Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = platinum micro-cathode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1807 KB  
Article
Batch-to-Batch Variation in Laser-Inscribed Graphene (LIG) Electrodes for Electrochemical Sensing
by Yifan Tang, Geisianny A. Moreira, Diana Vanegas, Shoumen P. A. Datta and Eric S. McLamore
Micromachines 2024, 15(7), 874; https://doi.org/10.3390/mi15070874 - 30 Jun 2024
Cited by 4 | Viewed by 2746
Abstract
Laser-inscribed graphene (LIG) is an emerging material for micro-electronic applications and is being used to develop supercapacitors, soft actuators, triboelectric generators, and sensors. The fabrication technique is simple, yet the batch-to-batch variation of LIG quality is not well documented in the literature. In [...] Read more.
Laser-inscribed graphene (LIG) is an emerging material for micro-electronic applications and is being used to develop supercapacitors, soft actuators, triboelectric generators, and sensors. The fabrication technique is simple, yet the batch-to-batch variation of LIG quality is not well documented in the literature. In this study, we conduct experiments to characterize batch-to-batch variation in the manufacturing of LIG electrodes for applications in electrochemical sensing. Numerous batches of 36 LIG electrodes were synthesized using a CO2 laser system on polyimide film. The LIG material was characterized using goniometry, stereomicroscopy, open circuit potentiometry, and cyclic voltammetry. Hydrophobicity and electrochemical screening (cyclic voltammetry) indicate that LIG electrode batch-to-batch variation is less than 5% when using a commercial reference and counter electrode. Metallization of LIG led to a significant increase in peak current and specific capacitance (area between anodic/cathodic curve). However, batch-to-batch variation increased to approximately 30%. Two different platinum electrodeposition techniques were studied, including galvanostatic and frequency-modulated electrodeposition. The study shows that formation of metallized LIG electrodes with high specific capacitance and peak current may come at the expense of high batch variability. This design tradeoff has not been discussed in the literature and is an important consideration if scaling sensor designs for mass use is desired. This study provides important insight into the variation of LIG material properties for scalable development of LIG sensors. Additional studies are needed to understand the underlying mechanism(s) of this variability so that strategies to improve the repeatability may be developed for improving quality control. The dataset from this study is available via an open access repository. Full article
Show Figures

Figure 1

17 pages, 5777 KB  
Article
Electrochemical Noise Analysis of the X70 Pipeline Steel under Stress Conditions Using Symmetrical and Asymmetrical Electrode Systems
by Andres Carmona-Hernández, Ricardo Orozco-Cruz, Franco Antonio Carpio-Santamaria, Clarisa Campechano-Lira, Francisco López-Huerta, Edgar Mejía-Sánchez, Antonio Contreras and Ricardo Galván-Martínez
Metals 2022, 12(9), 1545; https://doi.org/10.3390/met12091545 - 19 Sep 2022
Cited by 5 | Viewed by 2754
Abstract
In this work, electrochemical monitoring of stress corrosion cracking (SCC) behavior of a X70 steel in acidic synthetic soil solution during the slow strain rate test (SSRT) was performed by electrochemical noise (EN) using the conventional arrangement of symmetrical electrodes and electrochemical emission [...] Read more.
In this work, electrochemical monitoring of stress corrosion cracking (SCC) behavior of a X70 steel in acidic synthetic soil solution during the slow strain rate test (SSRT) was performed by electrochemical noise (EN) using the conventional arrangement of symmetrical electrodes and electrochemical emission spectroscopy (EES) using the asymmetrical arrangement replacing the second working electrode for a platinum micro-cathode. The statistical method, fast Fourier transform, and discrete wavelet transform were used for analyzing the potential and current signals recorded by both arrangements. The results showed that EN arrangement was more effective to detect the crack initiation at a point close to yield strength despite stress-induced asymmetry in one of the electrodes. For the EES arrangement, the micro-cathode had a strong influence on the electrochemical noise of the current and potential under stress conditions. From the transient features, statistical parameters, and wavelet analysis, a discontinuous transgranular SCC mechanism was found. The resistance values obtained by EN measurements had better correlation with the electrochemical impedance spectroscopy results (EIS) than EES measurements. Full article
(This article belongs to the Special Issue Corrosion Electrochemical Measurement, Analysis and Research)
Show Figures

