 | 10 | [33] |
Amperometry | b CoOOH NSs | 0~1.6 | 40 | [34] |
Colorimetry | DNA/CuAl-c LDHs | 0.02~2.0 | 10 | [35] |
Amperometry | d AgNPs /TWEEN/GO | 0.02~23.1 | 8.7 | [36] |
Amperometry | e SCMf-100 | 0.1~25 | 15 | [37] |
Colorimetry | PtNP/g–C3N4 | 0.05~0.2 | 3.33 | This work |
Method | Material | Linear Range (mmol/L) | LOD (μmol/L) | Reference |
---|---|---|---|---|
Colorimetry | f Por-NiCo2S4 | 0.1~9.0 | 19.36 | [24] |
Amperometry | Chox/Fe2O3 | 0.1~8.0 | 18 | [38] |
Colorimetry | g Au/MoS2 | 0.04~1.0 | 15 | [39] |
Amperometry | h AgNPs/GCE | 0.1~20.0 | 25.8 | [40] |
Colorimetry | PtNP/g–C3N4 | 0.01~0.8 | 9.35 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Chen, Y.; Shi, R.; Chen, R.; Gao, S.; Zhang, X.; Rao, Y.; Lu, Y.; Peng, Y.; Qing, Z.; et al. Platinum Nanoparticles Loaded Graphitic Carbon Nitride Nanosheets with Enhanced Peroxidase-like Activity for H2O2 and Oxidase-Based Sensing. Molecules 2023, 28, 3736. https://doi.org/10.3390/molecules28093736
Yang G, Chen Y, Shi R, Chen R, Gao S, Zhang X, Rao Y, Lu Y, Peng Y, Qing Z, et al. Platinum Nanoparticles Loaded Graphitic Carbon Nitride Nanosheets with Enhanced Peroxidase-like Activity for H2O2 and Oxidase-Based Sensing. Molecules. 2023; 28(9):3736. https://doi.org/10.3390/molecules28093736
Chicago/Turabian StyleYang, Gege, Ying Chen, Rui Shi, Rongrong Chen, Shanshan Gao, Xin Zhang, Yuan Rao, Ying Lu, Yuancheng Peng, Zhihe Qing, and et al. 2023. "Platinum Nanoparticles Loaded Graphitic Carbon Nitride Nanosheets with Enhanced Peroxidase-like Activity for H2O2 and Oxidase-Based Sensing" Molecules 28, no. 9: 3736. https://doi.org/10.3390/molecules28093736