Graphical abstract

12 pages, 10182 KB  
Article
Numerical Study on Electrochemical Performance of Low-Temperature Micro-Solid Oxide Fuel Cells with Submicron Platinum Electrodes
by Jee Min Park, Dae Yun Kim, Jong Dae Baek, Yong-Jin Yoon, Pei-Chen Su and Seong Hyuk Lee
Energies 2018, 11(5), 1204; https://doi.org/10.3390/en11051204 - 9 May 2018
Cited by 8 | Viewed by 3649
Abstract
The present study established the two-dimensional axisymmetric model for a freestanding circular cell of the low-temperature micro-solid oxide fuel cell (µ-SOFC) that is composed of platinum (Pt) electrodes and a yttria-stabilized zirconia (YSZ) electrolyte. The only membrane electrode assembly (MEA) was constructed for [...] Read more.
The present study established the two-dimensional axisymmetric model for a freestanding circular cell of the low-temperature micro-solid oxide fuel cell (µ-SOFC) that is composed of platinum (Pt) electrodes and a yttria-stabilized zirconia (YSZ) electrolyte. The only membrane electrode assembly (MEA) was constructed for the numerical simulation in order to avoid the meshing problem with a very high aspect ratio of the submicron layers. We considered the charge and species conservation equations and electrode kinetics to elucidate the intricate phenomena inside the µ-SOFC. The extensive numerical simulations were carried out by using the commercial code to predict the effect of operating temperature and electrolyte thickness on the electrochemical performance of µ-SOFC. Our numerical model was calibrated with the results from experiments, and we provided the average cell current density and overpotentials with respect to the electrolyte thickness and the operating temperature. It was found that the electrochemical performance increased with the increase in operating temperature, owing to both rapid electrochemical reactions and ionic conduction, even in µ-SOFC. Moreover, the major voltage loss of µ-SOFC at low-temperature was caused by the cathodic activation overpotential. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

9 pages, 2351 KB  
Article
Performance of an Active Micro Direct Methanol Fuel Cell Using Reduced Catalyst Loading MEAs
by D.S. Falcão, R.A. Silva, C.M. Rangel and A.M.F.R. Pinto
Energies 2017, 10(11), 1683; https://doi.org/10.3390/en10111683 - 25 Oct 2017
Cited by 16 | Viewed by 6402
Abstract
The micro direct methanol fuel cell (MicroDMFC) is an emergent technology due to its special interest for portable applications. This work presents the results of a set of experiments conducted at room temperature using an active metallic MicroDMFC with an active area of [...] Read more.
The micro direct methanol fuel cell (MicroDMFC) is an emergent technology due to its special interest for portable applications. This work presents the results of a set of experiments conducted at room temperature using an active metallic MicroDMFC with an active area of 2.25 cm2. The MicroDMFC uses available commercial materials with low platinum content in order to reduce the overall fuel cell cost. The main goal of this work is to provide useful information to easily design an active MicroDMFC with a good performance recurring to cheaper commercial Membrane Electrode Assemblies MEAs. A performance/cost analysis for each MEA tested is provided. The maximum power output obtained was 18.1 mW/cm2 for a hot-pressed MEA with materials purchased from Quintech with very low catalyst loading (3 mg/cm2 Pt–Ru at anode side and 0.5 mg/cm2 PtB at the cathode side) costing around 15 euros. Similar power values are reported in literature for the same type of micro fuel cells working at higher operating temperatures and substantially higher cathode catalyst loadings. Experimental studies using metallic active micro direct methanol fuel cells operating at room temperature are very scarce. The results presented in this work are, therefore, very useful for the scientific community. Full article
(This article belongs to the Special Issue Direct Alcohol Fuel Cells 2018)
Show Figures

Figure 1

Back to TopTop